Какие свойства металлов или сплавов: Attention Required! | Cloudflare

Сплавы металлов. Основные сплавы металлов. Свойства металлов и сплавов :: SYL.ru

Металлургия в нашей жизни занимает исключительно важную роль. Нет, далеко не каждый из нас принадлежит к славному сословию сталеваров, но мы ежедневно сталкиваемся с изделиями из металлов. Как правило, сделаны они из самых разнообразных сплавов. Кстати, а что это такое?

Содержание

Основные определения

сплавы металловВообще сплавы металлов – это материалы, полученные методом выплавки, при производстве которых были использованы два или более металлических элемента (в химическом смысле), а также (опционально) специальные присадки. Одним из первых материалов такого рода была бронза. В ее состав входит 85% меди и 15% олова (80:20 в случае колокольной бронзы). В настоящее время существует несколько разновидностей этого соединения, в составе которых вообще нет олова. Но встречаются они не так уж и часто.

Нужно четко понимать, что сплавы металлов в большинстве случаев образуются вообще без участи человека. Дело в том, что получить абсолютно чистый с химической точки зрения материал можно только в лаборатории. В любом металле, который используется в бытовых условиях, наверняка есть следы другого элемента. Классический пример – золотые украшения. В каждом из них есть определенная доля меди. Впрочем, в классическом смысле под этим определением все равно понимают соединение двух и более металлов, которое было целенаправленно получено человеком.

Вся история человека является отличным примером того, как сплавы металлов оказались способны оказать огромное влияние на развитие всей нашей цивилизации. Не случайно есть даже длительный исторический период, который называется «Бронзовый век».

Общие характеристики сплавов металлов

А сейчас мы рассмотрим общие свойства металлов и сплавов, которыми те характеризуются. Их же очень часто можно встретить в специализированной литературе.

Характеристика

Расшифровка

Прочность

Способность сплава противостоять механическим нагрузкам и противиться разрушению.

Твердость

Свойство, которое определяет сопротивляемость материала попыткам внедрить в его толщу деталь из другого сплава или металла.

Упругость

Способность к восстановлению начальной формы после приложения значительного механического усилия, нагрузки.

Пластичность

Напротив, это свойство, характеризующее возможность изменения формы и размером под действием приложенного усилия, механической нагрузки. Кроме того, это оно же характеризует способность детали сохранять вновь приобретенную форму на протяжении длительного времени.

Вязкость

— способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам

Вот какими качествами характеризуются сплавы металлов. Таблица поможет вам в них разобраться.

Сведения о производстве

цветные металлы и сплавыВ принципе, в настоящее время под «сплавом» вполне может пониматься материал, в основе которого лежит только один химический элемент, но «разбавленный» целым пакетом присадок. Наиболее распространенный способ их получения, расплавление до жидкого состояния, мало изменился с глубокой древности.

К примеру, анализ металлов и сплавов показывает, что древние индийцы овладели удивительным для своего времени уровнем обработки металла. Они даже начали создавать сплавы с использованием тугоплавкого цинка, что и в наше время является довольно-таки трудоемкой и сложной процедурой.

На сегодняшний день для этих целей довольно широко используется также порошковая металлургия. Особенно часто этим методом обрабатывают черные металлы и сплавы на их основе, так как в этом случае зачастую требуется максимальная дешевизна как самого процесса, так и выпускаемой продукции.

Распространение сплавов в современной промышленности

Следует заметить, что все металлы, которые интенсивно используются современной промышленностью, являются именно сплавами. Так, более 90% всего получаемого в мире железа идет на изготовление чугунов и различных сталей. Объясняется такой подход к делу тем, что сплавы металлов в большинстве случаев демонстрируют лучшие свойства, нежели чем их «прародители».

Так, предел текучести чистого алюминия составляет всего лишь 35 Мпа. А вот если в него добавить 1,6% меди, магния и цинка в соотношении 2,5% и 5,6% соответственно, то этот показатель может легко превысить даже 500 МПа. Кроме прочего, можно значительно улучшить свойства электропроводности, теплопроводности или другие. Никакой мистики в этом нет: в сплавах строение кристаллической решетки изменяется, что и позволяет приобретать им прочие свойства.

Проще говоря, количество такого рода материалов в наши дни велико, но оно постоянно продолжает расти.

Основные классификационные сведения

В общем-то, никаких особенных сложностей здесь нет: соединения, в которых использованы цветные металлы и сплавы на основе железа. Ниже мы разберем обе этих категории на примере основных видов, а также обсудим сферы их применения в современной промышленности и на производстве.

Стали

свойства металлов и сплавовВсе соединения железа, содержащие до 2% углерода, называются сталями. Если в составе имеется хром, ванадий или молибден, то их называют легированными. С этими материалами мы сталкиваемся постоянно, ежедневно и ежечасно. Количество сталей на сегодняшний день таково, что одно их перечисление могло бы занять не слишком тонкую книгу.

Мы уже говорили, что механические свойства металлов и сплавов сильно отличаются, но в случае этих материалов нередко противоположными качествами обладают даже различные виды сталей, отчего сферы их применения сильно расходятся.

Если в материале менее 0,25% углерода, то он используется в каких-то технических конструкциях. Если же в стали более 0,55% углерода, то она идеально подходит для производства различных высококачественных режущих инструментов, в том числе резцов для токарных станков, сверл и хирургических принадлежностей. Но если речь идет о приспособлениях, которые применяются для быстрой резки, то на их производство идет исключительно легированная сталь.

Чугун

Если в сплаве железа содержится более 3-4% углерода, то он называется чугуном. Кроме того, его важным элементом является кремний. Из чугуна изготавливается масса деталей и готовых изделий. К примеру, блоки двигателей для автомобилей. В случае качественно сделанной отливки без полостей и каверн, изделие обладает впечатляющей механической прочностью. В этой связи стоит вспомнить хотя бы пушки 14-15 века, которые нередко выдерживали трех-четырехкратное увеличение порохового заряда.

Конечно же, применение металлов и сплавов никогда не ограничивалось исключительно военной отраслью, но зачастую получалось так, что именно эта отрасль промышленности постоянно находила новые методы обработки металла, двигая вперед всю цивилизацию.

Медные сплавы

Чаще всего под этим термином понимаются разные сорта латуни. Это такие сплавы меди, в которых содержится от 5 до 45% цинка. Если его содержание колеблется в пределах 5-20%, то это красная латунь (томпак). Если же в материале содержится уже 20–36% Zn, то это – желтая латунь.

Эти материалы идеальны в случае необходимости производства и формовки мелких деталей. Малоизвестно, но сплав меди с кремнием носит название кремнистой бронзы и обладает большой механической прочностью. Практически тем же характеризуется фосфористая разновидность (к меди прибавляется 5% олова и некоторое количество фосфора). Как и в прошлом случае, отличается высокой прочностью и пружинистыми качествами, а потому идеальна для изготовления мембран и разного рода пружин.

Сплавы свинца

сплавы алюминия
Вообще цветные металлы и сплавы – неразделимо связанные понятия, так как с древнейших времен люди умели выплавлять многосоставные материалы, которые с успехом использовали в военном и мирном деле. Особенно это относится к свинцу, из сплавов которого еще римляне делали водопроводы и канализации. Конечно, они не знали о токсических свойствах этого металла, но им импонировала простота его обработки.

Наиболее известен в настоящее время обычный припой, который изготавливается из одной части свинца и двух частей олова. Как видно из названия, он используется для пайки деталей. Применяется в радиотехнике и прочих технических отраслях. Из сурьмы и свинца делают сплавы, которые используются для изготовления оболочек разного рода кабелей.

Давно известно, что соединения этого металла с кадмием, висмутом или оловом могут плавиться приблизительно при температуре 70 градусов по шкале Цельсия. Именно поэтому сегодня из них делают различные предохранители в системах автоматического пожаротушения.

Как ни странно, но свинец издавна был известен поварам и рестораторам, так как из него нередко делали столовую посуду и приборы. Сплав, который использовался для этого, называется пьютер. В его состав входит приблизительно 85–90% олова. Оставшиеся 10-15% как раз-таки занимает свинец (стандартный сплав двух металлов).

Техники также наверняка знакомы с баббитами. Это также соединения на основе свинца, в состав которых также входит олово, а также мышьяк и сурьму. Эти сплавы весьма ядовиты, но из-за некоторых особых качеств их активно используют в подшипниковой отрасли промышленности.

О легких сплавах

Как мы уже говорили, свойства металлов и сплавов отличаются тем, что у вторых во многих случаях характеристики выше. Особенно это заметно в отношении современной промышленности. В последние годы ей требуется огромное количество легких сплавов, которые обладают повышенной механической прочностью, а также устойчивостью к воздействиям неблагоприятных факторов внешней среды и высокой температуре.

Чаще всего для их производства используется алюминий, бериллий, а также магний. Особенно востребованы соединения на основе алюминия и магния, так как сфера их возможного применения чрезвычайно широка.

Сплавы на основе алюминия

анализ металлов и сплавов
Как мы уже говорили, без них современную промышленность представить себе решительно невозможно. Судите сами: сплавы алюминия активно применяются в авиационной, космической, военной, научно-инженерной и прочих отраслях. Без алюминия невозможно представить себе производителей современной бытовой и мобильной техники, так как корпуса из этого металла все чаще используются современными флагманами этих отраслей.

Какими они бывают?

Делятся сплавы алюминия сразу на три большие группы:

  • Литейные (Al – Si). Особенно широко они распространены в автомобилестроении и военной промышленности.
  • Сплавы, предназначенные для литья под давлением (Al – Mg).
  • Соединения повышенной прочности, самозакаливающиеся (Al – Cu).

Достоинства и недостатки этого материала

Многие сплавы из этого материала экономичны, сравнительно недороги и весьма долговечны, так как не поддаются коррозии. Отличаются высокой прочностью в условиях экстремально низких температур (аэрокосмические отрасли) и весьма простым процессом обработки. Для их формовки не требуется особенно сложного и дорогостоящего оборудования, так как они сравнительно пластичные и вязкие (смотрите таблицу с характеристиками).

Увы, но есть у них и свои недостатки. Так, при температурах выше 175 °С механические свойства алюминия и сплавов на его основе начинают стремительно ухудшаться. Зато благодаря наличию амальгамы на их поверхности (защитной пленки из гидроксида алюминия) они обладают выдающейся устойчивостью к действию агрессивных химических сред, в том числе кислот и щелочей.

Они имеют отличную электропроводность и теплопроводность, немагнитны. Считается, что они абсолютно безвредны для здоровья человека, а потому их можно использовать для производства пищевой посуды и столовых принадлежностей. Впрочем, последние исследователи медиков все же говорят о том, что соединения алюминия в некоторых случаях могут провоцировать развитие болезни Альцгеймера.

Военные полюбили эти материалы за то, что они не дают искр даже при резких механических воздействиях и ударах. Кроме того, они отлично поглощают ударные нагрузки. Проще говоря, некоторые эти сплавы металлов (состав которых чаще всего засекречен) активно используются для производства легкой брони для оснащения ей разнообразных БТР, БМП, БРДМ и прочей техники.

Благодаря всем этим свойствам сплавы на основе повсеместно используют для производства поршней для двигателей внутреннего сгорания, а также в производстве строительных конструкций (устойчивость к коррозии). Широко используется алюминий и материалы на его основе в производстве отражателей для светотехнических представлений, электропроводки, а также для изготовления корпусов разнообразной техники (не намагничивается).

сплавы металлов таблицаВажно заметить, что даже в теоретически чистом алюминии порой содержится значительная примесь железа. Оно может способствовать более высокой механической прочности материала, но его присутствие делает сплав на основе алюминия сильно подверженным коррозионным процессам. Кроме того, сплав в значительной степени утрачивает свою пластичность, что также не слишком хорошо в большинстве случаев.

Ослабить негативное действие примесей железа помогает кобальт, хром или марганец. Если же в состав сплава входит литий, то получается весьма прочный и упругий материал. Неудивительно, что такое соединение пользуется большой популярностью в авиакосмической промышленности. Увы, но сплавы лития с алюминием имеют неприятное свойство, которое опять-таки выражается в плохой пластичности.

Подведем некоторые итоги. Получается, что основные сплавы металлов в космонавтике, авиации и прочих высокотехнологичных отраслях, имеют в своем составе алюминий. В общем-то, именно так и обстоят дела на сегодняшний день, но нередко в современной промышленности используется магний и его сплавы.

Сплавы магния

Они имеют крайне невысокую массу, а также характеризуются весьма впечатляющей прочностью. Кроме того, именно эти материалы великолепно подходят для литейной промышленности, а заготовки прекрасно поддаются токарной и фрезеровочной обработке. А потому их активно используют в производстве ракет и авиационных турбин, корпусов приборов, дисков автомобильных колес, а также некоторых сортов броневой стали.

Некоторые разновидности этих сплавов отличаются великолепными показателями вязкостного демпфирования, а потому они идут на производство деталей и конструкций, которым приходится работать в условиях экстремально высокого уровня вибраций.

Они довольно мягкие, сравнительно неплохо сопротивляются износу, но отличаются не слишком впечатляющей пластичностью. Зато они отличаются прекрасной приспособленностью к формовке в условиях высоких температур, отлично приспособлены для соединения с использованием всех существующих разновидностей сварок, а также могут быть соединены посредством болтовых соединений, клепки и даже склеивания.

Увы, но все эти сплавы не отличаются особенной стойкостью к воздействию кислот и щелочей. Крайне негативно на них воздействует долгое пребывание в морской воде. Впрочем, магниевые сплавы на удивление стабильны в условиях воздушной среды, так что многими их недостатками можно пренебречь. Если же требуется надежно защитить такие детали от действия коррозии, то применяют нанесение хромового покрытия, анодирование или подобные же методы.

Их можно плакировать при помощи никеля, меди или хрома, предварительно погружая в расплав химически чистого цинка. При такой обработке резко возрастают показатели их прочности и устойчивости к истиранию. Нужно напомнить, что магний является довольно-таки активным с химической точки зрения металлом, а потому при работе с ним необходимо соблюдать хотя бы базовые меры безопасности.

механические свойства металлов и сплавовТаким образом, производство металлов и сплавов является ключевой особенностью современной промышленностью. С каждым годом люди изобретают все больше способов получения новых материалов, так что вскоре мы наверняка получим совершенно невероятные соединения, которые будут сочетать в себе полезные свойства сразу нескольких групп материалов и химических элементов.

Свойства металлов (стр. 1 из 2)

Свойства металлов.

1.Основные свойства металлов.

Свойства металлов делятся на физические, химические, механические и технологические.

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, расширяемость при нагревании.

К химическим – окисляемость, растворимость и коррозионная стойкость.

К механическим – прочность, твердость, упругость, вязкость, пластичность.

К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариемость, обрабатываемость резанием.

1. Физические и химические свойства.

Цвет. Металлы непрозрачны, т.е. не пропускают сквозь себя свет, и в этом отраженном свете каждый металл имеет свой особенный оттенок – цвет.

Из технических металлов окрашенными являются только медь (красная) и ее сплавы. Цвет остальных металлов колеблется от серо- стального до серебристо – белого. Тончайшие пленки окислов на поверхности металлических изделий придают им дополнительные окраски.

Удельный вес. Вес одного кубического сантиметра вещества, выраженный в граммах, называется удельным весом.

По величине удельного веса различают легкие металлы и тяжелые металлы. Из технических металлов легчайшим является магний ( удельный вес 1,74), наиболее тяжёлым – вольфрам (удельный вес 19,3). Удельный вес металлов в некоторой степени зависит от способа их производства и обработки.

Плавкость. Способность при нагревании переходить из твердого состояния в жидкое является важнейшим свойством металлов. При нагревании все металлы переходят из твердого состояния в жидкое, а при охлаждении расплавленного металла – из жидкого состояния в твердого. Температура плавления технических сплавов имеет не одну определённую температуру плавления, а интервал температур, иногда весьма значительный.

Электропроводность. Электропроводность заключается в переносе электричества свободными электронами. Электропроводность металлов в тысячи раз выше электропроводности неметаллических тел. При повышении температуры электропроводность металлов падет, и при понижении – возрастает. При приближении к абсолютному нулю (- 2730С) электропроводность беспредельно металлов колеблется от +2320 (олово) до 33700 (вольфрам). Большинство увеличивается (сопротивление, падает почти до нуля).

Электропроводность сплавов всегда ниже электропроводности одного из компонентов, составляющих сплавов.

Магнитные свойства. Явно магнитными (ферромагнитьными) являются только три металла: железо, никель, и кобальт, а также некоторые их сплавы. При нагревании до определённых температур эти металлы также теряют магнитные свойства. Некоторые сплавы железа и при комнатной температуре не являются ферромагнитными. Все прочие металлы разделяются на парамагнитные (притягивают магнитами) и диамагнитные (отталкиваются магнитами).

Теплопроводность. Теплопроводность называется переход тепла в теле от более нагретого места к менее нагретому без видимого перемещения частиц этого тела. Высокая теплопроводность металлов позволяет быстро и равномерно нагревать их и охлаждать.

Из технических металлов наибольшей теплопроводностью облает медь. Теплопроводность железа значительно ниже, а теплопроводность стали меняется в зависимости от содержания в ней компонентов. При повышении температуры теплопроводность уменьшается, при понижении – увеличивается.

Теплоёмкость. Теплоёмкость называется количество тепла, необходимое для повышения температуры тела на 10.

Удельной теплоемкостью вещества называется то количество тепла в килограмм – калориях, которое нужно сообщить 1кг вещества, чтобы повысить его температуру на 10.

Удельная теплоёмкость металлов в сравнении с другими веществами невелика, что позволяет относительно легко нагревать их до высоких температур.

Расширяемость при нагревании. Отношение приращения длины тела при его нагревании на 10 к первоначальной его длине называется коэффициентом линейного расширения. Для различных металлов коэффициентом линейного расширения колеблется в широких пределах. Так, например, вольфрам имеет коэффициент линейного расширения 4,0·10-6 , а свинец 29,5 ·10-6.

Коррозионная стойкость. Коррозия есть разрушение металла вследствие химического или электрохимического взаимодействия его с внешней средой. Примером коррозии является ржавление железа.

Высокая сопротивляемость коррозии (коррозионная стойкость) является важным природным свойством некоторых металлов: платины, золота и серебра, которые именно поэтому и получили название благородных. Хорошо сопротивляются коррозии также никель и другие цветные металлы. Черные металлы коррозируют сильнее и быстрее, чем цветные.

2. Механические свойства.

Прочность. Прочностью металла называют его способность сопротивляться действию внешних сил, не разрушаясь.

Твердость. Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость. Упругостью металла называется его свойство востонавливать свою форму после прекращения действия внешних сил, вызывавших изменение формы(деформацию.)

Вязкость. Вязкость называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость – свойство, обратное хрупкости.

Пластичность. Пластичностию называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность – свойство, обратное упругости.

В табл. 1 приведены свойства технических металлов.

Таблица 1.

Свойства технических металлов.

3. Значение свойств металлов.

Механические свойства. Первое требование, предъявляемое ко всякому изделию, - это достаточная прочность.

Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.

Многие изделия, кроме общей прочности, должны обладать ещё особыми свойствами, характерными для работы данного изделия. Так, например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих других инструментов применяются инструментальные стали и сплавы.

Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью

Вязкие металлы применяются в тех случаях, когда детали при работе подвергается ударной нагрузке.

Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).

Физические свойства. В авиа-, авто- и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и особенно магния являются здесь незаменимыми. Удельная прочность( отношение предела прочности к удельному весу) для некоторых, например алюминиевых, сплавов выше, чем для мягкой стали.

Плавкость используется для получения отливок путём заливки расплавленного металла в формы. Легкоплавкие металлы(например, свинец) используются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляется в горячей воде. Такие сплавы применяются для отливки типографических матриц, в приборах, служащих для предохранения от пожаров.

Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередач, а сплавы с высоким электросопротивлением – для ламп накаливания, электронагревательных приборов.

Магнитные свойства металлов играют первостепенную роль в электромашиностроении (динамомашины, мотора, трансформаторы),для приборов связи ( телефонные и телеграфные аппараты) и используются во многих других видах машин и приборов.

Теплопроводность металлов дает возможность производить их физические свойства. Теплопроводность используется также при производстве пайки и сварки металлов.

Некоторые сплавы металлов имеют коэффициент линейного расширения, близкий к нулю; такие сплавы применяются для изготовления точных приборов, радиоламп. Расширение металлов должно применяться во внимание при постройке длинных сооружений, например, мостов. Нужно также учитывать,что две детали, изготовленные из металлов с различным коэффициентом расширения и скрепленные между собой, при нагревании могут дать изгиб и даже разрушение.

Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окислительных средах (колосниковые решётки, детали химических машин и приборов). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислостойкие и жаропрочные стали, а также применяются защитные покрытия.

Применение металлов и их сплавов — урок. Химия, 8–9 класс.

О том, что свойства металлов меняются при их сплавлении, стало известно ещё в древности. \(5\) тысяч лет тому назад наши предки научились делать бронзу — сплав олова с медью. Бронза по твёрдости превосходит оба металла, входящие в её состав.

 

Свойства чистых металлов, как правило, не соответствуют необходимым требованиям, поэтому практически во всех сферах человеческой деятельности используют не чистые металлы, а их сплавы.

Сплав — это материал, который образуется в результате затвердения расплава двух или нескольких отдельных веществ.

В состав сплавов кроме металлов могут входить также неметаллы, например, такие как углерод или кремний.

 

Добавляя в определённом количестве примеси других металлов и неметаллов, можно получить многие тысячи материалов с самыми разнообразными свойствами, в том числе и такими, каких нет ни у одного из составляющих сплав элементов.

 

Сплав по сравнению с исходным металлом может быть:

  • механически прочнее и твёрже,
  • со значительно более высокой или низкой температурой плавления,
  • устойчивее к коррозии,
  • устойчивее к высоким температурам,
  • практически не менять своих размеров при нагревании или охлаждении и т. д.

Например, чистое железо — сравнительно мягкий металл. При добавлении в железо углерода твёрдость его существенно возрастает. По количеству углерода, а следовательно, и по твёрдости, различают сталь (содержание углерода менее \(2\) % по массе), чугун (\(С\) — более \(2\) %). Но не только углерод изменяет свойства стали. Добавленный в сталь хром делает её нержавеющей, вольфрам делает сталь намного более твёрдой, добавка марганца делает сплав износостойким, а ванадия — прочным.

Применение сплавов в качестве конструкционных материалов

Сплавы, используемые для изготовления различных конструкций, должны быть прочными и легко обрабатываемыми.

 

В строительстве и в машиностроении наиболее широко используются сплавы железа и алюминия.

 

Такие сплавы железа, как стали, отличаются высокой прочностью и твёрдостью. Их можно ковать, прессовать, сваривать.


Чугуны
используют для изготовления массивных и очень прочных деталей. Например, раньше из чугуна отливали радиаторы центрального отопления, канализационные трубы, до сих пор изготавливают котлы, перила и опоры мостов. Изделия из чугуна изготавливаются с применением литья.

  

Сплавы алюминия, используемые в конструкциях, наряду с прочностью должны отличаться лёгкостью. Дюралюминий, силумин — сплавы алюминия, они незаменимы в самолёто-, вагоно- и кораблестроении.

 

В некоторых узлах самолётов используются сплавы магния, очень лёгкие и жароустойчивые.

 

В ракетостроении применяют лёгкие и термостойкие сплавы на основе титана.

 

Для улучшения ударопрочности, коррозионной стойкости, износоустойчивости сплавы легируют — вводят специальные добавки. Добавка марганца делает сталь ударопрочной. Чтобы получить нержавеющую сталь, в состав сплава вводят хром.

 

montazh-metallokonstrukcij-osobennosti-montazha-i-klassifikaciya-06.jpgFOTO-1---CHugunnyie-radiatoryi-sektsionnyie--.jpegbig_441.jpg
Конструкция из стальных балок

Радиаторы центрального отопления

Ажурные перила, отлитые из чугуна

Инструментальные сплавы

Инструментальные сплавы предназначены для изготовления режущих инструментов, штампов и деталей точных механизмов. Такие сплавы должны быть износостойкими и прочными, причём при разогревании их прочность не должна существенно уменьшаться. Таким требованиям отвечают, например, нержавеющие стали, которые прошли специальную обработку (закалку).

Добавление к сплавам веществ, улучшающих их свойства, называют легированием.

Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.

Применение сплавов в электротехнической промышленности, электронике и приборостроении

Сплавы служат незаменимым материалом при изготовлении особо чувствительных и высокоточных приборов, различного рода датчиков и преобразователей энергии.

 

Например, на изготовление сердечников трансформаторов и деталей реле идёт сплав никеля. Отдельные детали электромоторов изготавливаются из сплавов кобальта.

 

Сплав никеля с хромом — нихром, отличающийся высоким сопротивлением — используется для изготовления нагревательных элементов печей и бытовых электроприборов.


Из сплавов меди в электротехнической промышленности и в приборостроении наиболее широкое применение находят латуни и бронзы.

 

Латуни незаменимы при изготовлении приборов, деталью которых являются запорные краны. Такие приборы используются в сетях подачи газа и воды.

 

Бронзы идут на изготовление пружин и пружинящих контактов.

 

1234205550_ten-300x196.jpg634620550.jpgfull33883574.jpg
Нагревательные элементы бытовых электроприборовЗапорные краны для водопроводов и газопроводов

Пружинящие контакты электрических розеток

 

Применение легкоплавких сплавов

Главным востребованным свойством легкоплавких сплавов является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем. Кроме того, эти сплавы должны иметь определённую плотность, прочность на разрыв, химическую инертность, теплопроводность.

 

Легкоплавкие сплавы производят из висмута, свинца, кадмия, олова и других металлов. Такие сплавы используют в термодатчиках, термометрах, пожарной сигнализации, например, сплав Вуда. А также в литейном деле для производства выплавляемых моделей, для фиксации костей и протезирования в медицине.

 

Сплав натрия с калием (температура плавления \(–\)\(12,5\) °С) используется как теплоноситель для охлаждения ядерных реакторов.

 

patine4.jpegdownload.jpg
Припой (сплав для паяния) имеет невысокую температуру плавленияЛегкоплавкие сплавы используются в литейном делеЛегкоплавкие сплавы незаменимы в датчиках пожарной сигнализации

 

Применение сплавов в ювелирном деле

Применение в чистом виде драгоценных металлов в ювелирном деле не всегда оправдано и целесообразно из-за их дороговизны, физических и химических особенностей.

 

Для придания ювелирным изделиям из золота большей твёрдости и износостойкости используются сплавы с другими металлами.

 

Самая лучшая добавка — это серебро (понижает температуру плавления) и медь (повышает твёрдость). Чистое золото используют очень редко, так как оно слишком мягкое, легко деформируется и царапается.

 

Из сплавов золота с \(10–30\) % других благородных металлов (платины или палладия) изготавливают форсунки лабораторных приборов, а из сплава с \(25–30\) % серебра — ювелирные изделия и электрические контакты.

 

detaltorg_kontakty.jpg
Ювелирные изделия из сплавов золотаПозолоченные электрические контакты

 

Сплавы в искусстве

Оловянная бронза (сплав меди с оловом) — один из первых освоенных человеком сплавов металлов. Она обладает большей, по сравнению с чистой медью, твёрдостью, прочностью и более легкоплавка. Бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё. Классической маркой бронзы является колокольная бронза.

Одно из новых направлений в искусстве — производство художественных литых изделий из чугуна. Литые изделия из чугуна существенно превосходят по качеству кованые изделия.

 

Чугун — металл гораздо более хрупкий и не такой ковкий, как сталь. Но даже из такого, казалось бы, грубого материала можно получать настоящие произведения литейного искусства способом литья, например, такие как литые лестницы или решётки на окна. Такие изделия подвержены лишь поверхностной коррозии и не требуют тщательного ухода.

 

19.jpgkr1Ix2crQhk.jpg1332635064737_w800h500.jpg

Бронзовая скульптура

  

Колокола отливают из специального сорта бронзыЧугунная лестница.  Практично и очень красиво

 

механические, физические, химические — Студопедия

Вопрос

Механические свойства

К основным механическим свойства относят:
- прочность
- пластичность
- твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.
Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:
- цвет
- плотность
- температуру плавления
- теплопроводность
- электропроводность
- магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.
Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.


Химические свойства


Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:
- коррозионную стойкость
- жаростойкость

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:
- емкости для перевозки химических реактивов
- трубопроводы химических веществ
- приборы и инструменты в химической промышленности

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства — характеризуют способность материала к получению из него качественных отливок.
Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.
Усадка (линейная и объемная)– характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.
Ликвация – неоднородность химического состава по объему.

2. Способность материала к обработке давлением — это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.Критерием годности материала является отсутствие дефектов после испытания.

3. Свариваемость — это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием — характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость– способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость (см. Электрохимическая и химическая коррозия металлов) – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость (см. Жаростойкость. Жаростойкая сталь. Жаростойкие сплавы.) – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность – способность материала прирабатываться к другому материалу.

Вопрос

Кристаллизация металлов и сплавов
Процесс кристаллизации. При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией. Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация ипадение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации.Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А). В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления ТПл, сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Тп, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения.Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис.Б) Аморфные тела затвердевают постепенно. В этом случае кривая охлаждениябудет плавной, без горизонтальных площадок. (рис.В) Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей - устойчивых центров кристаллизации и роста кристалликов вокруг этих центров. Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами или зернами. В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа. Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен. Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура.С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.

Механические свойства металлов и сплавов

К основным механическим свойствам металлов относятся прочность, вязкость, пластичность, твердость, выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава.

Рассмотрим некоторые термины, применяемые при характеристике механических свойств. Изменения размеров и формы, происходящие в твердом теле под действием внешних сил, называются деформациями, а процесс, их вызывающий,— деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не исчезающие после снятия нагрузки — остаточными или пластическими.

Напряжением  называется величина внутренних сил, возникающих в твердом теле под влиянием внешних сил.

Под прочностью материала понимают его способность сопротивляться деформации или разрушению под действием статических или динамических нагрузок. О прочности судят по характеристикам механических свойств, которые получают при механических испытаниях. К статическим испытаниям на прочность относятся растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся испытания на ударную вязкость, выносливость и износостойкость. Эластичностью называется способность материалов упруго деформироваться, а пластичностью — способность пластически деформироваться без разрушения.

Вязкость — это свойство материала, которое определяет его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения материала. Материалы должны быть одновременно прочными и пластичными.

Твердость — это способность материала сопротивляться проникновению в него других тел.

Выносливость — это способность материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок.

Износостойкость — это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Ползучесть — это способность материала медленно и непрерывно пластически деформироваться (ползти) при постоянном напряжении (особенно при высоких температурах).

Поведение некоторых металлов (например, отожженной стали) при испытании на растяжение показано на рис. 3. При увеличении нагрузки в металле сначала развиваются процессы упругой деформации, удлинение образца при этом незначительно. Затем наблюдается пластическое течение металла без повышения напряжения, этот период называется текучестью. Напряжение, при котором продолжается деформация образца без заметного увеличения нагрузки, называют пределом текучести. При дальнейшем повышении нагрузки происходит развитие в металле процессов наклепа (упрочнения под нагрузкой). Наибольшее напряжение, предшествующее разрушению образца, называют пределом прочности при растяжении.

Рис. 3. Диаграмма деформации при испытании металлов на растяжение.

Напряженное состояние — это состояние тела, находящегося под действием уравновешенных сил, при установившемся упругом равновесии всех его частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после прекращения действия внешних сил, или возникающие при быстром нагревании и охлаждении, если линейное расширение или усадка слоев металла и частей тела происходит неравномерно.

Внутренние напряжения образуются при быстром охлаждении или нагревании в температурных зонах перехода от пластического к упругому состоянию металла. Эти температуры для стали соответствую 400—600°. Если образующиеся внутренние напряжения превышают предел прочности, то в деталях образуются трещины, если они превышают предел упругости, то происходит коробление детали.

Предел прочности при растяжении в кг/мм2 определяется на разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения стандартного образца (рис. 4, а), к площади поперечного сечения образца в мм2.

    

Рис. 4. Методы испытания прочности материалов: а - на растяжение; б - на изгиб; в - на ударную вязкость; г - на твёрдость

Предел прочности при изгибе в кГ/мм2 определяется разрушением образца, который устанавливаете» на двух опорах (рис. 4, б), нагруженного по середине сосредоточенной нагрузкой Р.

Для установления пластичности материала определяют относительное удлинение δ при растяжении или прогиб ƒ при изгибе.

Относительное удлиненней δ в % определяется на образцах, испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют между ними расстояние до испытания (l0) и после разрушения (l) и определяют удлинение

δ = l-lo / lo · 100%

Прогиб при изгибе в мм определяется при помощи прогибомера машины, указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4, б).

Ударная вязкость в кГм/см2 определяется на образцах (рис. 4, в), подвергаемых на копре разрушению ударом отведенного в сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного сечения образца в см 2.

Твердость по Бринелю (НВ) определяют на зачищенной поверхности образца, в которую вдавливают стальной шарик (рис. 4, г) диаметром 5 или 10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в мм2 дает число твердости.

Показатели для механических свойств для основных сплавов приведены в табл. 1.

Химические и физические свойства металлов

Какой металл лучше выбрать для поставленной цели?

Металлы отличаются друг от друга различными параметрами. Принято выделять физические и химические свойства металла.

Физические свойства определяют внешние характеристики металла. К ним относят: вес, цвет, электропроводность. Также физические свойства характеризуют то, насколько металл проводит тепло, какая у него плотность и пластичность.

Химические свойства связаны с реакцией металлов на определенные воздействия. Например, насколько сильно металл подвержен коррозиям, как он окисляется и способен ли растворяться в жидкостях.

Рассмотрим более подробно характеристики каждого из свойств.

  • Цвет. Это характеристика, которая отображает оттенки металлов – серебристый, белый, стальной, желтый. Интересно то, что металлы не пропускают через себя свет. Они его отражают. Большая часть известных металлов имеет серебристо-белые оттенки. По цвету металлы подразделяются на черные и цветные.
  • Способность плавиться. Одно из главных и основных свойств металлов. Характеризует реакцию металла на повышения и понижение температуры. Плавкость показывает, как быстро металл из твердого состояния, может превратиться в жидкое и наоборот. И какие температуры при этому нужны. Температуру при плавлении разных металлов часто меняют с определенными интервалами. Иногда, чтобы расплавить металл, нужно постепенно повышать температуру. Если это сделать сразу, качество изделия из этого металла может быть на низком уровне. Знание характеристик плавкости того или иного металла позволяет применять сплавы для создания специальных матриц, которые защищают различные приборы от возгорания.
  • Электропроводность показывает, насколько металл способен пропускать и переносить электричество. Все металлы, по сравнению с другими материалами, отличаются огромной электропроводностью. Кстати, чем больше температура воздействия на металл, тем меньше он проводит через себя электричество. Сплавы из разных металлов характеризуются меньшей электропроводностью.
  • Магнитные характеристики. Магнитностью обладают небольшое количество металлов – железо, николь, кобальт. Но при повышении температуры и эти металлы теряют свойство магнитности. На магнитные характеристики особое внимание уделяется во время создания машин и приборов связи.
  • Теплопроводимость – способность металлов проводите тепло.
  • Вес – он измеряется в граммах, расчет идет по одному кубическому сантиметру. Металлы подразделяются на тяжелые и легкие. Самый маленький удельный вес у магния, самый большой у вольфрама. В машиностроении данная характеристика металла является очень важным элементом.

Кстати, ртуть это единственный жидкий металл. Все остальные металлы относятся к твердым. Исключения составляют сплавы разным металлов.

Знание физических свойств металлов, позволяет применять их по назначению, выбирать способы обработки и прогнозировать сроки службы.

Рассмотрим подробнее химические свойства металлов.

Химические свойства зависят от того, как располагаются атомы. Тип кристаллической решетки также влияет на химию металла. Все металлы с легкостью отдают электроны.

Устойчивость к коррозиям. Коррозия – это изменение (разрушение) металлов в ходе какого-то воздействия. Воздействие может быть физическим, химическим. Всем известны пример коррозии – появление ржавчины на металлах. Стойкость к разрушению является очень важной характеристикой при выборе металла. Благородные металлы практически не подвергаются коррозии (например, золото, платина). Цветные металлы в меньшей степени подвержены разрушению. Больше всего поддаются коррозийным изменениям черные металлы. Для того, чтобы достичь высокой стойкости к разрушению, часто используют специальные покрытия и определяют, какой металл лучше подойдет для поставленной цели.

Способность к окислению. Данная характеристика отображает, как металл взаимодействует с кислородом с применением различных окислителей.

Способность к растворению. Есть группы металлов, которое при определенных условиях хорошо растворяются. Из них можно получить твердый раствор. Для растворения применяют различные кислоты. Также существует анодное растворение. Для этих целей применяется раствор электролита.

Ниже в Таблице 1 рассмотрены все физические показатели трех металлов.

 

Физические свойства металла

Алюминий

Железо

Медь

1

 Состояние

твердый

твердый

твердая

2

Цвет (оттенок)

серебристо-белый

серый

с красным оттенком

3

Пластичность

высоко-пластичный

пластичный

самый пластичный

4

Твердость

<2,5

Диапазон от 2,5 до 5

< 2,5

5

Блеск

блестит

блестит на свежем срезе

блестит, если потереть

6

t плавления

Легкоплавкий (660)

Тугоплавкий (1540)

Средний (1080)

7

Плотность

Легкий (2,7)

Тяжелый (7,7)

Тяжелый (9)

8

Теплопроводность

+

+

+

9

Электропроводность

+

+

+

Таблица 1. Сравнение физических свойств разных металлов.

(Условные обозначения: + «хорошая»)

Из данной таблицы видно, что сравниваемые металлы по одним свойствам одинаковые или очень схожи, а по другим явно отличаются друг от друга. Одни металлы можно отличить друг от друга по внешнему виду (цвет, блеск, состояние). А другие свои отличия проявляют в процессе воздействия на них (повышение/понижение температуры, физическое воздействие). Все эти свойства позволяют выбрать тот металл, который соответствует необходимым требованиям в производстве различных металлических изделий.

Рассмотрим химические свойства данных металлов.

  1. Алюминий – активный металл. При попадании на открытый воздух на поверхности появляется пленка оксида. Коррозия алюминия случается в очень редких случаях. Относится к металлам не подверженным к разрушению. Он хорошо взаимодействует с кислородом, галогенами, серой (при повышении температуры), с углеродом (при повышении температуры). Ртуть способна разрушить поверхность алюминия. Алюминий применяется как покрытие на изделиях с целью защиты от окисления во время нагревания.
  2. Железо – относится к металлам средней активности. При обычной температуре не взаимодействует с кислородом и водой. Но если воздух влажный, то железо очень быстро подвергается коррозии. На поверхности появляется ржавчина и темные пятна. С различными металлами железо легко образует сплавы. Взаимодействует с галогенами, серой, кислотами.
  3. Медь – при попадании на воздух сверху покрывается пленкой карбоната. Он предотвращает дальнейшее окисление почвы. При повышении температуры способна вступать в реакцию с простыми и сложными веществами.

Все металлы обладают определенными свойствами и характеристиками. Знание этих свойств необходимо для правильного применения металлов. Не все металлы одинаково реагируют на внешние условия, физическое воздействие, температуру. Физические и химические свойства относятся к самым главным характеристикам металлов.

Для исследования свойств металлов в наше время применяют различные методы. Проводят следующие виды анализа: химический, спектральный, механический, технологический. Это самые часто используемые методы, которые позволяют оценить качество изделия, и получить информацию о происхождении металла и его основные параметры.

 

 

06.09.2019

1.2. Основные свойства металлов и сплавов

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов – твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов – ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость – способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость – способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость – способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава – возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием – поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть – способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость – способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и часто являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск – способность поверхности металла и сплава направленно отражать световой поток.

Плотность – масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления – это температура, при которой металл или сплав целиком переходит в жидкое состояние.

Теплопроводность – количество теплоты, проходящее в секунду через сечение в 1см2, когда на расстоянии в 1см изменение температуры составляет в 10С.

Теплоемкость – количество теплоты, необходимой для повышения температуры тела на 10С.

Электрическая проводимость – величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10-6м2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эти величины связаны между собой коэффициентом , который называется магнитной восприимчивостью стали или сплава.

(1)

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь

(2)

где - магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) , где- коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нm после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Нс, напряженность насыщающего поля Нн и намагниченность насыщения Мs. По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость и максимальная магнитная проницаемость.

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно нечувствительные и структурно чувствительные. К структурно нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно чувствительным – магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т.д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов – изменение размеров и формы зерен, характеризуется температурными коэффициентами объемного расширения и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава, нагреваемого или охлаждаемого с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

Какие они? Из чего сделаны обычные сплавы?

Крис Вудфорд. Последнее обновление: 8 ноября 2019 года.

Почти каждый материал мы могли бы когда-нибудь хотеть скрывается где-то на планете под нашим ноги. От золота мы носим в качестве украшения Нефть, которая питает наши автомобили, хранилище удивительных материалов Земли может поставлять практически каждая потребность Химические элементы являются основными строительными блоками из из которого сделаны все материалы внутри Земли. Есть 90 или около того элементы природного происхождения, и большинство из них являются металлами.Но, хотя металлы полезны, они иногда не идеальны для работы, в которой мы нуждаемся. Взять железо, например. Это удивительно сильный, но он может быть довольно хрупким, и это также ржавеет легко во влажном воздухе. Или как насчет алюминия. Это очень легкий, но в своем чистая форма, она слишком мягкая и слабая, чтобы быть полезной. Поэтому большинство используемых нами металлов не являются вообще-то металлы, кроме сплавов: металлы в сочетании с другими веществами, чтобы сделать их сильнее, тяжелее, легче или лучше другим способом.Сплавы повсюду вокруг нас - от пломбы в зубах и литые диски на наших автомобилях для космических спутников свист над нашими головами. Давайте внимательнее посмотрим на то, что они и почему они так полезно!

Фото: этот топливный бак от Space Shuttle был сделан из сверхлегкого алюминиево-литиевого сплава, таким образом, это на 3400 кг легче, чем танк, который он заменил. Сокращение веса от базовой конструкции шаттла означало, что он может нести более тяжелые грузы (груз).Фото любезно предоставлено НАСА Космическим центром им. Кеннеди (NASA-KSC).

Что такое сплав?

Фото: этот образец сплава титан-цирконий-никель быть сделанным, чтобы подняться (плавать в воздухе), используя электричество. Это один из многих замечательных новых материалов, разрабатываемых для возможного использования в космосе. Фото любезно предоставлено Центром космических полетов им. Маршалла (NASA-MSFC).

Вы можете увидеть слово «сплав», описанное как «смесь металлов», но это немного вводит в заблуждение, потому что некоторые сплавы содержат только один металл, и он смешивается с другие вещества, которые являются неметаллами (например, чугун является сплав сделан только из одного металла, железа, смешанного с одним неметаллом, углеродом).Лучший способ думать о сплаве как о материале, который состоит из минимум два разных химических элемента, один из которых является металлом. самый важный металлический компонент сплава (часто представляющий 90 процентов или более материала) называется основным металл основной металл или основание металл. Другие компоненты сплава (которые называются легирующими агентами) может быть металлы или неметаллы, и они присутствуют в гораздо меньших количествах (иногда менее 1 процента от общего числа). Хотя сплав иногда может быть составным (элементы, из которых это сделано, являются химически связаны вместе), это обычно твердое вещество решение (атомы элементов просто смешаны, как соль, смешанная с вода).

Структура сплавов

Если вы посмотрите на металл через мощный электронный микроскоп, вы можете увидеть атомы внутри расположены в правильной структуре, называемой кристаллической решетки. Вообразите маленькую картонную коробку, полную мрамора, и это в значительной степени что бы вы увидели В сплаве, кроме атомов основного металла, Есть также атомы легирующих агентов, разбросанных по всему структура. (Представьте себе несколько пластиковых шарики в картон коробка, чтобы они расположились случайным образом среди мрамора.)

Замена сплавов

Если атомы легирующего агента заменяют атомы основного металла, мы получаем то, что называется сплав замещения. Сплав как это будет формироваться только если атомы основного металла и легирующего агента имеют примерно одинакового размера. В большинстве замещающих сплавов составляющая элементы довольно близко друг к другу в периодической таблице. Латунь, для Например, замещающий сплав на основе меди в какие атомы цинка заменяют 10–35 процентов атомов, которые обычно находятся в меди.Латунь работает как сплав, потому что медь и цинк близки друг к другу в Периодическая таблица и имеет атомы примерно одинакового размера.

Промежуточные сплавы

Сплавы также могут образовываться, если легирующий агент или агенты имеют атомы, которые намного меньше чем те из основного металла. В этом случае атомы агента проскальзывают в между основными атомами металла (в промежутках или «промежутках»), давая то, что называется промежуточным сплавом. Сталь Пример внедренного сплава, в котором относительно небольшое количество атомы углерода проскальзывают в промежутки между огромными атомами в кристаллической решетке железа.

Как ведут себя сплавы?

Фото: это не только основные ингредиенты (металлы и другие составляющие) которые влияют на свойства сплава; как эти ингредиенты сочетаются очень важно слишком. Скорость заливки или перемешивания, температуры заливки и скорости охлаждения являются одними из факторов это может повлиять на физические свойства сплавов. Фото отливки из латунного сплава, выполненной Джетом Лоу, любезно предоставлено Библиотекой Конгресса США, Отделом печати и фотографий, Исторический Американский Инженерный Рекорд.

Люди делают и используют сплавы, потому что металлы не имеют точно правильные свойства для конкретная работа. Железо это великое здание материал но сталь (сплав сделано путем добавления небольшого количества неметаллического углерода к железу) сильнее, тверже и устойчивее к коррозии. Алюминий очень легкий металл, но это также очень мягкий в чистом виде. Добавьте небольшое количество металлов магния, марганца и меди, и вы делаете превосходный алюминиевый сплав называется дюраль, который достаточно силен, чтобы делать самолеты.сплавы всегда показывать улучшения по сравнению с основным металлом в одном или нескольких важные физические свойства (такие как прочность, долговечность, умение проводить электричество, умение противостоять жаре, и так на). Как правило, сплавы прочнее и сложнее, чем их основные металлы, менее податливые (труднее работать) и менее пластичные (труднее тянуть в провода).

Фото: ученые из НАСА Эймс разработали методику называется распыление газа под высоким давлением для упрощения производства магниевые сплавы.Фото любезно предоставлено Министерством энергетики США.

Как изготавливаются сплавы?

Вы можете найти идею сплава как "смесь металлов" довольно запутанный. Как Можете ли вы смешать два куска твердого металла? Традиционный способ изготовление сплавов было для нагрева и плавления компонентов, чтобы сделать жидкости, смешайте их вместе, а затем дайте им остыть в то, что называется твердый раствор (твердый эквивалент раствор как соль в воде). Альтернативный способ сделать сплав состоит в том, чтобы повернуть компоненты в порошки, смешать их вместе, а затем сплавить их с сочетание высокого давления и высокой температуры.Эта техника называется порошковая металлургия. Третий метод изготовление сплавов запустить пучки ионов (атомы с слишком малым или слишком большим количеством электронов) в поверхностный слой куска металла. ион Имплантация, как это известно, является очень точным способом изготовления сплава. Это вероятно, наиболее известен как способ изготовления полупроводников, используемых в электронные схемы и компьютерные чипы. (Подробнее об этом читайте в нашей статье о молекулярно-лучевой эпитаксии.)

Узнать больше

На этом сайте

Статьи

Книги

Общие сведения о материаловедении и технике

В этих книгах объясняется основная концепция подбора материалов для работы, в которой они нуждаются.Это основная идея большинства сплавов - по сути, металлы «улучшены», чтобы выполнять конкретные работы лучше, чем они бы делали в чистом, естественном состоянии.

Более подробные книги

Довольно сложно найти простые, общие книги о сплавах; вместо этого ищите книги по «инженерным материалам», и вы должны найти что-то подходящее.

Организации

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты.

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным наказаниям.

Авторские права на текст © Chris Woodford 2008, 2019. Все права защищены. Полное уведомление об авторских правах и условия использования.

Inconel является зарегистрированным товарным знаком Huntington Alloys Corporation
Waspaloy является зарегистрированным товарным знаком United Technologies Corporation
Hastelloy является зарегистрированным товарным знаком Haynes International, Inc.
Названия конкретных сплавов CMSX (таких как CMSX-4) являются зарегистрированными товарными знаками корпорации Cannon-Muskegon.

,

металлургия | Определение и история

Современное использование металлов является кульминацией долгого пути развития, охватывающего примерно 6500 лет. Общепризнано, что первыми известными металлами были золото, серебро и медь, которые произошли в естественном или металлическом состоянии, из которых, по всей вероятности, самыми ранними были самородки золота, обнаруженные в песках и гравии русел рек. Такие самородные металлы стали известны и ценились за их декоративные и утилитарные ценности во второй половине каменного века.

Самая ранняя разработка

Золото можно агломерировать в более крупные куски путем холодного удара, но самородная медь не может, и существенным шагом к эпохе металлов стало открытие того, что такие металлы, как медь, могут быть преобразованы в формы путем плавления и литья в формы; среди самых ранних известных продуктов этого типа медные топоры, отлитые на Балканах в 4-м тысячелетии до нашей эры. Другим шагом стало открытие того, что металлы могут быть извлечены из металлосодержащих минералов. Они были собраны и могли различаться по цвету, текстуре, весу, цвету пламени и запаху при нагревании.Значительно больший выход, полученный при нагревании самородной меди с соответствующими оксидными минералами, мог привести к процессу плавки, поскольку эти оксиды легко восстанавливаются до металла в слое древесного угля при температурах, превышающих 700 ° C (1300 ° F), в качестве восстановителя. Окись углерода становится все более стабильной. Чтобы осуществить агломерацию и отделение расплавленной или выплавленной меди от связанных с ней минералов, необходимо было ввести оксид железа в качестве флюса. Этот дальнейший шаг вперед может быть объяснен присутствием железных оксидов госсана в выветрившихся верхних зонах месторождений сульфида меди.

Во многих регионах медно-мышьяковые сплавы, обладающие превосходными свойствами по сравнению с медью в литом и деформированном виде, были произведены в следующем периоде. Сначала это могло быть случайным, из-за сходства цвета и цвета пламени между ярко-зеленым медно-карбонатным минералом малахитом и выветрившимися продуктами таких медно-мышьяковых сульфидных минералов, как энаргит, и, возможно, позднее последовал целенаправленный отбор. соединений мышьяка на основе их чесночного запаха при нагревании.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Содержание мышьяка варьировалось от 1 до 7 процентов, с содержанием олова до 3 процентов. По существу не содержащие мышьяка медные сплавы с более высоким содержанием олова - другими словами, настоящая бронза - похоже, появились между 3000 и 2500 г. до н.э., начиная с дельты Тигра и Евфрата. Открытие ценности олова, возможно, произошло благодаря использованию станнита, смешанного сульфида меди, железа и олова, хотя этот минерал не так широко доступен, как основной минерал олова, касситерит, который, возможно, и был источником металла.Касситерит поразительно плотный и встречается в виде гальки в аллювиальных отложениях вместе с арсенопиритом и золотом; это также встречается в некоторой степени у упомянутых выше госсанов из оксида железа.

Несмотря на то, что бронза в разных местах могла развиваться самостоятельно, наиболее вероятно, что бронзовая культура распространилась через торговлю и миграцию людей с Ближнего Востока в Египет, Европу и, возможно, Китай. Во многих цивилизациях производство меди, мышьяковой меди и оловянной бронзы продолжалось вместе некоторое время.Возможное исчезновение медно-мышьяковых сплавов трудно объяснить. Добыча могла быть основана на минералах, которые не были широко доступны и стали дефицитными, но относительная нехватка оловянных минералов не помешала существенной торговле этим металлом на значительных расстояниях. Вполне возможно, что в конечном итоге предпочтение отдается оловянной бронзе из-за вероятности заражения мышьяком от паров, образующихся при окислении мышьяксодержащих минералов.

По мере выработки выветрившихся медных руд в определенных местах, более тяжелые сульфидные руды под ними добывались и выплавлялись.Вовлеченные минералы, такие как халькопирит, сульфид меди и железа, нуждались в окислительной обжарке, чтобы удалить серу в виде диоксида серы и получить оксид меди. Это не только требовало больших металлургических навыков, но и окисляло тесно связанное железо, что в сочетании с использованием флюсов из оксида железа и более жестких условий восстановления, создаваемых улучшенными плавильными печами, приводило к повышению содержания железа в бронзе.

Невозможно отметить резкое разделение между бронзовым веком и железным веком.Небольшие куски железа были бы произведены в медеплавильных печах, так как использовались флюсы оксида железа и железосодержащие руды сульфида меди. Кроме того, более высокие температуры в печи создали бы более сильные восстановительные условия (то есть более высокое содержание окиси углерода в печных газах). Ранний кусок железной дороги со следа в провинции Дренте, Нидерланды, датируется 1350 г. до н.э., эта дата обычно считается средним бронзовым веком для этой области. В Анатолии, с другой стороны, железо использовалось еще в 2000 году до нашей эры.Есть также случайные ссылки на железо в более ранние периоды, но этот материал имел метеорное происхождение.

После установления взаимосвязи между новым металлом, обнаруженным в медных расплавах, и рудой, добавленной в виде флюса, естественным образом последовала работа печей для производства только железа. Конечно, к 1400 г. до н.э. в Анатолии железо приобрело значительную важность, а к 1200–1000 г. до н. Э. Оно было довольно широко превращено в оружие, первоначально кинжальные лезвия.По этой причине 1200 г. до н.э. было принято за начало железного века. Данные раскопок свидетельствуют о том, что искусство изготовления железа возникло в гористой стране к югу от Черного моря, где преобладают хетты. Позже искусство, очевидно, распространилось на филистимлян, поскольку в Гераре были обнаружены грубые печи, датируемые 1200 г. до н.э., вместе с несколькими железными предметами.

Для плавки оксида железа с древесным углем требовалась высокая температура, и, поскольку температура плавления железа при 1540 ° С (2800 ° F) тогда была недостижимой, продукт представлял собой просто губчатую массу пастообразных шариков металла, смешанных с полужидкой шлак.Этот продукт, позже известный как «Блум», вряд ли можно было использовать в том виде, в котором он стоял, но повторный нагрев и горячее дробление удаляли большую часть шлака, создавая кованое железо, намного лучший продукт.

Свойства железа сильно зависят от присутствия небольшого количества углерода, с большим увеличением прочности, связанным с содержанием менее 0,5 процента. При достижимых температурах - около 1200 ° C (2200 ° F) - восстановление древесным углем привело к получению почти чистого железа, которое было мягким и ограниченно использовалось для оружия и инструментов, но когда отношение топлива к руде было увеличено и вытяжка печи улучшенный с изобретением лучшего сильфона, больше углерода было поглощено железом.Это привело к появлению цветов и продуктов из железа с различным содержанием углерода, что затрудняет определение периода, в котором железо могло быть намеренно укреплено путем цементации или повторного нагрева металла в контакте с избытком древесного угля.

Углеродсодержащее железо имеет еще одно большое преимущество, заключающееся в том, что, в отличие от бронзы и не содержащего углерода железа, его можно сделать еще более твердым путем закалки, то есть быстрого охлаждения путем погружения в воду. Нет никаких доказательств использования этого процесса закалки во время раннего железного века, так что он должен быть либо неизвестен тогда, либо не считаться выгодным, так как закалка делает железо очень хрупким и должно сопровождаться закалкой или повторным нагревом при более низкая температура, чтобы восстановить ударную вязкость.То, что, по-видимому, было установлено на ранних этапах, было практикой повторной холодной ковки и отжига при температуре 600–700 ° C (1100–1300 ° F) - температуре, естественным образом достигаемой при простом пожаре. Эта практика распространена в некоторых частях Африки даже сегодня.

К 1000 г. до н.э. железо стало известно в Центральной Европе. Его использование медленно распространялось на запад. Производство железа было довольно широко распространено в Великобритании во время римского вторжения в 55 г. до н.э. В Азии железо также было известно в древние времена, в Китае около 700 г. до н.э.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *