Какие функции выполняет древесина – Функции древесины. Строение и основные свойства дерева и древесины. Макроскопическое строение древесины древесина

Значение древесины, состав, свойства, особенности и строение. Древесина – это что такое?

Человек использует древесину с незапамятных времен. Топливо, строительные материалы, мебель, музыкальные инструменты – изделия из нее сопровождают нас всю жизнь. Кроме этого, деревья – это природные календари и живые исторические памятники.

Существует целая отрасль науки – дендрохронология, которая позволяет узнать возраст изделия, а также в какой области было срублено дерево, из которого оно было изготовлено. Изучая срезы годовых колец, можно узнать о природе и атмосфере давних времен. Достоинства и недостатки, строение, древесина как строительный материал, свойства – все эти вопросы заслуживают внимания.

Как все устроено

Свойства и характеристики материала невозможно понять, предварительно не изучив строение и состав древесины. Само понятие зависит от того, кто его употребляет. Для обычного человека и строителя это исключительно часть дерева под корой, которую можно употреблять в быту или производстве. Для ботаника строение дерева и древесины – это весь комплекс, включающий в себя все элементы от корней до кроны.

Крона в промышленности используется незначительно, а ветви идут как сырье для древесноволокнистых плит и картона. Основное значение имеет ствол. На поперечном разрезе взору открывается строение ствола древесины. Самый верхний слой – кора, защищает живые клетки от внешних воздействий. Между корой и телом ствола располагается слой живых клеток – кадмий. В самом центре через весь ствол проходит сердцевина. Рыхлые ткани, из которых она состоит, делают ее непригодной для утилитарных нужд.

Ядро дерева состоит в основном из омертвевших клеток, отложений смолы, красящих и дубильных веществ. Ядро окружает заболонь – часть дерева, которая отвечает за проведение воды к листьям от корней. Соответственно, в ней много влаги, она больше пропускает воду и сильнее подвержена гниению. Ярко выраженное ядро есть не у всех деревьев. В некоторых из них нет разницы между центральной и окраинной частью ствола. Такие породы называются заболонными.

Микроскопическое строение древесины

Применяя микроскоп, можно глубже изучить строение. Древесина состоит в целом из омертвевших клеток. Молодые растительные клетки состоят из оболочки и внутренней части – цитоплазмы и ядра. Основой тонкой прозрачной мембраны является целлюлоза или клетчатка. С течением времени растительные клетки претерпевают метаморфозу и, в зависимости от заложенной функции, превращаются в своей массе либо в кору (пробкование), либо в древесину (одревеснение).

В клетках постоянно образуется лигнин. Он и служит причиной одревеснения. Разделяют два вида древесных клеток – прозенхимные и паренхимные. Первый вид составляет основную массу древесины, в зависимости от породы – от 85% до 99%. В свою очередь, они разделяются по своим функциям. Проводящие клетки отвечают за доставку питательных веществ и влаги от корней к листве, механические – за прочность и устойчивость дерева. Паренхимные клетки выполняют функцию кладовой для растения. Они накапливают питательные вещества (жиры, крахмалы) и отдают их по мере надобности в трудный период.

Хвойные породы

В зависимости от вида деревьев различается и их строение. Породы древесины делят на хвойные и лиственные. Строение хвойных пород отличается большей простотой. Основную массу составляют трахеидные клетки. К особенностям хвойных пород можно отнести наличие клеток, вырабатывающих смолу. У разных видов они могут быть как хаотично разбросаны, так и объединены в систему смоляных ходов.

Лиственные породы

Более сложны деревья лиственных пород и их строение. Древесина состоит из сосудов, волокон либриформа и паренхимных клеток. Так как лиственные деревья сбрасывают осенью листву, зимой они нуждаются в большом запасе пищи. Отсюда и большее количество паренхимных клеток, отвечающих за накопление питательных веществ, чем у хвойных пород. Это можно увидеть по ярко выраженной сердцевине.

Свойства

Целым рядом характерным свойств обладает древесина. Особенности строения тому причина. Прочность у древесины довольно высока, и среди строительных материалов по этому показателю она занимает промежуточное положение. А учитывая небольшой удельный вес, она сравнима в этом плане с металлом. Слабым местом древесины является то, что она – анизотропный материал. Способность сопротивления к разрушению зависит от направления силы относительно расположения волокон. Самые лучшие показатели прочности видны при воздействии на материал вдоль волокон.

Жесткость древесины мала, причина этому – специфическое строение. Древесина – пористый, гибкий материал. Балки способны восстановить свою форму после кратковременной нагрузки. Но остаточные деформации, вследствие длительного воздействия, остаются навсегда. Деревянная балка не сможет восстановить свою форму после долгой эксплуатации.

Твердость строительных материалов определяется тем, какая нагрузка необходима для вдавливания стального шарика с определенными размерами. Для самых жестких пород древесины она составляет всего 1000 Н. При этом низкая твердость – это и одно из главных достоинств материала. Дерево легко обрабатывается, в нем прочно удерживаются гвозди, шурупы, самонарезающиеся винты.

Влажность древесины определяется удельным содержанием влаги в порах. В только что срубленном дереве оно достигает 100%. В зависимости от назначения свежесрубленную древесину подвергают сушке до необходимых показателей от 40 до 15%.

Достоинства

Древесина обладает малым значением теплопроводности. Ее можно с успехом применять в качестве теплоизолирующего материала. Простота в обработке позволяет использовать широкий круг инструментов. Невозможно представить любой оркестр без музыкальных инструментов, изготовленных из дерева. Чарующие звуки скрипки – результат такого свойства древесины, как способность к резонансу. Древесина легко изгибается, открывается большой выбор для изготовления различных гнутых конструкций. Также деревянные изделия отличаются хорошими звукопоглощающими характеристиками. Красивая поверхность открывает простор для фантазии при дизайне помещений.

Недостатки

Способность деревянных изделий воспринимать нагрузки зависит от направления приложения силы. Это объясняется анизотропным строением древесины. Кроме того, характеристики прочности зависят еще и от близости к центру ствола, влажности, наличия сучков, трещин. Это заставляет тратить много времени на отбор пригодного материала для работы.

Являясь органическим материалом, древесина беззащитна для насекомых, плесени, грибков. Для долговечной эксплуатации требуется проводить дорогостоящую химическую обработку. Стоит отметить, что деревянные конструкции без предварительной обработки – легкая добыча для огня.

Переработка древесины

В целом можно выделить три вида обработки древесины:

  • Самый распространенный – механический способ. Дерево пилят, строгают, раскалывают.
  • При химико-механической обработке материал подвергают промежуточной подготовке. Щепу, стружку смешивают со связующим веществом и нагревают. Происходит химическая реакция полимеризации, и на выходе получают такие материалы, как фанера, древесностружечные плиты, фибролит.
  • При химической обработке на древесину воздействуют кислотами, щелочами, солями, подвергают нагреву. Из продуктов такой обработки можно назвать древесный уголь, канифоль, камедь, дубильные вещества, целлюлозу.

Деревья старше человека на сотни миллионов лет. Все когда-либо существовавшие цивилизации основаны на применении древесины. Книги, мебель, музыкальные инструменты – все это возможно благодаря этому уникальному природному материалу.

fb.ru

Строение и состав древесины

Строение дерева

Растущее дерево состоит из кроны, ствола и корней. При жизни дерева каждая из этих частей выполняет свои определенные функции и имеет различное промышленное применение.

Крона состоит из ветвей и листьев (или хвои). Из углекислоты, поглощаемой из воздуха, и воды, получаемой из почвы, в листьях образуются сложные органические вещества, необходимые для жизни дерева. Промышленное использование кроны невелико. Из листьев (хвои) получают витаминную муку — ценный продукт для животноводства и птицеводства, лекарственные препараты, из ветвей — технологическую щепу для производства тарного картона и древесноволокнистых плит.

Ствол (от 50 до 90% объема всего дерева растущего дерева) Образуется он благодаря камбию. Форма ствола — нейлоид. Проводит воду с растворенными минеральными веществами вверх, а с органическими веществами — вниз к корням; хранит запасные питательные вещества; служит для размещения и поддержания кроны. Он дает основную массу древесины и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть — комлем. Процесс роста можно представить как нарастание конусообразных слоев древесины. Каждый последний конус имеет большую высоту и диаметр основания. Обычно изучают три основных разреза ствола: поперечный (торцовый), радиальный, проходящий через ось ствола, и тангенциальный, проходящий по хорде вдоль ствола.

При рассмотрении разрезов ствола дерева невооруженным глазом или через лупу можно различить следующие основные его части: кору, камбий, древесину и сердцевину.

Сердцевина — узкая центральная часть ствола, представляющая рыхлую ткань. Сердцевина совместно с древесной тканью первого года развития дерева образует сердцевинную трубку. На торцовом разрезе имеет вид темного (или другого цвета) пятнышка диаметром 2-5 мм. На радиальном разрезе сердцевина видна в виде прямой или извилистой темной узкой полоски. Она может быть круглой овальной, треугольной (ольха), четырёхугольной (Ясень), пятиугольной (тополь) и зубчатой (дуб).

Кора покрывает дерево сплошным кольцом и состоит из внешнего коркового слоя и внутреннего слоя - луба, который проводит воду с органическими веществами, выработанными в листьях, вниз по стволу. Кора предохраняет дерево от механических повреждений, резких перемен температуры, насекомых и других вредных влияний окружающей среды. Вид и цвет коры зависят от возраста и породы дерева. У молодых деревьев кора гладкая, а с возрастом в коре появляются трещины. Кора может быть гладкой (пихта), чешуйчатой (сосна), волокнистой (можжевельник), бородавчатой (бересклет). Цвет коры имеет множество оттенков, например белая у березы, темно-серая у дуба, темно-бурая у ели. В зависимости от породы, возраста дерева и условий произрастания у наших лесных пород кора составляет от 6 до 25% объема ствола. Кора многих древесных пород имеет большое практическое применение. Она используется для дубления кож, изготовления поплавков, пробок, теплоизоляционных и строительных плит. Из луба коры делают мочало, рогожи, веревки и др. Из коры добывают химические вещества, применяемые в медицине. Кора березы служит сырьем для получения дегтя. Между корой и древесиной располагается очень тонкий, сочный, не видимый невооруженным глазом слой — камбий, состоящий из живых клеток.

Камбий. Ежегодно в вегетативный период камбий откладывает в сторону коры клетки луба и внутрь ствола, в значительно большом объеме, — клетки древесины. Деление клеток камбиального слоя начинается весной и заканчивается осенью.

Поперечный разрез ствола:

1 — серцевина;

2 — серцевинные лучи;

3 — ядро;

4 — пробковый слой;

5 — лубяной слой;

6 — заболонь;

7 — камбий;

8 — годичные слои.

Корни (мелкие и грубые) Функции: удерживают дерево в вертикальном положении, проводят воду с растворенными в ней минеральными веществами вверх по стволу; хранят запасы питательных веществ. Корни используются как второсортное топливо. Пни и крупные корни сосны через некоторое время после валки деревьев служат сырьем для получения канифоли и скипидара. Может быть использовано для изготовления технологической трески.

Древесина. (Заболонь, ядро)

В раннем возрасте древесина состоит из заболони, по мере роста анатомические компоненты закупориваются, отмирают живые ткани в центральной зоне, откладываются экстрактивные вещества и образуется ядро. Внутренние элементы консервируются, и таким образом ядро имеет большую стойкость к загниванию. При этом у отдельных пород вся масса древесины окрашена в один цвет (ольха, береза. граб), у других центральная часть имеет более темную окраску (дуб, лиственница. сосна). Темноокрашенная часть ствола называется ядром, а светлая периферическая — заболонъю. Породы, имеющие ядро, называют ядровыми. В других породах, где отмирание не сопровождается потемнением, такие породы называются безядровыми. В том случае, когда центральная часть ствола отличается меньшим содержанием воды, т.е. является более сухой, ее называют спелой древесиной, а породы - спелодревесными.(Ель, пихта, бук, осина, граб). Остальные породы, у которых нет различия между центральной и периферической частью ствола ни по цвету, ни по содержанию воды, называют заболонными (берёза, клён, ольха).

В безядровых породах бывает тёмный окрас в средней части и это называется ложное ядро. Ширина заболони колеблется в зависимости от породы, условий произрастания. У одних пород ядро образуется на третий год (тис, белая акация), у других — на 30-35-й год (сосна). Поэтому заболонь у тиса узкая, у сосны широкая.

Переход от заболони к ядру может быть резким (лиственница, тис) или плавным (орех грецкий, кедр). В растущем дереве заболонь служит для проведения воды с минеральными веществами от корней к листьям, а ядро выполняет механическую функцию.

Микроструктура древесины. Строение древесины, видимое в микроскоп, называется микроструктурой. Исследование древесины под микроскопом показывает, что она состоит из мельчайших частичек — клеток, преимущественно (до 98%) мертвых. Растительная клетка имеет тончайшую прозрачную оболочку, внутри которой находится протопласт, состоящий из цитоплазмы и ядра.

Клеточная оболочка у молодых растительных клеток представляет собой прозрачную, эластичную и весьма тонкую (до 0,001 мм) пленку. Она состоит из органического вещества — клетчатки, или целлюлозы.

По мере развития, в зависимости от функций, которые призвана выполнять та или иная клетка, размеры, состав и строение ее оболочки существенно изменяются. Наиболее частым видом изменения клеточных оболочек является их одревеснение и опробкование.

Одревеснение клеточной оболочки происходит при жизни клеток в результате образования в них особого органического вещества — лигнина и сопровождается сильным разбуханием оболочки. Одревесневшие клетки или совсем прекращают рост, или увеличивают размеры в значительно меньшей степени, чем клетки с целлюлозными оболочками.

Целлюлоза в клеточной оболочке представлена в виде волоконец, которые называются микрофибриллами. Промежутки между микрофибриллами заполнены в основном лигнином, гемицеллюлозами и связанной влагой. В процессе роста клеточные оболочки утолщаются, при этом остаются неутолщенные места, называемые порами. Поры служат для проведения воды с растворенными питательными веществами из одной клетки в другую.

Макроскопические элементы дерева. Годичные слои, ранняя и поздняя древесина. На поперечном разрезе видны концентрические слои, расположенные вокруг сердцевины. Эти образования представляют собой ежегодный прирост древесины. Называются они годичными слоями. На радиальном разрезе годичные слои имеют вид продольных полос, на тангентальном — извилистых линий. Годичные слои нарастают ежегодно от центра к периферии и самым молодым слоем является наружный. По числу годичных слоев на торцовом разрезе на комле можно определить возраст дерева. Ширина годичных слоев зависит от породы, условий роста, положения в стволе. У одних пород (быстрорастущих) годичные слои широкие (тополь, ива), у других — узкие (самшит, тис). В нижней части ствола расположены наиболее узкие годичные слои, вверх по стволу ширина слоев увеличивается, так как рост дерева происходит и в толщину и в высоту, что приближает форму ствола к цилиндру. У одной и той же породы ширина годичных слоев может быть различной. При неблагоприятных условиях роста (засуха, морозы, недостаток питательных веществ, заболоченные почвы) образуются узкие годичные слои.

Иногда на двух противоположных сторонах ствола годичные слои имеют неодинаковую ширину. Например, у деревьев, растущих на опушке леса, на стороне, обращенной к свету, годичные слои имеют большую ширину. Вследствие этого сердцевина у таких деревьев смещена в сторону, и ствол имеет эксцентричное строение. Некоторым породам свойственна неправильная форма годичных слоев. Так, на поперечном разрезе у граба, тиса, можжевельника наблюдается волнистость годичных слоев. Каждый годичный слой состоит из двух частей — ранней и поздней древесины: ранняя древесина (внутренняя) обращена к сердцевине, светлая и мягкая; поздняя древесина (наружная) обращена к коре, темная и твердая. Различие между ранней и поздней древесиной ясно выражено у хвойных и некоторых лиственных пород. Ранняя древесина образуется в начале лета и служит для проведения воды вверх по стволу; поздняя древесина откладывается к концу лета и выполняет в основном механическую функцию. От количества поздней древесины зависят ее плотность и механические свойства.



biofile.ru

Древесина

Древесина, или ксилема, составляет основную часть (до 90 % и более) ствола, ветвей и корней древесных растений. Ксилема представляет собой ткань, которая придает древесным и кустарниковым растениям механическую прочность и принимает участие в их питании. Образуется древесина при делении живых клеток камбия, способствующих разрастанию ее в ширину.

Состав древесины

Древесина состоит из клеток, которые делятся на прозенхимные и паренхимные. Прозенхимные клетки, или трахеиды, составляют основную массу ксилемы и располагаются ближе к центру ствола. Трахеиды имеют веретеновидную форму с заостренными концами, длина их более, чем в сто раз превышает ширину.

Так как прозенхимные клетки выполняют разные функции, то и разделены на два вида:

а) проводящие;

б) опорные.

Рис. Древесина в разрезе.

Через проводящие клетки в крону из почвы поступает вода с растворенными в ней необходимыми минеральными веществами, а опорные обеспечивают механическую прочность древесины. Со временем у зрелых трахеид происходит отмирание живого содержимого, или протопласта. Стенки клеток деревенеют, а внутри образуются полости, соединенные между собой круглыми порами, через которые и происходит продвижение растворов. Существуют в ксилеме сходные с трахеидами клетки волокон, у которых стенки намного толще и не имеют пор, а просветы значительно уже. Эти клетки образуют механические ткани (опорные), которые расположены, в основном, в стволе и придают ему прочность, а также и устойчивость растущему дереву. Чем больше такой ткани в древесине, тем она плотнее, прочнее, тверже.

Паренхимных клеток в ксилеме незначительное количество и служат они для накопления запаса питательных веществ и их транспортировки. Это живые клетки даже в зрелом возрасте, небольшие по величине, невытянутые, имеющие вид многогранных призм, относительно тонкостенные и всегда с порами. Живые клетки образуют узкие тяжи (сердцевинные лучи), которые радиально пронизывают древесину. Расположены эти клетки ближе к камбию только в молодых слоях древесины. В крупных ветвях и в стволе эта молодая часть называется заболонью. Органические питательные вещества (крахмал, жиры и др.) накапливаются и хранятся в клетках паренхимы до весны. А с приходом весны они перемещаются к кроне дерева для образования листьев.

В древесине можно наблюдать годичные кольца, образующиеся за счет изменения размеров клеток и толщины их стенок, связанные с изменениями условий роста.

Разные породы древесины имеют большое хозяйственное значение, без нее не могут обойтись многие отрасли промышленности. После обработки она применяется в качестве строительного материала и топлива, для производства досок и заготовки других разновидностей пиломатериалов, а также сырья для производства древесноволокнистых плит, бумаги, искусственного волокна и других изделий.

 Похожие материалы:

beaplanet.ru

ДРЕВЕСИНА — Энциклопедия Биология — Биология

ДРЕВЕСИНА

(ксилема), проводящая ткань сосудистых растений, т. е. всех высших растений, за исключением мхов. Основная функция древесины осуществляется проводящими элементами – сосудами и трахеидами, представляющими собой отмершие полые клетки. Проводящие элементы образуют в растении разветвлённую систему, доставляющую воду и растворённые в ней соли от корней к листьям. Стенки проводящих элементов имеют поры или отверстия, через которые идёт транспорт веществ. Проводящие элементы окружены клетками паренхимы, выполняющими разнообразные функции (ближний транспорт и запасание веществ и др.), и древесинными волокнами, или волокнами либриформа, придающими древесине механическую прочность. Основная масса древесины живого растения состоит из отмерших клеток. Клетки камбия обеспечивают прирост молодой древесины, который происходит посезонно. Ежегодные слои прироста видны на поперечном срезе ствола дерева в виде годичных колец. Молодую древесину называют заболонной или заболонью. Внутрь от заболони расположена древесина, почти не принимающая участия в проведении воды. У одних пород (осина, бук, ель, пихта и др.) она внешне похожа на заболонь и называется спелой, у других (сосна, дуб, ясень, вяз и др.) она более тёмной окраски и называется ядровой или ядром. Древесина – ценный материал, имеющий множество разнообразных применений. Технологические и декоративные качества древесины определяются её анатомическим строением, различным у разных видов древесных растений.

Энциклопедия Биология. 2012

Словари → Биология → Энциклопедия Биология


Смотрите еще толкования, синонимы, значения слова и что такое ДРЕВЕСИНА в русском языке в словарях, энциклопедиях и справочниках:


slovar.cc

ДРЕВЕСИНА — это… Что такое ДРЕВЕСИНА?

ДРЕВЕСИНА вторичная ксилема. Характеризуется ежегодными приростами. В каждом приросте различают раннюю (весеннюю) и позднюю (летнюю) Д. У листв. пород Д. может быть рассеянно-сосудистой, если сосуды распределены более или менее равномерно по всему годичному приросту (липа, яблоня, тополь), и кольпесосудистой, если широко-просветные сосуды находятся в ранней Д., а немногочисленные, очень мелкие сосуды приурочены к поздней Д. (дуб, ясень). (см. КСИЛЕМА).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

древеси́на

(ксилема), проводящая ткань сосудистых растений, т.е. всех высших растений, за исключением мхов. Основная функция древесины осуществляется проводящими элементами – сосудами и трахеидами, представляющими собой отмершие полые клетки. Проводящие элементы образуют в растении разветвлённую систему, доставляющую воду и растворённые в ней соли от корней к листьям. Стенки проводящих элементов имеют поры или отверстия, через которые идёт транспорт веществ. Проводящие элементы окружены клетками паренхимы, выполняющими разнообразные функции (ближний транспорт и запасание веществ и др.), и древесинными волокнами, или волокнами либриформа, придающими древесине механическую прочность.
Основная масса древесины живого растения состоит из отмерших клеток. Клетки камбия обеспечивают прирост молодой древесины, который происходит посезонно. Ежегодные слои прироста видны на поперечном срезе ствола дерева в виде годичных колец. Молодую древесину называют заболонной или заболонью. Внутрь от заболони расположена древесина, почти не принимающая участия в проведении воды. У одних пород (осина, бук, ель, пихта и др.) она внешне похожа на заболонь и называется спелой, у других (сосна, дуб, ясень, вяз и др.) она более тёмной окраски и называется ядровой или ядром. Древесина – ценный материал, имеющий множество разнообразных применений. Технологические и декоративные качества древесины определяются её анатомическим строением, различным у разных видов древесных растений.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

dic.academic.ru

Строение дерева. От клеток до корней

Строение растений мы изучали еще в школе. В этой статьей мы решили напомнить, что из себя представляет дерево, и рассказать о каждой из его частей: клетках и тканях, древесине и коре, ветвях и ветках, листьях и корнях.

Материал был взят из первого русскоязычного издания справочника Европейского специалиста по уходу за деревьями (European Tree Worker), который пригодится как владельцам питомников и садовых участков, так и сертифицированным специалистам.

Анатомия дерева

Деревья – это древесные растения большого размера. Они обладают уникальными свойствами, позволяющими им являться доминирующим видом царства растений во многих странах мира. В основе ухода за деревьями (древоводства) лежит глубокое понимание процессов роста и развития деревьев. Только с учетом данного принципа можно профессионально осуществлять уход за деревьями.

  • Клетки и ткани

Для всех живых организмов характерна общая организационная структура, состоящая из клеток, тканей и органов. Клетки – это основные «строительные блоки» данной структуры. У растений новые клетки образуются путем деления существующих. Этот процесс проходит в специальных образовательных тканях – меристемах.

Клетки:
1 — Молодая клетка с плазмой и ядром 2 — Рост клетки 3 — Зрелая клетка с большой вакуолью

После деления клетки проходят этап дифференцировки, во время которого изменяется их структура и они приобретают способность к различным специфическим функциями. Клетки с аналогичной структурой и функциями объединяются в ткани.

Затем из тканей формируются органы, которых у растений шесть: листья, стволы, корни, почки, цветы и плоды. И, наконец, органы образуют полностью функциональные организмы – деревья.

Существует два основных типа меристематической ткани:

  • первичная меристема, из которой образуются клетки, отвечающие за рост побегов и корней в длину;
  • вторичная меристема, из которой образуются клетки, отвечающие за прирост в диаметре.

Поперечное сечение ствола дерева: 1 — Сердцевина 2 — Ядро 3 — Сердцевинный луч 4 — Заболонь 5 — Камбий 6 — Флоэма 7 — Феллоген 8 — Кора 

У деревьев есть две вторичные меристемы: камбий и феллоген.

  • Камбий выполняет крайне важную роль: в процессе деления в нем образуются новые клетки, формирующие систему сосудов дерева. Из него генерируются два вида ткани: ксилема во внутренней части и флоэма снаружи.
  • Феллоген – это камбий, из которого образуется кора. Ксилема – это часть древесины, состоящая из отмерших и живых клеток. К мертвым клеткам относятся трахеи и трахеиды у хвойных пород и сосуды у лиственных деревьев. Ксилема выполняет три функции: служит механической опорой дерева; обеспечивает передвижение воды и минеральных веществ; обеспечивает хранение питательных веществ.

Когда дерево срубают и рассматривают в поперечном сечении, в ксилеме видны годичные кольца. В зонах умеренного климата данные кольца соответствуют годовому образованию ксилемы в камбии. Они имеют форму круга, так как относительный размер и плотность сосудистой ткани изменяются в течение вегетационного периода. По мере приближения к концу вегетационного периода клетки становятся меньше в диаметре.

Таким образом, благодаря резкой разнице между клетками, образованными в начале сезона (ранняя древесина), и клеткам, сформированными позднее (поздняя древесина), индивидуальный годовой прирост становится различимым.

Сердцевинный луч в древесине
1. Кольцесосудистая древесина2. Рассеяннососудистая древесина

В отношении древесины хвойные и лиственные породы значительно отличаются друг от друга. Кроме того, среди лиственных деревьев выделяются кольцесосудистые (например, Дуб (Quercus), Ясень (Fraxinus)) и рассеяннососудистые виды (например, Липа (Tilia), Бук (Fagus)).

В центре ствола формируется ядровая древесина. Она окружена живой заболонью. Не все проводящие элементы ксилемы служат для передвижения воды. За это отвечает только живая и активная ткань заболони, тогда как другая часть ксилемы, расположенная ближе к центру, является нефункциональной. Такие мертвые клетки образуют ядро – непроводящую ткань, цвет которой темнее, чем у заболони.

Флоэма отвечает за перемещение сахара от листьев к другим частям растения. Кроме флоэмы и ксилемы, сосудистая система дерева включает в себя лучевые клетки. Лучи расходятся в радиальном направлении от центра поперечного сечения через флоэму и ксилему и служат для транспортировки сахаров и их компонентов вдоль ствола. Они помогают ограничивать распространение гнили по древесной ткани и хранить запасы питательных веществ в виде крахмала.

Поперечный разрез ствола

Внешняя часть ветвей и ствола деревьев называется корой. Это защитная ткань, поддерживающая температуру внутренней части ствола, предохраняющая растения от повреждений и уменьшающая потерю воды. Кора состоит из нефункциональной флоэмы, пробковой ткани и мертвых клеток. Для минимизации потери воды ее клетки пропитаны воском и маслами.

Газообмен между живыми тканями дерева и атмосферой происходит с помощью чечевичек, маленьких пор в коре.

Это интересно

Кора различных деревьев имеет разное строение и свойства. Например, кора бука очень гладкая с небольшим количеством пробковой ткани, а кора дуба, наоборот, образует толстые слои феллемы.

Смотрите также:

Именно она защищает деревья от воздействия окружающей среды. Что представляет собой перидерма? Как формируется? Как выполняет свои защитные функции? Чем отличается перидерма разных пород?

Ветки – это небольшие ветви, которые служат опорой для листьев, цветов и плодов. Ветви поддерживают ветки, а ствол поддерживает всю крону. Ветви и ветки развиваются из двух типов почек:

  • терминальных или верхушечных почек на конце побега;
  • боковых или пазушных почек, которые образуются вдоль ветки.

Верхушечная почка является наиболее сильной на ветви или ветке и располагается на конце побега. Она контролирует развитие вторичных почек с помощью гормонов. Обычно вторичные почки не развиваются и остаются в спящем состоянии. Как правило, верхушечная почка является наиболее активной на каждой ветви или ветке и контролирует развитие пазушных почек на том же побеге, которые часто бывают спящими: их рост сдерживается апикальным доминированием терминальной почки.

Формирование ветвей

Побеги с доминирующей верхушечной почкой бывают моноподиальными или симподиальными.

Побеги без апикального доминирования являются ложнодихотомическими.

Гибель верхушечной почки в результате случайного повреждения или обрезки может привести к активизации спящих почек рядом со срезом и, как следствие, к развитию нового побега.

Некоторые побеги развивают придаточные почки, которые формируются вдоль стволов и корней. Они возникают, как правило, в ответ на потерю обычных почек в результате действия регуляторов роста.

Ежегодный прирост: 1 — 1 год; 2 — 2 года; 3 — 3 года

Листья и почки образуются из немного утолщенной части ветки, которая называется узел. Междоузлие – это зона между узлами. На ветке видны листовые рубцы и рубцы верхушечной почки. Они помогают измерять ежегодное удлинение ветки и общий прирост. По своей структуре и функции каждая ветвь дерева сопоставима со всей кроной. Но в то же время ветви – это не просто отростки ствола.

Наоборот, ветви характеризуются уникальной формой присоединения к нему, которая имеет крайне важное значение для практической деятельности в сфере ухода за деревьями, например, для обрезки.

Ветви прочно крепятся к древесине и коре, расположенной под ветвями, но над ними крепление более хрупкое. Годовой прирост слоев ткани в зоне соединения ветви и ствола хорошо заметен и формируется большую часть времени. Плечо или выпуклость вокруг основания ветви называется воротником. В точке разветвления ткани ветви и ствола расширяются на встречу друг другу. В результате, кора приподнимается, образовывая гребень ветви. Если кора в районе разветвления окружена древесиной, она называется включенной корой. Это еще больше ослабляет развилку ствола, поскольку нормальное присоединение ветви к стволу не формируется.

Смотрите также:

Рис.1 Правильная обрезка

В этой статье мы поговорим об особенностях обрезки у основания ветви и обрезки, параллельной стволу. Вы узнаете, почему в наше время специалисты отдают предпочтение именно первому способу обрезки деревьев.

Листья отвечают за производство питательных веществ для дерева. Они содержат хлоропласт, наполненный зеленым пигментом – хлорофиллом, с помощью которого происходит фотосинтез. Еще одна функция листьев – транспирация, представляющая собой выведение воды через листву посредством испарения.

Строение листа: 1 — Устьице 2 — Кутикула 3 — Эпидермис 4 — Клетки палисадной паренхимы
5 — Клетки губчатой паренхимы

Площадь листьев достаточно большая, что позволяет им поглощать солнечный свет и углекислый газ, необходимые для фотосинтеза.

Внешняя поверхность листа покрыта воскообразным слоем, который называется кутикула. Она служит для минимизации дессикации (высушивания) листа.

Испарение воды и газообмен контролируют устьица – маленькие отверстия на поверхности листа.

Лист обладает развитой системой проводящих тканей, включающей в себя вены, или капиллярные каналы. Вены состоят из тканей как флоэмы, так и ксилемы, и отвечают за транспортировку воды и жизненно необходимых веществ, а также за перенос питательных веществ, которые вырабатываются в клетках листьев, к остальным органам дерева.

Это интересно

Деревья, сбрасывающие листву каждый год, называются лиственными, а те, которые сохраняют ее в течение более чем одного года, называются хвойными или вечнозелеными. Осыпание листьев обусловлено клеточными изменениями и регуляторами роста, формирующими точку отделения органа у основания черешка, или ножки листа.

Точка отделения листьев выполняет две функции:

  • обеспечивает осыпание листвы осенью;
  • предотвращает высыхание, распространение болезней и повреждение части растения, от которой отрывается лист.

Осенью изменение цвета листвы листопадных деревьев связано с разложением хлорофилла, позволяющим проявиться другим пигментам, содержащимся в листьях. Сокращение продолжительности светового дня в сочетании с холодными ночами приводит к усиленному накоплению сахаров и замедляет выработку хлорофилла. Этот процесс и позволяет другим пигментам, в том числе антоцианинам (красный и пурпурный) и каротиноидам (желтый, оранжевый и красный), проявиться.

Корни деревьев выполняют четыре основные функции:

  • фиксация дерева;
  • аккумуляция энергии и питательных веществ;
  • поглощение веществ;
  • транспортировка веществ.

Окончание корня:
1. Одревесневший корень
2. Корневой волосок
3. Корневой кончик
4. Корневой чехлик

Всасывающие корни представляют собой небольшие, волокнистые участки ткани, растущей на окончаниях основных одревесневших корней. У них есть эпидермальные клетки, модифицированные в корневые волоски, которые помогают поглощать воду и минеральные вещества. Корневые волоски живут совсем не долго (3–4 недели весной) и значительно активизируют способность к поглощению веществ с наступлением вегетационного периода весной.

Что касается корневых кончиков, они содержат меристему, где клетки делятся и растут в длину.

Корни растут там, где они могут найти воздух и кислород. Большая часть всасывающих корней находится на расстоянии 30 см от поверхности почвы. Также рядом с поверхностью располагаются горизонтальные боковые корни.

Якорные корни растут вертикально по направлению вниз от боковых корней, обеспечивая надежную фиксацию дерева и увеличивая глубину освоения почвы корневой системой.

Корневая система:
1 — Стержневая корневая система 2 — Мочковатая корневая система 3 — Поверхностная корневая система

Корни многих растений находятся в симбиозе с некоторыми грибами. Результат таких взаимоотношений называется микориза (грибокорень). Симбиоз двух организмов (дерева и грибов в нашем случае) основывается на взаимной пользе: грибы получают питательные вещества из корней и, в свою очередь, помогают корням всасывать воду и жизненно необходимые элементы.

Смотрите также:

Грибы внутри тканей корня

Сожительство микоризы и растения, как правило, бывает чрезвычайно взаимовыгодно, что обусловлено объединением имеющихся у них различных способностей.

_____________________________________________________________________

Появление первого русскоязычного издания справочника Европейского специалиста по уходу за деревьями (European Tree Worker) в России стало возможным благодаря сотрудничеству НПСА «ЗДОРОВЫЙ ЛЕС» (Россия) с ведущим немецким учебным заведением в области подготовки специалистов по уходу за деревьями – Нюрнбергской школы ухода за деревьями (Германия). 

givoyles.ru

Структура и свойства древесины — Древесина

Структура и свойства древесины

Древесина характеризуется редким сочетанием положительных свойств. Это весьма легкий и в то же время прочный материал, хорошо сопротивляющийся статическим и динамическим нагрузкам. Благодаря пористой структуре древесина малотеплопроводна. Она легко поддается механической обработке, хорошо склеивается. К своеобразным качествам древесины относится ее способность удерживать металлические крепления — гвозди, шурупы, скобы.

Эти свойства древесины позволяют создавать сборно-разборные конструкции, удобные для транспортирования и монтажа.

Структура древесдвы. Отличается структура значительной неоднородностью. Это видно невооруженным глазом на главных разрезах ствола (рис. 40) — поперечном, радиальном и тангенциальном. Поперечным (торцовым) называют разрез, проходящий перпендикулярно оси ствола. Радиальный разрез проходит вдоль оси ствола по радиусу или диаметру поперечного сечения. Тангенциальный разрез образован плоскостью, параллельной оси ствола и рассекающей поперечное сечение по хорде.

Ствол дерева состоит из многочисленных клеток, вытянутых в основном по его длине. Клетки определенным образом группируются и создают на торце ствола систему концентрических колец. Вместе с другими элементами они формируют макроструктуру древесины.

Макрострукту р а древесины различима невооруженным глазом или при небольшом увеличении, например с помощью лупы. Выделяют следующие основные элементы макроструктуры: сердцевину, ядро, заболонь, годичные слои.

Сердцевина — узкая центральная часть ствола (рис. 41). Она представляет собой рыхлую, слабую ткань первичного образования, легко поддается загниванию. В досках и брусках толщиной до 50 мм сердцевина, как правило, не допускается.

Ядро — это внутренняя зона древесного ствола, большей частью темноокрашенная. Ядро образуется в результате отмирания живых клеток древесины. Темная окраска ядра объясняется отложением в клетках древесины смолы, дубильных и красящих веществ, углекислого кальция. Эти вещества увеличивают стойкость древесины ядра против загнивания.

Рис. 40. Главные разрезы ствола дерева:
1 — поперечный (торцовый), 2 — радиальные, 3 — тангенциальный

Заболонь — светлая наружная зона ствола, окружающая ядро. В основном она состоит из живых клеток. Как правило, древесина заболони светлоокрашенная. По механическим свойствам она не уступает древесине ядра, но хуже сопротивляется загниванию.

Древесные породы, у которых отчетливо различимы ядро и заболонь, называют ядровыми (дуб, сосна, лиственница, кедр). В ряде случаев центральная часть древесины имеет такой же цвет, что и наружная, но отличается меньшим содержанием влаги. Такую древесину называют спелой, а породы — спело-древесными (ель, пихта, бук). Остальные породы, у которых нет различия между центральной и наружной частью ствола ни по цвету, ни по влажности, называют заболон-ными (береза, осина, ольха).

Годичные слои представляют собой ежегодный прирост древесины. Состоят они из клеток, образовавшихся за один вегетационный период. На поперечном разрезе годичные слои расположены в виде концентрических колец, на радиальном разрезе они образуют параллельные полосы, идущие в продольном направлении, на тангенциальном — извилистые сходящиеся линии (рис. 42).

Каждый годичный слой состоит из ранней и поздней древесины. Ранняя древесина образуется весной, поздняя — к концу лета. Ранняя древесина светлее поздней. Клетки ранней древесины более крупные, а толщина стенок в них меньшая. Поэтому ранняя древесина более пористая и слабая, а поздняя древесина— более плотная и прочная. Чем больше в годичном слое поздней древесины, тем выше механические свойства породы.

Макроструктура древесины характеризуется также сердцевинными лучами, сосудами и смоляными ходами.

Рис. 41. Поперечный разрез ствола:
1 — сердцевина, 2 — сердцевинный луч, 3 — ядро, 4— заболонь, 5 — кора, 6 — годичные слои

Сердцевинные лучи (см. рис. 41) в растущем дереве служат для проведения воды в радиальном направлении и хранения запасных питательных веществ. Окраска сердцевинных лучей может быть темнее или светлее окружающей древесины.

Сосуды характерны лишь для древесины лиственных пород. Это трубки, каналы различного сечения, предназначенные для проведения воды от корней к кроне дерева.

Рис. 42. Годичные слои на разрезах древесины сосны:
а — поперечном, б — радиальном, в — тангенциальном; 1 —. ранняя древесина, 2 — поздняя древесина

Смоляные ходы наблюдаются только в древесине хвойных пород и представляют собой заполненные смолой тонкие каналы, идущие в горизонтальном и вертикальном направлениях. Смола, содержащаяся в них, защищает древесину от заболевания при повреждениях ствола.

Микроструктура древесины представлена большим числом мельчайших клеток. Оболочки клеток состоят в основном из органического вещества — целлюлозы. Это природный полимер, нерастворимый в воде и органических растворителях. Целлюлоза образует систему первичных волокон, называемых микрофибриллами. Первичные волокна расположены в оболочках клеток в несколько слоев.

Клетки одинакового строения, выполняющие одинаковые функции, образуют ткани древесины. В зависимости от назначения различают механические, проводящие и запасающие ткани.

Механические (опорные) ткани придают древесине необходимую прочность. В хвойных породах опорная ткань состоит из тонких, вытянутых в длину волокон с утолщенными одревесневшими оболочками (трахеид). В лиственных породах аналогичное назначение выполняют волокна либриформа. Механические ткани занимают большую часть объема древесинного вещества.

Проводящие ткани — это вытянутые тонкостенные клетки, по которым влага с растворенными в ней питательными веществами проходит от корней к кроне.

Запасающие ткани, сосредоточенные главным образом в сердцевинных лучах, служат для накопления и хранения питательных веществ и состоят из коротких запасающих клеток.

Таким образом, отличительная особенность структуры древесины заключается в том, что она состоит из множества клеток волокнистого строения. Волокна ориентированы в основном вдоль оси ствола. Стенки клеток древесинного вещества сравнительно тонкие. Ориентированное расположение волокон служит причиной неодинаковых свойств древесины в радиальном, тангенциальном и продольном направлениях. Полости клеток, на которые приходится значительная часть объема, формируют вместе с межклеточными промежутками большую пористость древесины.

Свойства древесины. Их характеризует комплекс показателей, в число которых входят внешний вид, плотность, пористость, влажность, усушка, прочность, твердость, способность удерживать металлические крепления.

Внешний вид зависит в основном от цвета и текстуры древесины.

Цвет часто служит одним из важнейших признаков при распознавании породы дерева. Целлюлоза, из которой в основном состоит древесина, почти белого цвета. Все многообразие цветовых оттенков связано с находящимися в древесине красящими, дубильными и смолистыми веществами. Зависит цвет от климатических условий, в которых растет дерево. Породы умеренного пояса окрашены бледно, тропического — ярко.

Текстура — это рисунок, образующийся на поверхности древесины при перерезании ее волокон, годичных слоев и сердцевинных лучей. Древесина хвойных пород обладает, как правило, простой и однообразной текстурой. Лиственные породы с ярко выраженными сердцевинными лучами — дуб, бук отличаются очень красивой текстурой на радиальном и тангенциальном разрезах.

Плотность значительно влияет на свойства древесины, особенно на прочность. Истинная плотность древесины изменяется в очень узких пределах, так как древесинное вещество состоит в основном из целлюлозы. Поэтому независимо от породы дерева истинную плотность принимают равной 1,54 г/см3. Средняя плотность зависит как от породы, так и от условий произрастания дерева. Она колеблется в широких пределах. Так, средняя плотность, определенная при стандартной влажности, равна, кг/м3: для древесины сосны — 500; ели — 450; дуба — 690; бука — 670; березы— 630. Средняя плотность изменяется в зависимости от влажности древесины.

Пористость древесины связана с ее плотностью. С уменьшением средней плотности от 800 до 300 кг/м3 пористость возрастает с 55 до 80%. Следовательно, большую часть объема древесины занимают поры.

Влажность древесины может изменяться от нуля (абсолютно сухая древесина) до 100% и более (мокрая древесина). Изменение влажности существенно сказывается на свойствах древесины. Если образец абсолютно сухой древесины выдерживать длительное время во влажном воздухе, то его масса вначале будет возрастать, а затем стабилизируется. Связано это с тем, что водяные пары конденсируются в стенках клеток древесины. Влагу, накапливающуюся в стенках клеток, называют связанной или гигроскопической. Состояние древесины, при котором клеточные стенки максимально насыщены водой, а в полостях клеток находится только воздух, характеризуется пределом гигроскопичности. Для большинства пород влажность, соответствующая пределу гигроскопичности при комнатной температуре, составляет 30% по массе.

Молекулы связанной воды, конденсируясь в стенках клеток, попадают в промежутки между микрофибриллами. Это вызывает утолщение клеточных стенок и, как следствие, разбухание древесины. Одновременно ослабляются силы взаимодействия между микрофибриллами, что приводит к уменьшению прочности материала.

При насыщении древесины капельно-жидкой водой заполняются не только стенки, но и полости клеток. Влагу, находящуюся в полостях клеток, называют свободной или капиллярной. Она не влияет на разбухание и прочность древесины, но может изменить другие физические свойства. Например, по мере увеличения влажности древесина становится тяжелее, возрастают ее тепло- и электропроводность.

Учитывая большое влияние влажности, условились все свойства определять при стандартной влажности, равной 12%. Этот показатель соответствует влажности сухой древесины, которая;хранится в комнатных условиях.

Усушка — это уменьшение линейных размеров и объема деревянных изделий при удалении из древесины связанной влаги. Такие деформации наблюдаются при изменении влажности в диапазоне от нуля до 30%, т.е. до предела гигроскопичности. Усушка по разным направлениям неодинакова. Вдоль волокон древесины усушка наименьшая — 0,1…0,3%, в тангенциальном направлении 6… 10%, в радиальном—3…5%.

Неравномерные деформации усушки в разных направлениях служат причиной растрескивания и коробления пиломатериалов и деревянных изделий.

Разбухание древесины происходит при увлажнении. Деформации разбухания аналогичны деформациям усушки, но противоположны им по знаку.

Прочность зависит от направления действия сил по отношению к волокнам, плотности, влажности, вида и размеров пороков. Лучше всего древесина сопротивляется растяжению и изгибу; ее прочность при сжатии несколько ниже (табл. 21).

По прочности на сжатие древесина соответствует наиболее высоким классам бетона, а по прочности на изгиб и растяжение намного превосходит его. На практике использовать высокую прочность древесины на растяжение очень трудно из-за сложности закрепления рабочих концов изделий, в которых возникают скалывающие напряжения и происходит смятие древесины. Сопротивляемость древесины скалыванию и смятию весьма невелика, и разрушение при растяжении происходит не в виде разрыва, а в виде скалывания или смятия в местах закрепления изделия. Поэтому древесину в основном используют в изгибаемых и сжимаемых конструкциях (балках, стойках), реже— в растягиваемых элементах (затяжках стропильных ферм).

Прочность древесины, особенно при сжатии и изгибе, зависит от ее влажности. Существенное влияние оказывает только связанная влага, содержащаяся в клеточных оболочках. По мере возрастания влажности прочность древесины уменьшается, особенно при влажности 20…25%. За пределом гигроскопичности (более 30%) прочность древесины остается неизменной.

Механические свойства зависят не только от влажности, но и от пороков древесины. Поэтому расчетные сопротивления принимают в 5…10 раз меньше характеристик прочности древесины, указанных в табл. 21.

Твердость имеет большое значение при обработке древесины режущим инструментом. Наибольшей твердостью обладает торцовая поверхность.

По степени твердости все древесные породы разделяют на три группы:

мягкие (торцовая твердость менее 38,5 МПа при 12%-ной влажности)—сосна, ель, кедр, пихта, липа, тополь, ольха;

твердые (торцовая твердость 38,5…82,5 МПа) — лиственница, береза, бук, вяз, дуб, ясень, клен;

очень твердые (более 82,5 МПа) — акация белая, береза железная, граб, тисс, кизил, самшит.

Способность удерживать металлические крепления — своеобразное свойство древесины, обусловленное упругостью ее волокон. Гвоздь, вбиваемый в древесину, раздвигает волокна, которые оказывают на его боковую поверхность значительное давление. Возникающие при этом силы трения прочно удерживают гвоздь. Способность удерживать металлические крепления оценивают по сопротивлению выдергиванию гвоздей или шурупов. Сопротивление выдергиванию соответствует усилию, необходимому для выдергивания из древесины гвоздя или шурупа стандартных размеров.

Наибольшее сопротивление выдергиванию оказывают древесина в радиальном и тангенциальном направлениях. Усилие выдергивания гвоздя, вбитого в торец, т. е. вдоль волокон древесины, почти на 50% меньше. Вот почему для получения прочного соединения деревянных деталей не следует вбивать гвозди или завинчивать шурупы вдоль волокон древесины. Сопротивление древесины выдергиванию шурупов примерно в 4…5 раз больше, чем гвоздей.

Сопротивление выдергиванию также зависит от породы, плотности и влажности древесины. Например, для забивания и выдергивания гвоздей из древесины граба (плотность 800 кг/м3) необходимо усилие в четыре раза большее, чем для древесины сосны, плотность которой 500 кг/м3. Во влажную древесину гвозди вбивать легче, чем в сухую. При последующем высыхании способность древесины удерживать гвозди снижается.

Читать далее:
Виды материалов и опалубка из древесины
Защита древесины от гниения и возгорания
Лесоматериалы и изделия из древесины
Основные древесные породы, применяемые в строительстве
Важнейшие свойства древесины
Строение и состав древесины
Пиломатериалы для ремонта
Древесные материалы и способы их обработки
Типы пиломатериалов
Виды пиломатериалов


stroy-server.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *