Как получить из оксида металла металл – , , (II). . / /

Оценка возможности получения металлов из их оксидов.


Оценка возможности получения металлов из их оксидов по величине dG

Металлы можно получать, восстанавливая их оксиды (см. разд. 10.5). Для этой цели используются такие восстановители, как углерод и другие металлы. Но как можно определить, будет ли углерод или другой металл самопроизвольно восстанавливать оксид конкретного металла? Чтобы ответить на этот вопрос, рассмотрим два следующих случая.

Случай 1

Металл + Оксид углерода = Оксид металла + Углерод Например,

В этом случае металл играет роль восстановителя. Он восстанавливает углерод из диоксида углерода.

Случай 2

Оксид металла — Углерод = Металл + Оксид углерода Например,

В этом случае роль восстановителя играет углерод. Он восстанавливает металл из его оксида.

Нетрудно видеть, что случай 2 является обратным по отношению к случаю 1. К некоторым металлам применим случай 1, а к другим металлам-случай 2. Каким же образом можно заранее предсказать, какой случай применим к какому-либо конкретно рассматриваемому металлу? Другими словами, как предсказать-какая реакция окажется самопроизвольной: соответствующая случаю 1 или случаю 2?

Ответ заключается в сопоставлении устойчивости оксидов. Выше было указано, что мерой устойчивости соединения является свободная энергия его образования. Мы видели также, что для самопроизвольного протекания реакции изменение свободной энергии ΔG, которым она сопровождается, должно быть отрицательным, т. е. ΔG < 0. Если применить это условие к изменению свободной энергии, выраженному с помощью уравнения (25), то получится следующее условие самопроизвольного протекания реакции:

В каждом из двух рассмотренных выше случаев один из продуктов и один из реагентов являются свободными элементами. Поскольку стандартные молярные свободные энергии образования свободных элементов равны нулю, условие самопроизвольного протекания рассмотренных реакций приобретает следующий вид:

Следовательно, в обоих случаях более устойчивый оксид, т. е. оксид с более отрицательным значением свободной энергии образования ΔG т должен быть продуктом, а не реагентом. Стандартные молярные свободные энергии образования оксидов, рассмотренных в примерах, приведены в табл. 5.15. Эти значения показывают, что в первом из рассмотренных выше примеров оксид магния обладает большей устойчивостью, чем диоксид углерода. Поэтому оксид магния оказывается продуктом, а не реагентом.

 

Таблица 5.15. Стандартные молярные свободные энергии образования некоторых оксидов

Оксид

CO2 (г.)

MgO (тв.)

NiO (тв.)

СО (г.)

ΔG, к Дж/моль

— 394

— 569

— 213

— 137

Самопроизвольно протекает прямая, а не обратная (по отношению к записанному уравнению) реакция. Другими словами, к данной реакции применим случай 1.

Второй пример оказывается более сложным. Согласно значениям ?G, приведенным в табл. 5.15, продуктом рассматриваемой реакции должен быть NiO(TB.), а не СО (г.). Почему же эта реакция была выбрана в качестве примера к случаю 2? Дело, оказывается, в температуре реакции. Эта реакция не протекает при 298 К. Для ее осуществления необходима более высокая температура.

Оглавление:

 

 


www.himikatus.ru

Получение металлов из оксидов действием водорода

ТОП 10:

О способности оксидов восстанавливаться водородом, можно судить в первом приближении по термодинамическим данным (табл. 1). Термодинамические расчеты и эксперимент подтверждают, что водород наиболее легко восстанавливает металлы из тех оксидов, которые образуются с выделением небольшого количества тепла (оксиды меди, железа, кобальта). Металлы, оксиды которых имеют большие теплоты образования по абсолютному значению (оксиды алюминия, магния, титана, циркония), с помощью водорода практически не получаются.

Восстановление металлов из оксидов водородом — гетерогенный равновесный процесс, выгодно отличающийся от металлотермических реакций тем, что пары воды можно легко удалить из реакционного пространства, сместив тем самым равновесие в сторону продукта.

Изучение кинетики реакции восстановления металлов из их оксидов показало, что процесс этот заключается в адсорбции водорода на активных центрах оксида с последующей десорбцией паров воды. Роль этих активных центров могут выполнять следы различных примесей, всегда имеющиеся в исходных оксидах, например, оксиды легко восстанавливаемых металлов или примеси некоторых металлов. Наличие этих примесей может менять характер восстановления: например, ускорять его, или даже изменять константу равновесия.

При решении вопроса о том, возможно ли восстановление металла из данного оксида, следует учитывать также скорость установления равновесия, особенно при невысоких температурах.Чем медленнее устанавливается равновесие, тем больше времени потребуется затратить для получения металла.

Таблица 1 – Термодинамические константы оксидов (298 К)
оксид DН°обр., кДж/моль DG°обр., кДж/моль S°, Дж/(моль×K)
CuO
-162
-129,4 42,63
Bi2O3 -577,8 -497,3
CrO3 -585,76 -506,26 71,96
PbO -219,3 -189,1 66,2
Pb3O4 -723,4 -606,2 211,3
PbO2 -276,6 -218,3 74,89
CoO -239,3 -213,4 43,9
NiO -239,7 -251,6 37,99
MnO2 -521,5 -466,7 53,1
GeO2 -554,7 -500,8 55,27
Fe2O3 -822,2 -740,3 87,4
SnO2 -580,8 -519,9 52,3
SnO -286 -256,9 56,5
ZnO -350,6 -320,7 43,64
Cr2O3 -1140,6 -1056 81,2
TiO2 -943,9 -888,6 50,33
B2O3 -1254 -1193,7 80,8
Al2O3 -1676 -1582 50,92
MoO3 -745,2 -668,1 77,74
WO3 -842,7 -763,9 75,94
Li2O -595,8 -562,1 37,89
Na2O -416,0 -377,1 75,27
K2O -363,2 -322,1 94,1

Иногда получить металл совсем не удается, хотя с термодинамической точки зрения реакция вполне вероятна. Так, оксиды меди, кобальта, никеля (теплота образования которых не превышают 750 кДж/моль по абсолютному значению), легко восстанавливаются при температуре 350-500°С. Некоторые оксиды этого ряда (СrО3, МоО3, MnO2, WO3) при этой температуре не восстанавливаются водородом до металла. Объясняется это тем, что восстановление водородом элементов, которые могут существовать в различных степенях окисления, протекает ступенчато. Сначала из высших оксидов сравнительно легко образуются оксиды в промежуточной степени окисления, а затем при более высоких температурах из них получаются соответствующие металлы. Однако этого не всегда можно добиться. В частности, при восстановлении марганца из двуокиси можно получить лишь оксид марганца (II), из которого получить металл очень трудно. Как правило, с уменьшением степени окисления металла прочность оксидов возрастает, а их способность к восстановлению уменьшается.

Количество водорода, необходимое для восстановления металла из его оксида, нужно вычислять не по стехиометрическому уравнению, а на основании константы равновесия, которую устанавливают экспериментально и по которой определяют процент использования водорода. Как правило, при высоких температурах для восстановления металла требуется водорода несколько больше, чем при низких температурах. На практике при низких температурах восстановление не проводят, потому что скорость реакции очень мала. Применение избыточного количества водорода с целью смещения равновесия дает незначительный эффект и приводит к непроизводительным затратам водорода.

Необходимо также учитывать величину поверхности соприкосновения оксида с водородом. Сильно прокаленные оксиды, имеющие крупнокристаллическую структуру, вступают в реакцию с водородом труднее, чем мелкодисперсные. При малой поверхности соприкосновения водород, для более полного его использования, следует пропускать медленнее.

Большинство металлов, получаемых описанным методом, прочно удерживает следы растворенного кислорода; его остатки удаляются с большим трудом и часто только при сплавлении металла в атмосфере сухого водорода. Однако после такой переплавки в металле обычно содержится некоторое количество растворенного водорода, удалить который можно только повторной длительной выдержкой расплавленного металла в глубоком вакууме.

Физические свойства и химическая активность получаемых металлов зависят от температуры восстановления. Металлы, получаемые при низких температурах, имеют большую поверхность и очень реакционноспособны. Некоторые из них получаются пирофорными и на воздухе часто самовозгораются. Повышение температуры восстановления приводит к укрупнению частичек металла и уменьшение их поверхности; внутренняя структура частичек металла делается упорядоченной, дефектность уменьшается, в результате чего химическая активность металла сильно снижается.

Если температура восстановления близка к температуре плавления, металлы получаются в виде плотной губки. В сплавленном состоянии металлы получаются при более высоких температурах, чем их температуры плавления.

Если температура восстановления выше 600 – 650оС, то реакцию проводят в трубчатых электрических печах. В этом случае оксиды помещают в фарфоровую или кварцевую лодочку, которую вставляют в реактор (фарфоровая или кварцевая трубка). Концы трубки закрывают резиновыми или хорошими корковыми пробками, в которые вставляют с одного конца трубку, подводящую водород, а с другого – трубку, отводящую пары воды и непрореагировавший водород. При температуре 550-600оС и ниже реакцию можно вести не в лодочке, а прямо в стеклянной трубке или трубке с перетяжками.

Окончание реакции восстановления оксидов определить довольно трудно. Об этом можно судить по изменению цвета или по уменьшению массы оксида, но только в том случае, если он имеет постоянный и известный состав. Практически водород пропускают в избытке в течение 20 – 30 мин, после чего реакцию считают доведенной до конца. Когда восстановление проводят в прозрачных трубках и при температуре, несколько превышающей точку плавления металла, об окончании реакции можно судить по образованию металлических корольков (особенно хорошо это видно при получении свинца, висмута, сурьмы). Если восстанавливаются малостойкие оксиды, то в конце трубки собираются капельки воды, что также можно считать признаком окончания реакции.

Малостойкие оксиды, например платины, могут при нагревании в атмосфере водорода быстро разлагаться, при этом в реакторе образуется гремучая смесь, что иногда приводит к взрыву.

Для измерения температур ниже 500оС можно использовать термометр, для более высоких температур применяют термопару. Так как при восстановлении водородом не требуется очень точного соблюдения температурного режима, термопару можно поместить вне реакционной трубки, с ее наружной стороны, но в непосредственной близости от лодочки.

Собранную установку необходимо обязательно проверить на герметичность. Для этого через установку пропускают ток водорода, а трубку, отводящую водород, погрузить на 3-4 см в воду. Если водород пробулькивает через слой воды, то прибор герметичен.

Другой способ проверки герметичности (лучший в том случае, когда водород получают в аппарате Киппа). Через установку пропускают водород, а затем закрывают выходное отверстие газоотводной трубки. При полной герметичности прибора ток водорода скоро прекращается, об этом можно судить, наблюдая за счетчиком пузырьков.

 



infopedia.su

Восстановление металлов из оксидов

Многие процессы выплавки сплавов завершаются операцией освобождения сплавов от избытка кислорода — раскислением. Удаление кислорода из оксида, растворенного в металлическом расплаве, или восстановление оксидов, находящихся в шлаке, определяет качество и свойства металла.

Для того чтобы произошло разложение оксида и выделение из него металла необходимо, чтобы упругость диссоциации оксида была больше парциального давления кислорода в газовой фазе, то есть

> .

Вакуумирование пространства над расплавом не обеспечивает это условие. Более эффективным способом является химическое связывание кислорода с помощью элементов, обладающих большей степенью химического сродства к кислороду, чем восстанавливаемый металл. Оценить эффективность элементов-восстановителей, можно по величине изменения изобарно-изотермического потенциала образования оксидов.

На практике в качестве восстановителей используют твёрдый углерод С, СО, Н2, многокомпонентные газовые природные смеси и др.

Термодинамически процесс восстановления может быть представлен в виде совокупности двух обратимых реакций: взаимодействия металла и восстановителя с кислородом.

Если восстановителем является СО, то реакции имеют вид:

2МеО↔ 2Ме + О2( ),

2СО22СО + О2( ).

Итоговая реакция получается при вычитании реакции 2 из реакции 1:

МеО + СО ↔ Ме + СО2( ).

Изобарно-изотермический потенциал итоговой реакции

= ½ ( ).

Константы равновесия реакций 1 и 2:

, .

Завершенность реакции характеризуется равновесным состоянием газовой фазы.

Направление процесса и суммарный результат будут определяться соотношением величин и . Величина и знак процесса определяются свойствами реагирующих оксидов и составом газовой фазы в начальном и конечном состояниях.

Если условия реагирования отличны от стандартных, то на величину оказывает влияние исходный составов системы.

Условия протекания процессов в рассматриваемой системе:

1). Восстановление оксида, если <0, т.е. > ;

; .

2). Окисление металла, если >0, т.е. < ;

; .

3). Равновесное состояние. =0, т.е. = ;

; .

 


Похожие статьи:

poznayka.org

Часть 2. Оксиды, получение и свойства. Получение оксидов:

Способы получения.

Примеры.

Ограничения и примечания

1. Окисление простых веществ:

а) металлов: 2Ca + O2  2CaO

б) неметаллов:

4P + 3O2 (нед) 2P2O 3

4P + 5O2 (изб) 2P2O5

(Из S – SO2, из Fe – Fe2O3 и Fe3O4, из N2 – NO)

С кислородом не реагируют галогены, инертные газы, Au, Pt. Азот реагирует в жестких условиях (2000°C).

2. Окисление сложных веществ:

а) водородных соединений:

2S + 3O 2  2H2O + 2SO 2

б) сульфидов, карбидов, фосфидов (бинарных соединений):

2ZnS + 3O2 2ZnO + 2SO2

Каждый элемент сложного вещества окисляется в соответствии со своими свойствами.

3. Разложение гидроксидов и солей:

а) гидроксидов (оснований и кислот):2Al(OH)3t Al2O3 + 3H2O

H2SiO3t SiO2 + H2O

б) карбонатов: СаСО3t CaO+CO2

Гидроксиды и карбонаты щелочных металлов (Na,K, Rb,Cs) не разлагаются.

4. Окисление кислородом или озоном

а) кислородом:

2СО + О2  2СО2

б) озоном:

NO + O3  NO2 + O2

Возможна, если элемент имеет несколько оксидов (сера, фосфор, углерод, азот, железо).

Свойства оксидов.

Основные оксиды – оксиды, которым соответствуют основания. Это оксиды металлов со степенями окисления +1 и +2, кроме амфотерных (ZnO, BeO, SnO, PbO)

Свойства основных оксидов.

Свойства

Примеры реакций

Ограничения и примечания

1) Реакция с растворами кислот

Li2O + 2HCl= 2LiCl+ H2O

NiO + H2SO4 = NiSO4 + H2O

Кислота должна существовать в виде раствора (не реагируют кремниевая, сероводородная, угольная)

2) Реакция с водой

Li2O + H2O = 2LiOH

BaO + H2O = Ba(OH)2

(только 8 оксидов: IA группа, СаО, SrO, ВаО)

Оксид реагирует с водой, только если в результате образуется растворимый гидроксид (щелочь).

3) Реакция с кислотными и амфотерными оксидами

BaO + CO2 = BaCO3,

FeO + SO3 = FeSO4,

CuO + N2O5 = Cu(NO3) 2

СаО + SO2 = CaSO3

Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду.

4) Восстановление оксида до металла или до низшего оксида:

MnO + C = Mn + CO

(при нагревании),

FeO + H2 = Fe + H2O

(при нагревании).

Fe2O3 + CO = FeO + CO2

В качестве восстановителей

используют: СО, С, водород, алюминий, магний.

С водородом реагируют оксиды неактивных металлов.

5) Окисление кислородом.

4FeO + O2 = 2Fe2O3

Если металл имеет несколько оксидов с разными степенями окисления.

Кислотные оксиды – оксиды, которым соответствуют кислоты.

Кислотные оксиды при комнатной температуре бывают:

*газы (например: СО2, SO2, NO, SeO2)*жидкости (например, SO3, Mn2O7) *твердые вещества (например: B2O3, SiO2, N2O5, P2O3, P2O5, I2O5, CrO3).

Свойства кислотных оксидов.

Свойства

Примеры реакций

Примечания

1) Реакция с основаниями

CO2 + Ca(OH) 2 = CaCO3 + H2O

SiO2 + 2KOH = K2SiO3 + H2O (при нагревании),

SO3 + 2NaOH = Na2SO4 + H2O,

N2O5 + 2KOH = 2KNO3 + H2O.

Реакция возможна со щелочами. Наиболее активные кислотные оксиды (SO3, CrO3, N2O5, Cl2O7) могут реагировать и с нерастворимыми (слабыми) основаниями.

2) Реакция с амфотер-ными и основными оксидами

CO2 + CaO = CaCO3

P2O5 + 6FeO = 2Fe3(PO4)2

(при нагревании)

N2O5 + ZnO = Zn(NO3)2

Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду.

3) Реакция с водой. Образуются КИСЛОТЫ.

N2O3 + H2O = 2HNO2

SO2 + H2O = H2SO3

N2O5 + H2O = 2HNO3

SO3 + H2O = H2SO4

Оксид реагирует с водой, если в результате образуется растворимый гидроксид. Не реагирует с водой SiO2.

4) Реакции с солями летучих кислот.

SiO2 + K2CO3 = K2SiO3 + CO2

(при нагревании)

Твёрдые, нелетучие оксиды (SiO2,P2O5) вытесняют из солей летучие.

5) Окисление.

2SO2 + O2 ⇆ 2SO3

Низшие оксиды окисляются до высших.

Амфотерные оксиды – оксиды, способные реагировать и с кислотами, и со щелочами. По химическим свойствам амфотерные оксиды похожи на основные оксиды и отличаются от них только своей способностью реагировать с щелочами, как с твердыми (при сплавлении), так и с растворами, а также с основными оксидами.

Вещества, образуемые катионами амфотерных металлов в щелочной среде:

Степень окисления

В растворе

В расплаве

+2

(Zn, Be, Sn)

Na 2[Zn (OH) 4]

тетрагидроксоцинкат натрия

Na2ZnO2

цинкат натрия

+3

(Al, Cr, Fe*)

Na[Al(OH)4]

тетрагидроксоалюминат натрия

Na3[Al(OH)6]

гексагидроксоалюминат натрия

NaAlO2

метаалюминат натрия и

Na3AlO3

ортоалюминат натрия

*) железо не образует устойчивых гидроксокомплексов, амфотерно только в расплаве, образуя NaFeO2

СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ.

Cвойства

Примеры реакций

Примечания

1) Реагируют с кислотами, так же, как основные оксиды – образуются соли.

ZnO + 2HCl = ZnCl2 + H2O

Al2O3 + 6HNO3 = 2Al(NO3)3 +3H2O

Только с сильными кислотами

2) Взаимодействуют с растворами щелочей – образуются растворы гидроксокомплексов.

Al2O3 + 2KOH +3H2O = 2K[Al(OH)4] или K3[Al(OH)6]

ZnO +2NaOH +H2O=Na2[Zn(OH)4]

3) Реагируют с расплавами щелочей – образуя соли, при этом проявляют свойства кислотных оксидов.

Al2O3 + 2KOH →t 2KAlO2 + H2O­ (или K3AlO3)

ZnO + 2KOH → t K2ZnO2 + H2O

4) При сплавлении могут взаимодействовать с карбонатами щелочных металлов, как со щелочами.

Al2O3 + Na2CO3 t 2NaAlO2+CO2 (или Na3AlO3)

ZnO + Na2CO3 t Na2ZnO2+ CO2

studfiles.net

водорода, алюминия, угарного газа. Роль металлов и сплавов в современной технике

Билет № 28. Получение металлов из оксидов с помощью восстановителей: водорода, алюминия, угарного газа.

Роль металлов и сплавов в современной технике.
    Металлы в чистом виде в природе не встречаются, за исключением благородных металлов (перечислить).

Поскольку металлы являются основой конструкционных материалов и очень важны в использовании, то необходимо знать способы их получения из руд. Рудные полезные ископаемые: оксиды, сульфиды, хлориды, сульфаты, карбонаты и другие соли. Наиболее распространены руды оксидного происхождения. Поэтому металлы часто получают из оксидов.

Рассмотрим способы получения металлов:


  1. Пирометаллургия – восстановление металлов из руд при высоких температурах с помощью восстановителей (C, CO, H2, металлы)

  2. Гидрометаллургия – получение металлов в 2 этапа: 1) получение раствора соли металла, 2) восстановление данного металла более активным из раствора.

  3. Электрометаллургия – способ получения металлов с помощью электрического тока (электролиз).

       
Рассмотрим способы пирометаллургии:

CuO + H2


Fe3O4 + C
ZnO + CO
AL + Fe2O3

(Укажите условия протекания данных реакций, расставьте в уравнениях коэффициенты, укажите степени окисления, составьте электронный баланс, укажите окислитель и восстановитель.)
Восстановление водородом используется в основном в лабораториях, реже в промышленности. Это объясняется важностью водорода как сырья для производства аммиака и его относительной дороговизной.

Оксид углерода (II) более доступен как один из продуктов при производстве стали.

Восстановление алюминием — дорогостоящий процесс, однако с его помощью получают многие цветные металлы высокой степени чистоты. Восстановление металлов из оксидов с помощью алюминия называют алюминотермией.

    Металлы, благодаря своим свойствам (твердость, механическая прочность, тепло- и электрическая проводимость, пластичность, магнитные свойства и др.), находят широкое применение во всех областях промышленности и в быту.

Железо, хоть и является основным металлом современной техники, сдает некоторые свои позиции алюминию и титану.

Ядерная энергетика широко использует уран, торий и цирконий.

В электротехнике незаменимы медь, вольфрам, молибден.

Редкоземельные металлы (№ 58—71) используют в различных отраслях техники: в радиоэлектронике, приборостроении, атомной технике, машиностроении, в стекольной промышленности (оксиды La, Ce, Nd, Pr), в химической промышленности (производство пигментов, лаков, красок; использование в качестве катализаторов и др.), фото- и киноматериалы содержат серебро.

  Однако более широкое применение находят сплавы (системы, состоящие из двух и более металлов, а также металлов и неметаллов).

Свойства сплавов отличаются от свойств каждого из металлов, из которых они получены. Например, чистый алюминий — мягкий, ковкий металл. Сплавы алюминия с медью, магнием и марганцем отличаются прочностью и твердостью. Они называются дуралюминами и идут на изготовление корпусов самолетов, речных и морских судов.


         Для паяния применяют сплав олова и свинца. Температура плавления этого сплава (припоя) ниже, чем температура плавления олова и свинца, отдельно взятых.

     Сплав меди и никеля — мельхиор, блестящий и довольно прочный. По сравнению с медью и никелем обладает высокой химической стойкостью, широко используется для изготовления ювелирных украшений, столовых приборов.


         Свойство сплавов можно регулировать, изменяя их состав. Они позволяют увеличить число материалов, обладающих более ценными свойствами, чем чистые металлы.

     Сплавы известны человеку с глубокой древности. Уже тогда было замечено, что при сплавлении разных металлов получают соединения, отличающиеся свойствами от исходных веществ.

Так, медь и олово образуют бронзу (90% Си, 10% Sn), твердость которой значительно выше, чем твердость просто меди и олова.
    
     В технике используют более 5000 сплавов, но самое большое значение имеют сплавы на основе железа и алюминия. Железо и его сплавы (чугун, сталь, ферросплавы) называют черными металлами, остальные же металлы и их сплавы — цветными.

flatik.ru

Химики! ! вопрос «Какими способами можно получить металлы? «

Получение металлов. — Какой основной химический процесс лежит в основе получения металлов? Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления. Но прежде чем восстановить природное соединение металла, необходимо перевести его в форму, доступную для переработки, например, оксидную форму с последующим восстановлением металла. На этом основан пирометаллургический способ. Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических? кокс, оксид углерода (II), водород; металлических? алюминий, магний, кальций и другие металлы. . Демонстрационный опыт 1. Получение меди из оксида с помощью водорода. Cu +2O + h3 = Cu0 + h3O (водородотермия) Демонстрационный опыт 2. Получение железа из оксида с помощью алюминия. Fe+32O3 +2Al = 2Fe0 + Al2O3 (алюмотермия) Для получения железа в промышленности железную руду подвергают магнитному обогащению: 3Fe2 O3 + h3 = 2Fe3 O4 + h3O или 3Fe2O3 + CO = 2Fe3O4 + CO2, а затем в вертикальной печи проходит процесс восстановления: Fe3O4 + 4h3 = 3Fe + 4h3O Fe3O4 + 4CO = 3Fe + 4CO2 Просмотр медиалекции . (CD) Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте: CuO + h3SO4 = CuSO4 + h3O, затем проводят реакцию замещения CuSO4 + Fe = FeSO4 + Cu. Демонстрационный опыт 3. Взаимодействие железа с раствором медного купороса. Таким способом получают серебро, цинк, молибден, золото, ванадий и другие металлы. Электрометаллургический способ. Это способы получения металлов с помощью электрического тока (электролиза) . Просмотр фрагмента медиалекции. (CD) Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов: NaCl —&gt; Na+ + Cl? катод Na+ + e &gt; Na0 ¦ 2 анод 2Cl? ?2e &gt; Cl20 ¦ 1 суммарное уравнение: 2NaCl = 2Na + Cl2 Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит растворяет Al2O3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия? электролитом. Al2O3 —&gt; AlAlO3 —&gt; Al3+ + AlO33– катод Al3+ +3e —&gt; Al 0 ¦ 4 анод 4AlO33– – 12 e —&gt; 2Al2O3 +3O2 ¦ 1 суммарное уравнение: 2Al2O3= 4Al + 3O2 . Термическое разложение соединений. Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-2000, образуя пентакарбонил: Fe + 5CO = Fe (CO)5 Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 2500 карбонил разлагается, образуя порошок железа: Fe (CO)5 = Fe + 5CO. Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа. Еще более глубокой степени очистки железа (до 99,9999%) можно достичь методом зонной плавки.

Любыми. Смотря что и из чего.

синтез металлов

touch.otvet.mail.ru

Получение металлов и некоторых неметаллов из оксидов

    Реакции восстановления оксидов водородом наиболее часто используют для получения металлов и некоторых неметаллов в чистом состоянии. Особенность этих реакций в том, что они относятся к равновесным и гетерогенным. Равновесие может быть смещено как в сторону получения металла и паров воды, так п в сторону исходных продуктов, что определяется прочностью восстанавливаемого оксида. [c.6]
    КАРБОНИЛЫ МЕТАЛЛОВ — химические соединения оксида углерода СО с металлами, например, карбонил никеля N1 (С0)4, открытый первым в 1890 г. В настоящее время получены карбонилы многих металлов и некоторых неметаллов. К- м. бывают одноядерными и многоядерными, в зависимости от количества атомов металла в молекуле, а также смешанные, например [Ре (СО)4) Hg. Большинство К. м. при обычных условиях кристаллические, кроме N1 (С0)4, Ре (СО) Ни (СО),, 05 (С0)5. к. м. хорошо растворяются в органических растворителях, летучи, сильно ядовиты. Наибольшее значение в технике имеют К- м.— никеля, кобальта, железа. К. м. применяют для получения чистых металлов, для покрытия поверхности металлами, как ката- [c.120]

    I. ПОЛУЧЕНИЕ МЕТАЛЛОВ И НЕКОТОРЫХ НЕМЕТАЛЛОВ ИЗ ОКСИДОВ [c.6]

    Отдельное место среди керамических материалов занимают керметы (керамикометаллические материалы). Это гетерогенные композиции из металлов и неметаллов, сочетающие тугоплавкость, твердость и жаростойкость керамики с проводимостью, пластичностью, термостойкостью и др. свойствами металлов. В качестве неметаллических компонентов используют различные тугоплавкие оксиды, металлоподобные соединения переходных металлов (карбиды, бориды, нитриды), некоторые силициды и др. неметаллические вещества, отличающиеся химической стойкостью, высокой твердостью и высокой температурой плавления. В качестве металлической составляющей керамик используют главным образом металлы и сплавы группы железа (Fe, Ni, Со) и переходные металлы VI группы (Сг, Мо, W), иногда легкие металлы (AI и др.). Для получения компактных композиций, сочетающих свойства исходных компонентов, стремятся обеспечить в керамике прочные межфазные связи. При этом существенное значение имеют характер взаимодействия фаз на поверхности их раздела, возможность образования тонких, равномерно распределенных прослоек промежуточного состава (ограниченные твердые растворы, соединения типа шпинелей и др.). Иногда металлический компонент вводят в расплавленном состоянии (спекание с участием жидкой фазы). [c.313]

    К специальным методам можно отнести метод рекристаллизации с попеременным чередованием механической деформации и отжига (до сих пор этот метод применялся для некоторых металлов, полупроводников и оксидов), а также метод выращивания, по которому летучее соединение металла разлагают на сильно нагретой проволоке, что ведет к осаждению соответствующего металла (или неметалла). Этот метод, называемый также процессом ван Аркеля и де Бура [20, 21], служит для получения некоторых металлов, которые другим путем в столь чистом состоянии получить нельзя (титан, цирконий, гафний, ниобий, тантал и др., см. также выше реакции в парах). [c.136]

    Для получения нитридов наиболее пригоден аммиак, который перед азотом имеет некоторые преимущества, которые связаны с разной прочностью химической связи в молекулах. В аммиаке эта связь непрочная, и при нагревании наблюдается его разложение, которое ускоряется на поверхности металлов. Выделяющийся атомный азот активен, поэтому реакции образования нитридов идут при более низких температурах по сравнению с реакциями, идущими с азотом. Атомный водород восстанавливает оксидные пленки на металлах, которые мешают получению чистых нитридов. Небольшое количество кислорода или паров воды в аммиаке не мешает получению чистых нитридов, если исходные металлы (медь, железо, кобальт, никель и т. д.) не обладают большой активностью к кислороду. Активные металлы (магний, кальций, алюминий и т. д.) соединяются даже со следами кислорода, поэтому нитриды будут загрязнены оксидами. Если при нитровании использовать азот, то следы кислорода или паров воды будут переводить металлы или неметаллы в оксиды даже при небольшом сродстве к кислороду. [c.79]

    Цель 1. Вам нужно понять, что оксиды неметаллов могут соединяться с водой, как и некоторые оксиды металлов, но соединение, полученное при этом, будет относиться к классу кислот. [c.90]

    Здесь рассматриваются некоторые общие свойства металлов и химические свойства оксидов и пероксидов. (на примере ряда металлов главных подгрупп периодической системы элементов Д. И. Менделеейа). Соединения металлов с серой, галогенами и другими неметаллами, а также некоторые способы получения металлов были представлены в других разделах книги. [c.165]

    Реакцир восстановления водородом наиболее часто используются для получения металлов и некоторых неметаллов из их оксидов. [c.37]

    Металлотермическими реакциями называют реакции бинарных соединений металлов или неметаллов с простыми веществами, которые протекают с выделением больших количеств теплоты и приводят к получению соответствующего металла или неметалла. В качестве исходных веществ часто используют оксиды, а в некоторых случаях — галогениды. Восстановительная способность простых веществ по отношению к оксидам определяется их химическим сродством к кислороду. Реакции восстановления оксидов протекают в том случае, когда теплота образования оксида восстановителя больше по сравнению с теплотой образования превращаемого оксида, например кальция, магния и алюминия, но магний и кальций находят ограниченное применение, так как при их использовании нельзя получить металлы в виде жидкого слоя (из-за высокой температуры плавления оксидов этих металло1в). Алюминий, несмотря на более слабые восстановительные свойства, используют для металлотермии, так как оксид алюминия плавится при более низкой температуре (2050 °С) и отделяется от расплавленного металла. [c.133]

    Книги по электротермии неметаллов, опубликованные за последние годы, являются монографиями, посвященными отдельным вопросам. В противоположность этому настоящая работа является попыткой комплексного изложения всей области электротермии неметаллов. Поэтому в той или иной мере книга охватывает все основные электротермические производства неметаллических веществ. Не включены лишь некоторые отдельные вопросы, к числу которых относятся электротермические способы получения глинозема для производства алюминия, рассматриваемые детально в трудах по металлургии алюминия, и электротермические методы получения карбидов вольфрама, титана и т. п. для производства так называемых твердых сплавов, излагаемые в соответствующих спег циальных курсах порошковой металлургии. Кроме того, в книге не рассматриваются введенные в производство, но не привившие ся в практике электротермические методы получения глиноземи стого цемента, а также оксидов и сульфидов некоторых щелочног земельных и щелочных металлов. [c.10]

    Водород — самый легкий из всех газов. Малорас воде, но хорошо растворим в некоторых металлах Pt, Вследствие неполярностй и большой прочности моле (АЯдис = 436 кДж/моль) при комнатной температуре малоактивен и взаимодействует только с фтором. При НИИ водород реагирует со многими неметаллами — хло мом, серой, кислородом и др. Восстановительная сп( водорода используется для получения некоторых прс ществ из оксидов и галогенидов. Так, например, при температуре происходит восстановление меди (II) окси, [c.226]


chem21.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *