Какие свойства металлов или сплавов – Объясните, какие свойства металлов или сплавов лежат в основе образования сочетаний стальной характер, металлический голос, свинцовый

1.2. Основные свойства металлов и сплавов

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов – твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов

– ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость – способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость – способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость – способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава – возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием – поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть – способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость – способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и часто являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск – способность поверхности металла и сплава направленно отражать световой поток.

Плотность – масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления – это температура, при которой металл или сплав целиком переходит в жидкое состояние.

Теплопроводность – количество теплоты, проходящее в секунду через сечение в 1см2, когда на расстоянии в 1см изменение температуры составляет в 10С.

Теплоемкость – количество теплоты, необходимой для повышения температуры тела на 10С.

Электрическая проводимость – величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10-6м2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эти величины связаны между собой коэффициентом , который называется магнитной восприимчивостью стали или сплава.

(1)

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь

(2)

где — магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) , где— коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нm после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Нс, напряженность насыщающего поля Нн и намагниченность насыщения Мs. По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость и максимальная магнитная проницаемость

.

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно нечувствительные и структурно чувствительные. К структурно нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно чувствительным – магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т.д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов – изменение размеров и формы зерен, характеризуется температурными коэффициентами объемного расширения и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава, нагреваемого или охлаждаемого с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

studfiles.net

Свойства металлов и сплавов | Строительные материалы и технологии

Введение

Металлы — химические элементы, характеризующиеся в твердом состоянии внутренним кристаллическим строением. Металлы имеют характерный блеск, они непрозрачны, при деформациях пластичны, характеризуются значительной теплопроводностью и электропроводностью. Металлы и сплавы, применяемые для изготовления товаров народного потребления, делят на черные и цветные. К цветным металлам относятся также благородные (драгоценные) металлы.

Все свойства металлов и сплавов можно разделить на четыре группы: физические, химические, технологические и механические.

1.Физические свойства.

К ним относятся: температура плавления, цвет, плотность, коэффициенты линейного и объемного расширения, электропроводность, теплопроводность, склонность к намагничиванию. Физические свойства сплавов обуславливаются их составом и структурой. Состав металлов и сплавов определяется химическим, спектральным и фазовыми анализами: структуру металла и сплава — рентгено-структурным и магнитострук-турным анализами, металлографией и магнитной металлографией, электрические свойства сплавов — их электросопротивлением. Теплопроводность — способность тел проводить тепло при нагреве и охлаждении. Металлы имеют сравнительно высокую теплопроводность, чем она выше, тем равномернее распределяется температура по объему металла и тем быстрее он прогревается. Электропроводность — свойство металла проводить электрический ток. Магнитные свойства — способность металла намагничиваться (ферромагниты, парамагниты, диамагниты).

2.Химические свойства

Это способность металла к взаимодействию с другими веществами: воздухом, водой, кислотами, щелочами и др. К химическим свойствам металлов и сплавов относятся их окисляемость, растворимость, коррозионная стойкость. Для определения химических свойств металлы и сплавы испытывают на общую коррозию в различных средах, межкристаллитную коррозию и на коррозионное растрескивание.

3.Технологические свойства.

Способность металла подвергаться различным методам горячей и холодной обработки. К ним относятся: жидкотекучесть, ковкость, свариваемость, обрабатываемость режущим инструментом. Технологические свойства металлов и сплавов имеют исключительное значение при выполнении тех или иных операций в производстве и, в частности, при выборе приемов и методов изготовления деталей машин.

Литейные свойства определяются жидкотекучестью, усадкой и склонностью к ликвации. Жидкотекучесть — способность металлов и сплавов легко растекаться и заполнять полностью литейную форму. Усадкой называется сокращение объема и размеров металла отливки при затвердевании и последующем охлаждении.

Ликвацией называется неоднородность химического состава твердого сплава по сечению слитка или заготовки. Например: чугун обладает высокими литейными свойствами — хорошей жидкотекучестью, небольшей усадкой и незначительной склонностью к ликвации. Сталь имеет меньшую, чем чугун, жидкотекучесть, но большую усадку и склонность к образованию ликвации. Оловянистые бронзы обладают хорошей жидкотекучестью и малой усадкой.

Ковкость — способность металлов и сплавов подвергаться обработке давлением. Это свойство связано с их пластической деформацией, особенно при нагревании. С ковкостью связаны такие важнейшие виды обработки металлов давлением, как прокатка, прессование, ковка, штамповка и волочение. В нагретом состоянии ковкость металла обычно выше. Хорошую ковкость имеет сталь в нагретом состоянии; чугун этим свойством не обладает. Алюминиевые сплавы и латуни обладают ковкостью в холодном состоянии.

Свариваемость — способность металлов и сплавов давать прочные неразъемные соединения изготовленных из них деталей. Сварные конструкции легче, прочнее и дешевле клепанных. Хорошая свариваемость у углеродистых, у низкоуглеродистых и низколегированных сталей. Высокоуглеродистые и высоколегированные стали, некоторые цветные металлы и сплавы имеют худшую свариваемость.

Обработка резанием — это свойство широко используется, т.к. получить обработкой резанием нужную форму, точные размеры и чистоту поверхности детали намного рациональнее по сравнению с другими методами. 4.Механические свойства — характеризуют отношение металла или сплава к действию на них внешних сил. Упругость — свойство металлов возвращаться к первоначальной форме после прекращения действия сил.

Пластичность — способность металла легко деформироваться под действием приложенных внешних сил и сохранять новую форму после прекращения действия этих сил. Вязкость — свойство металла выдерживать без разрушения ударные нагрузки (силы). Износостойкость — это сопротивление истиранию. Твердость — способность металла сопротивляться проникновению в него другого более твердого металла. Прочность — свойство металла сопротивляться разрушению под действием внешних сил или это максимальная нагрузка, которую выдерживает металл в момент наступления разрушения. Хрупкость — свойство металла разрушаться без заметной пластической деформации. Выносливость — свойство металла выдерживать, не разрушаясь, большое число повторных нагрузок. Ползучесть — свойство металла медленно и непрерывно пластически деформироваться при постоянной нагрузке, особенно при высокой температуре.

Заключение.

Огромное большинство металлов находится в природе в виде соединений с другими элементами. Только немногие металлы встречаются в свободном состоянии, и тогда они называются самородными. Золото и платина встречаются почти исключительно в самородном виде, серебро и медь — отчасти в самородном виде; иногда попадаются также самородные ртуть, олово и некоторые другие металлы. Добывание золота и платины производится или посредством механического отделения их от той породы, в которой они заключены, например промывкой воды, или путем извлечения их из породы различными реагентами с последующим выделением металла из раствора. Все остальные металлы добываются химической переработкой их природных соединений. Минералы и горные породы, содержащие соединения металлов и пригодные для получения этих металлов заводским путем, носят название руд. Главными рудами являются оксиды, сульфиды и карбонаты металлов. Важнейший способ получения металлов из руд основан на восстановлении их оксидов углем.

Список используемой литературы:

1. http://www.znaytovar.ru/s/Svojstva-metallov-i-splavov.html

2. http://www.m-renessans.ru/materiali-dlya-izgotovleniya-setok/materiali-s…

3. Материаловедение: Учебник для вузов. Солнцев Ю. П., Пряхин Е. И. ХИМИЗДАТ, 2007г.

4. Материаловедение: Учебник для высших технических учебных заведений. Б.Н. Арзамасов, И.И. Сидорин, Г.Ф. Косолапов и др.; под общ. ред. Б.Н. Арзамасова. — 2-е изд., испр. и доп. — М.: Машиностроение, 1986

material.osngrad.info

2 Свойства металлов и сплавов

Все свойства металлов и сплавов можно разделить на четыре группы: физические, химические, технологические и механические.

1. Физические свойства. К ним относятся: температура плавления, цвет, плотность, коэффициенты линейного и объемного расширения, электропроводность, теплопроводность, склонность к намагничиванию. Физические свойства сплавов обуславливаются их составом и структурой. Состав металлов и сплавов определяется химическим, спектральным и фазовыми анализами; структура металлов и сплавов — рентгено-структурным и магнитоструктурным анализами, металлографией и магнитной металлографией; электрические свойства сплавов — их электросопротивлением.

Теплопроводность — способность тел проводить тепло при нагреве и охлаждении. Металлы имеют сравнительно высокую теплопроводность, чем она выше, тем равномернее распределяется температура по объему металла и тем быстрее он прогревается.

Электропроводность — свойство металла проводить электрический ток.

Магнитные свойства — способность металла намагничиваться (ферромагниты, парамагниты, диамагниты).

2. Химические свойства — это способность металла к взаимодействию с другими веществами: воздухом, водой, кислотами, щелочами и др.

К химическим свойствам металлов и сплавов относятся их окисляемость, растворимость, коррозионная стойкость.

Для определения химических свойств металлы и сплавы испытывают на общую коррозию в различных средах, межкристаллитную коррозию и на коррозионное растрескивание.

3. Технологические свойства — способность металла подвергаться различным методам горячей и холодной обработки. К ним относятся: литейные свойства, ковкость, свариваемость, обрабатываемость материалов режущим инструментом.

Технологические свойства металлов и сплавов имеют исключительное значение при выполнении тех или иных операций в производстве и, в частности, при выборе методов и способов изготовления деталей машин.

Литейные свойства определяются жидкотекучестью, усадкой и склонностью к ликвации.

Жидкотекучесть — способность металлов и сплавов заполнять полность литейной формы, точно воспроизводя ее конфигурацию.

Усадкой называется сокращение объема и размеров металла отливки при затвердевании и последующем охлаждении.

Ликвацией называется неоднородность химического состава твердого сплава по сечению слитка или заготовки.

Например: чугун обладает высокими литейными свойствами — хорошей жидкотекучестью, небольшей усадкой и незначительной склонностью к ликвации. Сталь имеет меньшую, чем чугун, жидкотекучесть, но большую усадку и склонность к образованию ликвации. Оловянистые бронзы обладают хорошей жидкотекучестью и малой усадкой.

Ковкость — способность металлов и сплавов подвергаться обработке давлением. Это свойство связано с их пластической деформацией, особенно при нагревании. С ковкостью связаны такие важнейшие виды обработки металлов давлением, как прокатка, прессование, ковка, штамповка и волочение.

В нагретом состоянии ковкость металла обычно выше. Хорошую ковкость имеет сталь в нагретом состоянии, алюминиевые сплавы и латуни в холодном состоянии.

Чугун обладает обладает плохой ковкостью как в горячем, так и холодном состояниях. Свариваемость — способность металлов и сплавов образовывать бездефектное сварное соединение, отвечающее необходимым эксплуатационным требованиям. Хорошая свариваемость у углеродистых, низкоуглеродистых и низколегированных сталей. Высокоуглеродистые и высоколегированные стали, некоторые цветные металлы и сплавы имеют худшую свариваемость. Чугун обладает плохой свариваемостью.

Обрабатываемость материалов режущим инструментом – способность материала поддаваться обработке режущими инструментами. Обрабатываемость металлов резанием отражает способность металлов ограничивать производительность их обработки, вызывать затруднения в обеспечении требуемой точности и качества обработанной поверхности, требовать для обработки специальных приспособлений.

4. Механические свойства — характеризуют отношение металла или сплава к действию на них внешних сил.

Прочность — свойство металла сопротивляться деформации и разрушению под действием внешних сил. Максимальная нагрузка, которую выдерживает металл в момент наступления разрушения, называется нагрузкой предела прочности, а напряжение, отвечающее этой максимальной нагрузке — пределом прочности (временным сопротивлением). Предел прочности (временное сопротивление) при растяжении обозначается σв.

Пластичность — способность металла тела деформироваться без разрушения под действием приложенных сил и сохранять новую форму тела после прекращения действия этих сил. Нагрузка, при достижении которой в металле возникает заметная пластическая деформация (сдвиги слоев металла относительно друг друга), называется нагрузкой предела текучести, а напряжение, отвечающее этой нагрузке — пределом текучести.

Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.

Предел текучести при растяжении обозначается:

— σт – для металлов, имеющих площадку текучести;

— σ0,2для материалов, не имеющих площадку текучести (условный предел текучести, который определяется при величине остаточной деформации 0.2%).

Упругость — свойство тела деформироваться под действием нагрузки и восстанавливать первоначальную форму и размеры после ее снятия. Высокой упругостью должны обладать, например, рессоры и пружины. Поэтому они изготовляются из специальных сплавов.

Ползучесть — свойство металла медленно и непрерывно пластически деформироваться при постоянной нагрузке, особенно при высокой температуре.

Хрупкость — свойство металла разрушаться без заметной пластической деформации.

Вязкость (ударная вязкость) — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).

Твердость — способность металла сопротивляться проникновению в него другого более твердого металла.

Измерение твердости выполняется несколькими методами.

1. Метод Бринелля.

Сущность метода заключается во вдавлива­нии стального шарика в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия нагрузки.

Твердость по Бринеллю обозначается символом НВ.

2. Метод Роквелла.

Сущность метода заключается во вдавливании алмазного конусного (шкала С) или стального сферического наконечника (шкала В) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и определении глубины внедрения наконечника после снятия нагрузки.

Твердость по Роквеллу обозначается:

— символом HRB — при применении стального сферического наконечника;

— символом НRC — при применении алмазного конусного наконечника.

3. Метод Виккерса.

Сущность метода заключается во вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

Твердость по Виккерсу обозначается символом HV.

Усталость — процесс постепенного накопления повреждений в металле под длительным воздействием повторных или повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Важнейшей особенностью этого процесса является то обстоятельство, что он развивается при напряжениях,   значительно меньших (в два и более раз), чем предел прочности при статическом нагружении. Разрушение в результате усталости во многих случаях не сопровождается заметной макродеформацией образца или детали, поэтому такое разрушение чрезвычайно трудно предупредить.

Выносливость — свойство металла выдерживать, не разрушаясь, повторно-переменные нагрузки (т. е. сопротивляться усталости).

На металлургических, сталепрокатных, машиностроительных заводах в лабораториях по механическим испытаниям проводится определение таких механических характеристик, как предел прочности, предел текучести, относительное удлинение и сужение, твердость и другие.

Эксплуатационные или служебные свойства.

К этим свойствам относятся износостойкость, коррозионная стойкость, жаростойкость, жаропрочность, хладостойкость, антифрикционность.

studfiles.net

1.2. Основные свойства металлов и сплавов

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов – твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов – ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость – способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость – способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость – способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава – возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием – поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть – способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость – способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и часто являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск – способность поверхности металла и сплава направленно отражать световой поток.

Плотность – масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления – это температура, при которой металл или сплав целиком переходит в жидкое состояние.

Теплопроводность – количество теплоты, проходящее в секунду через сечение в 1см2, когда на расстоянии в 1см изменение температуры составляет в 10С.

Теплоемкость – количество теплоты, необходимой для повышения температуры тела на 10С.

Электрическая проводимость – величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10-6м2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эти величины связаны между собой коэффициентом , который называется магнитной восприимчивостью стали или сплава.

(1)

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь

(2)

где — магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) , где- коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нm после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Нс, напряженность насыщающего поля Нн и намагниченность насыщения Мs. По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость и максимальная магнитная проницаемость.

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно нечувствительные и структурно чувствительные. К структурно нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно чувствительным – магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т.д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов – изменение размеров и формы зерен, характеризуется температурными коэффициентами объемного расширения и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава, нагреваемого или охлаждаемого с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

studfiles.net

Основные свойства металлов и сплавов. Ручная ковка |

Основные свойства металлов и сплавов

В кузнечном производстве основную массу поковок изготовляют из сталей различных марок. Реже используют сплавы цветных металлов на основе меди, алюминия, магния, титана и др. Исходные материалы должны обладать необходимым сочетанием физических, механических, технологических и других свойств, которые определяются химичес­ким составом сплавов, способами их выплавки и последующей обработ­ки. Свойства исходных материалов влияют на технологические особен­ности ковки и штамповки.

Физические свойства. К основным физическим свойствам относят плотность, температуру плавления, удельную теплоемкость, теплопро­водность, тепловое расширение.

Плотность — масса единицы объема металла, кг/м3. Большин­ство сталей имеет плотность 7850 кг/м3 , алюминиевые сплавы — 2500 кг/м3, бронзы — 8500 кг/м3. Эта величина используется для рас­чета массы поковок и заготовок по их размерам (объему).

Температура плавления — температура, при которой нагрева металла перед ковкой. Чем выше удельная теплоемкость металла, тем больше требуется энергии на его нагрев до заданной температуры.

Теплопроводность — свойство металла проводить теплоту от более нагретых его участков к менее нагретым; определяется коэффициентом теплопроводности, который учитывают при назначении режима нагрева заготовок перед ковкой. Чем меньше теплопроводность металла, тем больше разница температур наружных и внутренних слоев заготовки при нагреве и тем больше опасность появления трещин в металле вследствие неравномерного нагрева. Теплопроводность сталей (особенно легированных) в 5 раз меньше теплопроводности меди и алюминия, поэтому легированные стали следует нагревать с малой скоростью, чтобы обеспечить равномерный прогрев металла по всему объему заготовки.

Тепловое расширение — способность металла увеличивать линейные размеры и объем при нагревании. Разница в размерах горячего и холодного металла составляет 1 . . . 1,5 %. Она учитывается при изготовлении штампов и контроле размеров горячих поковок, при остывании которых происходит их усадка — уменьшение размеров и объема. ально растяжением стандартных образцов на испытательных машинах.

Механические свойства. К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют эксперимент

Прочность — способность металла сопротивляться разрушению при действии на него внешних сил. Количественно прочность характеризуют пределом прочности (временным сопротивлением) ств (МПа или кгс/мм2), который равен отношению разрушающей силы Рт&х к площади поперечного сечения исходного образца F0, т. е. ств = fmax/F0.

Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения (это свойство металлов было рассмотрено в § 2.1).

Твердость — способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Напри- 32 мер, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки — 500 . . . 600 НВ.

Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая кс (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца f0, т. е. кс = a/f0.

Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им упругой деформации е, т. е. Е = а/е. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Технологические свойства характеризуют способность материалов подвергаться различным способам обработки. К ним относят ковкость, свариваемость, закаливаемость, обрабатываемость резанием, жидко- текучесть при заполнении литейной формы и др.

Ковкость — способность металла пластически деформироваться в больших пределах при небольшом сопротивлении деформированию. Это одно из основных свойств, учитываемых при обработке давлением.

Свариваемость — способность металлов образовывать высококачественные сварные соединения при кузнечной и других способах сварки. Хорошо свариваются стали с малым содержанием углерода, плохо — высокоуглеродистые и легированные.

Закаливаемость — способность металла приобретать в результате закалки высокую твердость. Хорошо закаливаются стали с содержанием углерода от 0,4 до 0,7 %. Как правило, при закалке стали ее пластичность и ударная вязкость уменьшаются, а прочность увеличивается.

dlja-mashinostroitelja.info

Свойства металлов и сплавов

Содержание

 

Введение. 3

1. Свойства металлов и сплавов. 4

2. Металлы применяемые в полиграфии. 6

3. Двойные сплавы.. 12

4. Технические требования к типографским сплавам. 13

5. Важнейшие свойства типографских сплавов. 14

6. Металлы для изготовления типографских сплавов. 17

 

Введение

 

Качество полиграфического исполнения книг, газет, журналов и других изданий во многом зависит от свойств применяемых материалов: бумаги, картона, красок, металлов и сплавов, пластических масс, каучука и резины, переплетных тканей, клея и многих других.

Применяемые в полиграфии материалы очень многочисленны. Они отличаются друг от друга своими характерными признаками, или свойствами: цветом, твердостью, вязкостью, скоростью испарения, температурой плавления и т. п. Совокупность свойств, характерных для данного материала, определяет его качество. Надо знать эти свойства, чтобы отличить доброкачественный материал от менее доброкачественного; надо уметь вовремя заметить неполноценный материал и не допускать его в производство.

Каждое отдельно взятое свойство полиграфического материала, равно как и всякого другого материала, называется показателем качества. Величину того или иного показателя можно измерить при испытании данного материала на соответствующем приборе в лаборатории. Многие показатели можно проконтролировать и в цехе.

В данной работе я рассмотрела такие материалы как металлы и их сплавы.

 

1. Свойства металлов и сплавов

 

Металлы – это химические элементы, главная отличительная   особенность которых в конденсированном, т. е. кристаллическом, состоянии заключается в наличии свободных, не связанных с определенными атомами электронов, способных перемещаться по всему объему тела. Эта особенность металлического состояния вещества определяет всю совокупность физических и химических свойств металлов: электро- и теплопроводность, отражательную способность (блеск, непрозрачность), пластичность (ковкость), магнитные свойства, склонность к химическим реакциям, связанную с потерей валентных электронов. Металлы и особенно их сплавы отличаются высокой механической прочностью, способностью отливаться и принимать заданную форму, что используется весьма широко в машиностроении и полиграфии.

Все металлы, за исключением ртути при обыкновенных условиях (температура, давление) – твердые вещества. Но по степени твердости они значительно отличаются друг от друга: калий и натрии напоминают воск (легко режутся ножом), свинец может быть процарапан ногтем, а хром, например, по твердости близок к алмазу (царапает стекло).

Металлы, применяемые в технике, делятся на два класса: черных и цветных металлов.

К классу черных металлов относятся железо и все железные сплавы – чугун и стали. Класс цветных металлов составляют: свинец, медь, олово, цинк и многие другие, а также сплавы этих металлов – бронза (сплавы меди с оловом), латунь (сплавы меди с цинком), баббиты (сплавы свинца, олова, сурьмы и меди), типографские сплавы (сплавы свинца, сурьмы и олова).

Цветные металлы в свою очередь разделяются на четыре группы: тяжелые, легкие, редкие и благородные металлы. Тяжелые металлы имеют плотность более 5, лёгкие – менее 5 г/см3. К редким металлам относятся: вольфрам, молибден, тантал, ванадий, теллур, индий, германий, церий, цирконий, таллий и др. Благородные металлы, к которым относятся золото, платина, палладий, серебро, иридий, рутений, осмий, родий, отличаются высокой коррозионной устойчивостью к атмосферным условиям и стойкостью к действию большинства кислот.

Сплавами называются продукты соединения двух или нескольких металлов с возможными примесями металлоидов. Например, чугун – сплав железа с углеродом. Чтобы изготовить сплав, нужно расплавить составляющие его металлы и хорошо перемешать их между собой.

Кристаллическое строение металлов и сплавов можно иногда установить, рассматривая невооруженным глазом их излом. Более полное и отчетливое представление о кристаллической структуре можно получить, рассматривая специально для этого приготовленный образец металла или сплава под микроскопом. Строение металлов и сплавов, видимое под микроскопом, называют их микроструктурой. Под микроскопом видно, что чистые металлы состоят из множества однородных кристаллов вполне определенной для каждого металла формы. В отличие от чистых металлов, сплавы имеют неоднородный состав кристаллов: они состоят из двух и более видов кристаллов различной величины и формы.

При плавлении происходит разрушение пространственной решетки кристаллического тела, на что расходуется определенное количество энергии от какого-либо внешнего источника. В результате внутренняя энергия тела в процессе плавления увеличивается. Количество теплоты, необходимое для перехода тела из твердого состояния в жидкое при температуре плавления, называется теплотой плавления.

В процессе отвердевания тела, наоборот, внутренняя энергия тела уменьшается; часть ее передается окружающим телам. Количество теплоты, поглощенное телом при плавлении, равно количеству теплоты, отданному этим телом при отвердевании. В этом факте находит одно из своих выражений закон сохранения энергии.

Теплоту плавления характеризуют количеством теплоты, необходимой для расплавления единицы массы данного вещества.

Количество теплоты, необходимое для перехода единицы массы вещества из твердого состояния в жидкое при температуре плавления, называется удельной теплотой плавления. Ее выражают в кал/г или ккал/кг.

 

2. Металлы, применяемые в полиграфии

 

Металлы встречаются в природе обычно в виде руд (природные соединения металлов с кислородом и другими химическими элементами), после переработки которых металлы выделяются в более или менее чистом виде.

В полиграфии применяются следующие металлы, описание которых дается в алфавитном порядке.

 Алюминий – серебристо-белый металл с синеватым оттенком. Плотность алюминия 2,7 г/см3. Температура плавления 658°. Алюминий прочнее цинка, хорошо куется в холодном состоянии и еще лучше при 100–150°, хорошо прокатывается. При нагревании до 200° он становится ломким, а при 540° начинает размягчаться.

Вследствие большого сродства алюминия с кислородом на воздухе поверхность алюминия легко покрываясь тонкой плёнкой окиси алюминия, предохраняющей металл от дальнейшего окисления.

Алюминий имеет амфотерные свойства, т. е. образует соли при взаимодействии и с кислотами, и со щелочами.

Азотная кислота на алюминий почти не действует, Серная кислота растворяет его очень слабо, соляная кислота растворяет легко:

2А1 + 6НС1 → 2А1С13 + ЗН2.

Алюминий легко растворяется и в щелочах, например:

2Al + 2NaOH + 2H2O → 2NaAlO2 + 3 H2.

алюминат натрия

Алюминий применяют для изготовления офсетных форм позитивным копированием с использованием поливинилового спирта или камеди сибирской лиственницы, а также – ортохинондиазидов в качестве копировального слоя.

Медь применяется в качестве медных анодов в гальванотехнике. Медные пластины используются, для изготовления особо точных и прочных типографских клише, в особенности для трех- и четырехкрасочного печатания, а также для изготовления медных переплетных штампов путем травления растворами хлорного железа. В глубокой печати применяются медные цилиндрические печатные формы.

Хлорное железо взаимодействует с медью по схеме:

Cu + 2FeCl3 → CuСl2+ 2FеCl2.

Согласно ряду напряжений железо должно вытеснять медь из растворов ее солей. Но здесь этого не происходит, так как идет процесс восстановления хлорного железа.

При изготовлении биметаллических офсетных пластин чаще всего пользуются стальными или алюминиевыми подложками, на поверхность которых гальванически наращивают слой меди толщиной около 2 мкм.

Никель – серебристо-белый тяжелый металл с сильным блеском, не тускнеющим на воздухе. Плотность никеля 8,90 г/см3. Температура плавления около 1445. Никель обладает твердостью, гибкостью, ковкостью и тягучестью, способен прокатываться в очень тонкие листы и вытягиваться в проволоку. Никель легко полируется. Температура кипения около 3000°.

В ряду напряжений никель стоит правее железа и поэтому медленнее, чем железо, растворяется в разбавленных кислотах: азотной, серной и соляной. Вода и щелочи дажё при нагревании на него не действуют.

Благодаря стойкости по отношению к атмосферным условиям и твердости никель применяют как нержавеющее (антикоррозионное) и декоративное покрытие. Слой никеля наносится на поверхность металлов гальваническим путем или вакуумным распылением.

B полиграфии тончайшие слои никеля наносят поверхность типографских печатных форм для повышения их тиражеустойчивости. Особенно большое значение никелевые покрытия имеют при изготовлении биметаллических офсетных печатных форм. В этом случае слой никеля наносят на поверхность медной или омедненной подложки гальваническим путем.

Олово – блестящий металл серебристого цвета. Его выплавляют из руды, называемой оловянным камнем, состоящим в основном из SnO2. Плотность олова 7,28 г/см3.

Температура плавления 231,8°. Олово очень тягуче и ковко. При сгибании оловянных пластинок можно ясно слышать характерный треск, называемый «криком олова»; он слышен тем яснее, чем чище олово. Этот треск происходит из-за соосного смещения кристаллов олова.

Олово амфотерно. Оно растворяется в соляной кислоте с образованием двуххлористого олова:

Sn + 2HCl→SnCl2 + h3.

Со щелочами образует станниты – соли оловянистой кислоты h3Sn02, в которых олово двухвалентно, например:

Sn + 2КОН + Н2О → K2Sn02 + Н2.

Олово при комнатной температуре не окисляется ни на воздухе, ни в воде, но способно сильно окисляться в расплавленном состоянии.

При долгом хранении на воздухе с низкой температурой олово иногда распадается в порошок. Происходит это потому, что техническое олово белого цвета представляет собой модификацию β-олова, устойчивую при 18–161° и могущую в сильные морозы переходить в модификацию α–олова, устойчивую при температурах ниже 18°; α–олово серого цвета, имеет другую кристаллическую решетку и меньшую плотность, чем β–олово. Поэтому переход кристаллов β-олова в α-форму сопровождается увеличением объема на 26,5%, что связано с превращением слитка или изделия в порошок. Начавшийся на поверхности слитка процесс разрушения далее может развиваться сам собой и заражать близлежащие слитки. Это явление называют «оловянной чумой». Для превращения порошкообразного α-олова в β-форму достаточна переплавка олова.

Хранить олово следует на складах при температуре не ниже 12°; допускается кратковременное пребывание олова при температуре ниже минус 20°.

В полиграфии олово применяют для изготовления типографских сплавов. Введение олова в свинцовые типографские сплавы улучшает их литейные свойства и механическую прочность.

Свинец – металл серого цвета с металлическим блеском. Свинец выплавляют из руд. Это один из самых тяжелых (его плотность 11,34 г/см3), но в то же время очень мягких металлов. Свинец настолько мягок, что царапается ногтем. Свинец пластичен и хорошо прессуется. Температура плавления свинца 327,4°. При 600° свинец начинает

испаряться; пары свинца очень ядовиты. При охлаждении расплавленного свинца происходит значительная усадка, т. е. сокращение объема отливки, и связанное с этим изменение ее геометрических размеров.

В разбавленных кислотах свинец практически нерастворим. Лучшим растворителем свинца являетая крепкая азотная кислота. Содержащая воздух уксусная кислота также растворяет свинец.

При обычной температуре свинец окисляется только с поверхности, образуя защитную пленку. При окислении расплавленного свинца образуется глет РЬО, а затем сурик РЬ2О3.

В полиграфии свинец применяется главным образом при изготовлении типрграфских сплавов. Кроме того, при хромировавши стереотипов пользуются свинцовыми анодами. Окись свинца (глет) применяется при изготовлении сиккативов в производстве полиграфических красок.

Сурьма – металл голубовато-белого цвета с сильным блеском. Встречается в природе в виде самородного металла, чаще – в виде руд.

Сурьма – металл очень твердый, но настолько хрупкий, что может быть истолчен в порошок. Поэтому сурьму применяют главным образом в виде сплавов. В сплаве со свинцом сурьма повышает твердость свинца и понижает усадку сплава при охлаждении. Плотность чистой сурьмы 6,62 г/см3. Температура плавления сурьмы 630,5°, кипения – 1635–1645°. На воздухе при нормальной тёмпературе сурьма не окисляется, но сильно окисляется npи нагревании, в расплавленном состоянии. С водой и разбавленными кислотами сурьма не взаимодействует. Концентрированные соляная и серная кислоты медленно растворяют сурьму, образуя соответствующие солй. Концентрированная азотная кислота окисляет сурьму до высшего окисла Sb2O5*H2О.

Сурьма входит в состав свинцовых типографских сплавов, повышая их твердость и понижая усадку при охлаждении.

Хром – белый блестящий металл. Плотность хрома 6,8 – 7,2 г/см3. Температура плавления хрома 1890°, кипения – 2480о. Хром настолько тверд, что им можно резать стекло. В сухом и влажном воздухе хром не окисляется.

Кислоты на хром почти не действуют. Поэтому хром широко применяется как антикоррозионное декоративное покрытие металлических поверхностей.

Хром используется при изготовлении различных сплавов, которым он придает большую твердость и химическую стойкость. Наиболее важны из хромсодержащих сплавов нержавеющая, кислотоустойчивая и жароупорная стали, а также сплав хрома с никелем – нихром, применяемый в нагревательных электротехнических приборах.

В полиграфии тончайшие слои хрома наносят гальваническим путем на поверхность типографских стереотипов и форм глубокой печати для повышения их тиражеустойчивости. При изготовлении биметаллических офсетных пластин гальванические хромовые слои образуют гидрофильные пробельные участки формы.

В природе хром встречается в виде минерала хромита, при переработке которого получается чистый хром.

Цинк – тяжелый металл, имеющий в чистом виде синевато-белый цвет, а при наличие примесей – серовато-белый цвет. Плотность цинка в зависимости от характера механической обработки колеблется от 6,9 до 7,4 г/см3. Чистый цинк плавится при 420°. При 100–130° цинк становится тягучим и может коваться, прокатываться в листы и вытягиваться в проволоку. При 270° цинк становится хрупким и может быть измельчен в порошок. Прокатанный цинк имеет очень мелкозернистое строение и удовлетворительные механические свойства. Однако при нагревании выше 150° происходит процесс рекристаллизации цинка: цинк становится грубокристаллическим, менее прочным, хрупким.

Разбавленные минеральные кислоты (соляная, азотная, серная) хорошо растворяют цинк; концентрированные кислоты, особенно серная, менее активны в этом отношении. Растворение цинка происходит очень быстро в том случае, когда он содержит примеси кадмия до 0,3%, свинца до 1% и некоторых других металлов.

Во влажном воздухе цинк покрывается тонкой плотной пленкой основных углекислых солей цинка Zn2(OH)2CO3, которая устойчива в обычных условиях и практически нерастворима в воде; эта пленка предохраняет цинк от дальнейшего разрушения разбавленными кислотами. Предохранение же других металлов от коррозии нанесением на их поверхность тонкого слоя цинка (например, цинкование железа) основано не только на устойчивости углекислых солей цинка, но главным образом на способности цинка образовывать гальванические пары, где он является анодом, а защищаемый металл– катодом. В полиграфии цинковые пластины применяются для изготовления типографских клише и офсетных печатных форм. Попытки применить цинковые сплавы для отливки типографских шрифтов и линотипных строк не увенчались пока успехом главным образом из-за разъедающего действия цинковых сплавов на плавильные котлы и детали отливных механизмов наборных машин, а также из-за недопустимости загрязнения цинком свинцовых типографских сплавов.

3. Двойные сплавы

 

Двойные сплавы, т. е. сплавы, состоящие из двух металлов, имеют не одну, а две критические точки. Одна критическая точка соответствует началу выпадения из сплава того или иного составляющего металла в зависимости от того, какого металла больше в сплаве (каким металлом пересыщен сплав) или кристаллов твердого раствора одного металла в другом, а также кристаллов химического соединения металлов, составляющих сплав. Вторая критическая точка соответствует концу затвердевания сплава и связана с одновременным образованием в виде тесной однородной смеси кристаллов обоих металлов (или кристаллов металлов и кристаллов твердого раствора и химических соединений). Эта вторая критическая точка называется эвтектической (от греческого слова «эутектос», что значит легкоплавкий). Сплав, имеющий только одну критическую точку, называется эвтектическим.

Эвтектический сплав получается из сплавляемых металлов только в строго определенных соотношениях, различных для разных металлов. Например, эвтектическую точку, равную 246°, имеет только сплав, состоящий из 87% свинца и 13% сурьмы. Эвтектический сплав имеет наименьшую из возможных для данной системы металлов температуру плавления и наибольшую однородность строения, твердость и прочность.

Многие сплавы, например сурьмы и олова, при охлаждении образуют кристаллы твердых растворов, в которых атомы сурьмы и олова кристаллизуются совместно: атомы растворенного металла, т. е. металла, которого значительно меньше в сплаве, замещают атомы растворителя и любом месте кристаллической решетки. Кроме твердых растворов некоторые металлы, например магний и олово, образуют химическое соединение Mg2Sn; олово и мышьяк также образуют химические соединения: SnAs и SnAs2. Химические соединения кристаллизуются в сплавах в виде самостоятельных кристаллов, свойственного им типа. Два металла могут образовывать много двойных сплавов с различным соотношением исходных металлов. Такой ряд сплавов называется системой сплавов. Если взять большое число сплавов из данной пары металлов, например из свинца и сурьмы, и получить для них опытным путем кривые охлаждения, то можно по остановкам на них, зная состав каждого сплава, построить диаграмму состояния системы сплавов.

 

4. Технические требования к типографским сплавам

 

Типографские шрифты, линотипные строки и стереотипы изготовляют литьем под давлением расплавленного типографского сплава в матрицы, находящиеся в отливных формах. Стереотииы отливают в картонные матрицы, шрифты, пробельный материал и линотипные строки – в медные, часто хромированные.

Применяют несколько марок (видов) свинцовых типографских сплавов, состоящих из свинца, сурьмы и олова, различающихся температурой плавления, твердостью и другими свойствами.

Однако все эти сплавы должны удовлетворять следующим техническим требованиям:

1) расплавляться при возможно более низкой температуре;

2) иметь хорошие литейные свойства, т. е. быть жидко
текучими при температуре отливки;

3) при затвердевании иметь возможно меньшую усадку;

4) при отливке не разрушать матрицы и детали отливного механизма в результате химического действия расплавленного сплава;

5) в твердом состоянии иметь возможно большую механическую прочность;

6) потери сплава при повторных переплавках должны быть минимальными;

7) не оказывать вредного действия на рабочих, занятых отливкой типографских шрифтов, линотипных строк и стереотипов, а также изготовлением типографских сплавов;

8) не содержать в своем составе дефицитных и дорогостоящих металлов, т. е. быть экономически приемлемыми;

9) стереотипы, линотипные строки и шрифты, отлитые из типографского сплава, не должны разрушаться под действием влаги, атмосферных условий, смывающих веществ и при длительном хранении.

 

5. Важнейшие свойства типографских сплавов

 

Температура плавления и температура отливки. Надо различать температуру плавления и температуру отливки типографских сплавов. При температуре плавления типографский сплав переходит из твердого состояния в жидкое, но он не имеет еще достаточной подвижности (жидкотекучести), необходимой для нормальной отливки шрифтов,

линотипных строк и стереотипов. Лишь при дальнейшем нагревании, выше температуры плавления, металлы И сплавы приобретают требующуюся жидкотекучесть, ста-иопясь пригодными для отливки. Таким образом, темпе-рнтура отливки всегда выше температуры плавления сплава на 15–20°. Очень важно, чтобы типографские сплавы давали полную и четкую отливку при возможно более низкой температуре, при наименьшем перегреве. Чом выше температура отливки, тем больше расход электроэнергии, газа, тем сложнее и вреднее работа, скорее выгорают матрицы. Кроме того, затрудняется работа отливного механизма. Поэтому для отливки типографских шрифтов, линотипных строк и стереотипов пригодны только сравнительно легкоплавкие сплавы.

Литейные свойства зависят от способности расплавленного сплава заполнять все детали очка отливной формы. Из сплава с хорошими линейными свойствами можно

znakka4estva.ru

Свойства металлов и сплавов. Работы по металлу

В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).

Металл относится к таким материалам, которые нельзя встретить в природе в готовом виде. Поэтому, чтобы получить его из богатых природных кладовых, нужно иметь большие знания и опыт в столь нелегком деле. Металлы бывают разные. В таблице Менделеева металлические элементы насчитываются десятками; конструкторы, техники могут назвать сотни необходимых им марок сталей, сплавов и т. п.; ученые соединяют широко распространенные и редчайшие металлы в тысячи сочетаний.

Между тем еще не так уж давно, лет триста назад, по научной классификации насчитывалось всего семь основных металлов: золото, серебро, медь, олово, свинец, ртуть и железо. Именно развитие ремесел было причиной появления новых сплавов, проведения исследований и опытов: умельцам нужны были материалы с определенными свойствами. Кому – твердая и прочная сталь для оружия, кому – мягкие и не теряющие блеска металлы для украшений, которые были бы дешевле золота.

Даже древних фальшивомонетчиков можно считать металлургами. Полученные ими в корыстных целях сплавы меди до сих пор широко используются не только в ювелирном деле, но и в самой современной технике.

Сейчас все металлы принято делить на черные и цветные. Черные – это различные металлические соединения и сплавы железа. Наиболее распространены из них чугун и сталь. Именно черные металлы составляют 95 % всей продукции мировой металлургии. Впрочем, по прогнозам некоторых ученых, эта цифра может существенно уменьшиться: развитие техники может сделать XXI век не «железным», а скорее «алюминиево-титаново-пластиковым». Все большее распространение получают легкие и прочные сплавы, композитные и синтетические материалы. Однако народным умельцам скорее всего и через сто лет придется иметь дело с «железками». Сталь, в зависимости от марок и добавок, может иметь самые различные свойства, достаточно хорошо обрабатывается и не слишком дорого стоит.

Цветные металлы – это все металлы, кроме железа, и их сплавы. Данная группа очень многочисленная, классифицируют ее по различным признакам (залегание в земной коре, химические и физические свойства и т. д.). Но нас интересуют лишь немногие металлы. С благородными, или драгоценными, металлами (золото, серебро, платина и т. д.) в нашей стране имеют дело в основном специалисты-ювелиры. Тугоплавкие металлы (титан, вольфрам, молибден и т. д.) в домашних условиях обработать невозможно. Поэтому наибольший интерес представляют достаточно распространенные: алюминий, медь, свинец и различные сплавы на их основе. Рассмотрим подробнее металлы, с которыми имеют дело те, кто занимается слесарным делом, ковкой, чеканкой, художественным литьем и т. п.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *