Главный катализатор реакции горения бария – Катализаторы горения — Миксент

Содержание

Катализаторы горения — Миксент

Всемирная Топливная Хартия принятая ведущими производителями топлива предусматривает достаточно жесткие требования предъявляемые к топливу используемому для заправки автомобилей. Это необходимо для выполнения международных норм по содержанию вредных веществ в выхлопных газах двигателей. Для соблюдения этих требований конструкторы разрабатывают все более форсированные двигатели, а нефтепереработчики более чистые топлива, снижая в них содержание ненасыщенных, ароматических, полициклических углеводородов и содержание серы, отсутствие которой, приводит к повышенному износу топливной аппаратуры. Чтобы избежать отрицательного влияния отсутствия серы разработаны противоизносные присадки, к примеру, Миксент 2030.

Спрос на катализаторы горения

Жёсткие требования предъявляемые к топливу не всегда можно достичь в процессе нефтеперегонки по различным причинам, в том числе технологическим и экономическим, поэтому производители на конечном этапе используют присадки. Из-за этого растет внимание к «катализаторам горения» топлива. Это хорошо видно на примере патентования модификаторов горения дизельных топлив, рис. 1.

Классическим примером высокоэффективного промотора воспламенения применяющегося для улучшения полноты сгораемости дизельного топлива с меньшими выбросами вредных веществ в отработавших газах и соблюдения норм «ЕВРО» является цетаноповышающая присадка Миксент 2000.

Среди представленных модификаторов горения большой интерес представляет отдельный класс присадок, а именно — катализаторы горения.

Для более полного представления о том, что такое катализаторы горения приведем выдержки из статьи директора АПИ Василия Сердюка и его заместителя по научной работе Льва Ашкинази.

Катализаторы горения — что это?

Катализаторы горения – это вещества, изменяющие процесс горения (окисления) топлива, которые изменяют скорость и полноту сгорания топлива. Введение их в исходные топлива позволяет получить новые топлива с улучшенными свойствами. 

Катализаторы горения предназначены для снижения энергии активации реакций окисления, происходящих в камере сгорания ДВС. Следствием снижения энергии активации является возможность проведения процесса окисления горючего и обеспечение полноты его сгорания при более низких температурах. Понижение температуры в камере сгорания приводит к уменьшению максимального давления в ней и, следовательно, к снижению жесткости работы двигателя, а также к уменьшению выбросов вредных веществ с отработавшими газами.

Известно, чем выше температура воспламенения горючего, тем меньше скорость его горения, катализаторы горения предназначены для увеличения скорость горения топлива. При прочих равных условиях ускоряющее действие катализатора будет тем больше, чем медленнее протекает некатализируемый процесс горения. Следовательно, наибольшее действие катализаторы будут оказывать на горение высококипящих углеводородов топлива, т.е. процесс догорания топлива. 

Катализаторы горения применяются в концентрации от 0,001 до 0,01%, фактически не изменяют физико-химические свойства базового топлива, но обеспечивают изменение процесса его горения, переводя топливо в новый класс, соответствующий выполнению норм выбросов ЕВРО-2, ЕВРО-3, ЕВРО-4, при работе на исправном двигателе.

К катализаторам горения относятся органические соединения металлов первой, второй и переходной групп, применяемые в рабочей концентрации порядка нескольких ppb (parts per billion — частей на миллиард, например, мкг/кг или 1·10-7%) в пересчете на металл. Столь ничтожная концентрация катализаторов горения практически не влияет на загрязнение ими камеры сгорания и свечей зажигания.

Катализаторы горения могут выполнять частично роль каталитических нейтрализаторов. Например, в бензин вводят соединения платины, палладия, рения, родия, которые, пройдя камеру сгорания, отлагаются в виде металлов на стенках выхлопной системы и действуют как обычные катализаторы дожига. В более тяжелых топливах хороший эффект достигается введением соединений железа, например ферроцена в количестве 0,001-0,003%.

Присадки, в состав которых входят органические соединения металлов, применяют с 1950 г. и интерес к ним не ослабевает. Наиболее широко известны присадки ферроцена (дициклопентадиенилжелеза) и его производных, соединений марганца, меди, никеля, лития и других органических соединений металлов, а в некоторых случаях даже их оксиды. Бензины с такими присадками, в сравнении с бензинами без них, дают некоторое изменение эмиссии углеводородов, оксидов азота, оксида углерода, особенно на автомобилях с большим пробегом (более 60 тыс. км), и повышают эффективность работы каталитических преобразователей отработавших газов, уменьшая нагрузку на них за счет догорания топлива в камере сгорания.

Введение ферроцена в концентрации 15 ppm (parts per million — частей на миллион, например, мг/кг или 0,0001%) не оказывает отрицательного воздействия на работу двигателя, но положительно влияет на работу катализаторов дожига и увеличивает октановое число бензинов. Более того, ферроцен оказывает еще и каталитическое воздействие на процесс горения топлива, частично уменьшая нагар в камере сгорания и улучшая некоторые экологические характеристики двигателя, при одновременном небольшом снижении расхода топлива.

Для предотвращения возможного образования отложений, при использовании металлсодержащих органических соединений в составе катализаторов горения, широко используются присадки-выносители, способствующие удалению металла из камеры сгорания и со свечей зажигания.

Применение некоторых композиций металлорганических соединений позволяет существенно улучшить работу каждой присадки в отдельности, проявляя, в некоторых случаях, синергетический эффект.

В последнее время широко распространяются зольные присадки к автомобильным топливам содержащие металлокомплексные соединения, в которых в качестве лиганда используются соединения хелатного типа. Одним из достоинств металлокомплексных присадок является их многофункциональность. Широко используются композиции металлорганических соединений хелатного типа в растворителях — кетонах, дикетонах, оксимах, эфирах и т.д. Такие присадки являются универсальными многофункциональными перспективными катализаторами горения топлив. Среди них наиболее эффективны и наименее токсичны соли железа, которые были допущены в России к применению в топливах.

В результате давних споров о влиянии на каталитическое действие присадки металла и органического радикала в настоящее время считается общепринятым, что решающее влияние оказывает природа металла, входящего в состав присадки. Влияние лигандов — органической составляющей в формуле присадки незначительно:

Таблица 1. Изменение октанового числа (DОЧ по моторному методу) для эталонного топлива (60% изооктана и 40% н-гептана) в присутствии различных присадок:

Октанповышающая присадка Концентрация металла
присадки в топливе, г/кг
DОЧ
Тетраэтилсвинец (C2H5)4 Pb 0,15 +5,0
Метил (триаэтил) свинец СН3Pb (C2H5)3 0,30 +12,4
Тетраэтилгерманий (C2H5)4 Ge 0,30 -1,5
Пентакарбонил железа Fe(CO)5 0,15 +4,4
Гексакарбонил хрома Cr(CO)6 0,15 -5,3
Димарганецдекакарбонил Mn2(CO)10 0,15 +7,0
Циклопентадиенилтрикарбонилмарганец С5Н5Mn(CO)3 0,10 +7,5
Меитлциклопентадиенил-трикарбонилмарганец СН3С5Н 4Mn(CO)3 0,10 +7,5
Этилциклопентадиенилтри-карбонилмарганец С2Н5С5Н 4Mn(CO)3 0,10 +7,5
Ферроцен (С5Н5)2 0,10 +7,0
Диэтилферроцен (C2H5С5Н5)2 Fe 0,10 +7,5

Из таблицы 1 видно, что введение большого количества свободных радикалов (СН3*, С2Н5* и других) в состав металлорганических соединений лишь незначительно изменяет детонационную стойкость топлив в камере сгорания, а замена одного металла на другой качественно изменяет эффективность действия. Поэтому, исследователи на первых порах обратили основное внимание, прежде всего, на свойства металлов, как носителей анти- и продетонационных свойств. Оказалось, что большей как АД-, так и ПД- эффективностью обладают наиболее тяжелые, а значит, и самые крупные атомы.

Предпринимались попытки выстроить ряды каталитической активности для металлов антидымных присадок. Е.В. Бернштейн получил соединяющий ряд антидымной активности металлов в двигателях с открытой камерой сгорания типа Гессельмана:

Ва > Са > Ni > Со > Сг > Ре > Си > Mg > Al > Na, К, Zn.

Другие авторы предлагают ряд, который выглядит следующим образом:

Mn > Ва > Fe > Cu > Со > Mg > Ni > Pb.

Различие объясняется разными типами двигателей, которые были использованы в том и в другом случае, поскольку эффективность катализаторов зависит от способа смесеобразования в двигателях разного типа.

Механизм действия присадок

Для объяснения механизма действия металлсодержащих антидымных присадок выдвинуто несколько версий. Первая основана на том, что в пламени металлы образуют ионы, которые уменьшают скорость зародышеобразования сажевых частиц и их коагуляцию. Главным образом, это относится к легкоионизирующимся щелочным металлам. Второй механизм предложен для щелочноземельных металлов и сводится к их реакциям с продуктами горения топлива, в результате которых образуются гидроксильные радикалы. Последние газифицируют сажу. Сюда же примыкает гипотеза о том, что барий, окисляясь на первых стадиях горения избытком кислорода, переносит его на последние стадии, где наблюдается недостаток кислорода. На основании результатов оптического зондирования горящей смеси лучом гелий-неонового лазера сделано предположение, что бариевые антидымные присадки ускоряют выгорание сажи, образующейся при диффузионном горении капель топлива, не влияя на выгорание сажи, образующейся при горении уже испарившейся части топлива. Наиболее эффективны такие присадки при горении тяжелых топлив в форсированных режимах или при малом угле опережения впрыска, когда большая масса топлива не успевает испариться.

Весьма сходно с антидымными присадками действие антинагарных и нагароочищающих присадок, предназначенных уменьшить нагарообразование в камере сгорания дизельного двигателя, предотвратить закоксовывание поршневых колец. Рекомендуемые концентрации присадок при постоянном применении — 0,005-0,02%. В «ударных» концентрациях (0,05-0,1%) эти присадки способны выступать как нагароочищающие и удалять с деталей двигателя образовавшийся ранее нагар. При такой нагароочистке возможно временное повышение дымности и токсичности ОГ, так как часть удаляемого нагара не успевает выгорать и выбрасывается в атмосферу.

В общем случае присадки модифицируют структуру нагара, оказывают каталитическое действие на его выгорание и смывают частицы нагара и продукты его превращения. Показательна присадка «Антикокс», содержащая катализатор горения — медную соль органической кислоты. При введении в топливо присадки в концентрации 0,02-0,05% нагар удалялся на 25-65%. Часть нагара, которая не была удалена в процессе испытаний, изменилась. Нагар стал рыхлым и легко снимался протиранием поверхности без соскабливания и кипячения. Аналогично действие антисажевых присадок, предназначенных для уменьшений скорости забивки сажевых фильтров, устанавливаемых на автомобилях перед каталитическими нейтрализаторами или непосредственно в выпускном тракте. Сажевые фильтры любой конструкции теряют пропускную способность и требуют регенерации уже через 200-500 км пробега, а иногда и раньше. Наличие присадки обеспечивает постепенное выжигание сажи, устраняя опасность перегрева при периодических регенерациях.

Иногда металл используют не в виде присадки, а наносят на поверхность фильтра. При нормальной работе двигателя этот прием дает такой же экологический эффект, как и введение присадки в топливо. Однако каталитические покрытия медленно отравляются серой, содержащейся в топливе. Кроме того, если двигатель долгое время работает в режиме холостого хода и на малых нагрузках, когда температура ОГ невелика, каталитическое покрытие не обеспечивает выгорания сажи, которая накапливается, а при переходе двигателя на большие нагрузки сажа интенсивно выгорает с развитием опасных для фильтра температур. Что же касается присадки, то в режиме холостого хода для достижения необходимого эффекта можно просто увеличить ее концентрацию в топливе.

Рекомендуемые концентрации антисажевых присадок составляют 0,01-0,02% при номинальной нагрузке. В пересчете на металл, являющийся каталитической основой присадки, это составляет десятки ppm. В режиме холостого хода присадки требуется на порядок больше.

Принцип действия антисажевых присадок в первом приближении заключается в понижении температуры выгорания сажи до 250-300°С, сравнимой с температурой ОГ, с помощью добавок соединений меди, железа и других металлов. Металлы сгорают до оксидов, которые затем легко восстанавливаются сажей на поверхности фильтра.

Катализаторы горения светлых топлив предназначены инициировать горение топлив, особенно на последних стадиях, характеризующихся недостатком кислорода. Присадки этого типа используют преимущественно в мазутах, но в некоторых случаях вводят и в светлые топлива. Наибольший эффект от применения катализаторов горения наблюдается в дизельных топливах, горючая смесь которых в камере сгорания гетерогенна, т.е. состоит из паров и мелких капель топлива, а также частиц сажи. Вообще, чем тяжелее топливо, тем эффективнее действие присадки. В качестве активного компонента катализаторы горения содержат соединения металлов, катализирующих окисление углеводородов: железа, меди, марганца и др. Патентуются также беззольные присадки, например на основе органических пероксидов. В этом случае их называют инициаторами. Рабочие концентрации катализаторов горения лучше всего устанавливать по металлу. Достаточно, если в топливе будет 5 – 50 ppm металла-катализатора. Концентрации самих присадок в таком случае будут составлять сотые доли процента.

Следует заметить, что мировой опыт использования катализаторов горения в светлых топливах невелик. Поэтому многие вопросы, связанные с оптимальными условиями применения присадок, их побочным действием и т.д., до конца не выяснены.

Полагают, что соединения щелочных и щелочноземельных металлов повышают концентрацию гидроксил-ионов в пламени. Последние, сорбирующиеся на поверхности горящих частиц и являющиеся сильными окислителями, участвуют в реакции горения. Соединения переходных металлов служат переносчиками кислорода с первых стадий горения, характеризующихся его избытком, на последние, где окислителя не хватает.

Оценка эффективности катализаторов горения

Оценка эффективности катализаторов горения осуществляется по экономичности двигателя и токсичности отработавших газов.

Катализаторы горения по-разному действуют на сгорание бензинов и дизельных топлив, что объясняется разным составом топлив и состоянием горючей смеси в камере сгорания. При добавление катализатора горения в топливо ускоряются процессы окисления, что приводит в дизельном двигателе к более полному сгоранию тяжелых остаточных фракций в основной фазе сгорания и снижению доли топлива, сгорающего в фазе догорания. Это приводит к уменьшению удельного расхода топлива. В присутствии катализаторов горения на последней стадии процесса происходит догорание топлива практически до конца, что приводит к более высокому давлению на поршень в заключительной стадии его движения. В целом топливо сгорает быстрее, хотя и снижается максимальная скорость сгорания топлива. Т.е. на стадии начала горения катализатор тормозит скорость окисления топлива, а на второй при догорании за фронтом пламени ускоряет процесс горения и делает его более полным. В результате двигатель начинает работать «мягче», что снижает напряженность деталей и увеличивает ресурс двигателя.

Предполагается, что в бензиновом двигателе работа на топливе с катализатором горения приводит к более углубленному пиролизу не испарившейся части топлива, т.к. сгореть эта часть топлива не может из-за недостатка кислорода, вызванного тем, что бензиновый двигатель работает с коэффициентом избытка воздуха близким к единице.

Катализаторы горения способствуют уменьшению нагрузки на каталитические нейтрализаторы и сажевые фильтры, так как происходит более полное сгорание топлива и количество вредных веществ в отработавших газах существенно снижается, в зависимости от марки автомобиля, его состояния и качества исходного топлива, табл. 2.

Таблица 2. Снижение содержания вредных веществ в отработавших газах ДВС при использовании каталитических присадок (0,01% об.)

Вредный компонент ОГ Присадка
«0010» «0011»
Дымность до 90
Оксиды азота до 50 до 55
Оксид углерода до 85 до 85
Углеводороды до 65 до 80
Бенз(a)пирен до 40 до 90
Альдегиды до 60 до 16
Аэрозоль до 20 -
Масляный туман до 20 до 100

Испытания присадок

Моторные испытания экологической каталитической комплексной присадки к дизельному топливу «0010» проводили в соответствии с требованиями ГОСТ 14846 и ГОСТ 14846 на испытательных стендах, оборудованных двигателем КАМАЗ-740.10 и двигателем ВАЗ-2108.

Стендовые испытания показали, что введение экологических каталитических присадок в автомобильные топлива приводит к:

  • увеличению мощности и коэффициента полезного действия;
  • снижению удельного расхода топлива;
  • уменьшению содержания вредных веществ (CO, CH, NOx и дымности, альдегидов, бенз(а)пирена и др.) в отработавших газах двигателей.

Прибавление к топливу моющих присадок уменьшает отложения на впускных клапанах, но увеличивает отложения в камере сгорания. Прибавление к топливу с моющими присадками катализаторов горения приводит к более полному сгоранию топлива и устраняет отложения в камере сгорания.

Общеизвестно, что содержание оксидов азота в ОГ двигателей напрямую связано с температурой в камере сгорания (КС). Под действием катализатора снижается энергия активации процессов горения топлива и увеличивается полнота его сгорания.

На всех автомобилях и всех режимах холостого хода (ХХ) наблюдается устойчивое и заметное снижение содержания SO2 в ОГ. Наименее эффективно катализатор горения «0011» работал на двигателе автомобиля Mazda B-Series (рег. № 8884 35D), где снижение содержания SO2 составило до 70 и 60 % на минимальных и повышенных оборотах ХХ соответственно. Наиболее эффективно действие катализатора на двигателеMercedes 300, где максимальное снижение содержания диоксида серы составило более 90 %.

Содержащиеся в топливе сернистые соединения в виде органических тиолов, сульфидов и дисульфидов (в том числе в составе гетероциклических соединений) достаточно легко расщепляются по связям S — H (энергия связи 83 Ккал/моль), S — С (65 Ккал/моль) и окисляются кислородом. Этот процесс катализируется железом, которое всегда присутствует в топливе.

При недостатке кислорода, а на всех двигателях установлен лямбда-зонд, поддерживающий стехиометрическое соотношение кислород — топливо, сульфидная сера сгорает не до SO2, а по уравнению:

S-2 + O2 ® S0 + 2О-2 + Q

где: Q — выделяемое тепло.

Кроме того, известно, что под действием специальных катализаторов при t > 500 °C диоксид серы способен вступать в реакцию взаимодействия с монооксидом углерода:

O2 + 2CO ® S0 + 2CO2 + 52 Ккал

В присутствии следов воды, которая всегда содержится в отработавших газах, возможно протекание окислительно-восстановительного процесса:

2S-2 + SO2 ® 3S0 + Q

Все эти реакции приводят к образованию элементарной серы, которая выносится с ОГ. Если диоксид серы является весьма вредным химически веществом, токсичной примесью в атмосферном воздухе промышленных городов; при концентрации 0,03-0,05 мг/л в воздухе вызывает раздражение глаз, горла и заболевания верхних дыхательных путей, то элементарная сера — одно из наиболее старых средств борьбы с вредителями и болезнями сельскохозяйственных растений.

Изменение процесса горения топлива при постоянном применении катализатора горения в качестве присадки к дизельному топливу приводит к более полному сгоранию компонентов топлива, уменьшению вредных компонентов и очистке камеры сгорания, клапанов.

На рисунке 2 приведен обобщенный график, характеризующий тенденцию содержания вредных веществ в отработавших газах двигателя, работающего на топливах с катализаторами горения.

Рис. 2. Изменене содержания вредных веществ в отработавших газах ДВС.

На I участке кривой наблюдается резкое снижение содержания вредных веществ в отработавших газах, вызванное каталитическим действием присадок на процесс сгорания топлива.

Увеличение содержания вредных веществ в отработавших газах на II участке объясняется постепенным выгоранием скопившихся в камере сгорания и газовыхлопном тракте отложений, нагаров и лаков. В первую очередь выгорают лаки, затем нагары, кокс и зольные отложения камеры сгорания, которые модифицируются радикалами катализатора. Модификация процесса горения приводит к понижению температуры выгорания отложений, которые выносятся отходящими газами. В результате восстанавливаются конструкционные параметры камеры сгорания и нормализуется рабочий процесс в цилиндрах. Подобный ход кривой объясняется большим недостатком кислорода в камере сгорания. На III участке наблюдается та же картина, что и на I.

Применение катализаторов горения

Применение катализаторов горения в сочетании с различными топливами дает возможность снизить требования конкретного двигателя к октановому числу бензина, вследствие очистки камеры сгорания. При накоплении в камере сгорания нагара с низкой теплопроводностью и теплоемкостью, требования к октановому числу бензина повышаются на 10 – 12 пунктов. Профессором Е.Р. Магарилом с сотрудниками в результате эксперимента, проведенного на автомобиле ВАЗ 2106, установлено, что после пробега равного 400 км на бензине, содержащем никелевый катализатор горения, оказалось возможным перейти на бензин А-76 с присадкой вместо бензина АИ-92.

Катализаторы горения тяжелых топлив применяются для снижения механического недожога и выбросов сажи в окружающую среду. При умелом использовании катализатора можно добиться и снижения выбросов оксидов азота, хотя на первый взгляд интенсификация процесса горения приводит к повышению температуры пламени и, как следствие, ускорению образования оксидов азота. При сгорании остаточных топлив только часть оксидов азота образуется путем связывания азота воздуха. Другая часть представляет собой «топливные оксиды», образование которых зависит, прежде всего, от концентрации кислорода. Поскольку в присутствии катализатора для хорошего горения требуется меньший избыток воздуха, меньше образуется и топливных оксидов азота. Чем меньше избыток воздуха, тем меньше потери тепла с уходящими газами. Таким образом, при использовании катализаторов горения увеличивается и тепловой КПД установки.

Принцип действия заключается в окислении сажевых частиц катализатором горения или продуктами его превращении в зоне горения. Например, переходные металлы являются переносчиками кислорода с первых стадий горения, на которых кислород находится в избытке, на последние стадии, где испытывается его недостаток:

МxОy + С ® СО + МxОy-1.

Щелочные и щелочно-земельные металлы повышают концентрацию в пламени гидроксид-ионов. Последние, являясь окислителями, также ускоряют горение сажистых частиц.

По эффективности металлы как катализаторы горения располагаются в ряд:

Mn > Sn > Сu > Со > Zn > Мо > Mg > Fе > Са

Показателями эффективности катализатора горения служат — снижение механического недожога и уменьшение дымности отходящих газов!

Итак, что мы имеем?

Преимущества применения катализаторов горения

Применение катализаторов горения в концентрации от 0,002-0,01% наибольший эффект дают в дизельных топливах и позволяет получить следующие ПРЕИМУЩЕСТВА:

  • увеличить КПД и мощность двигателя за счет более полного сгорания топлива;
  • очистить камеру сгорания, свечи и газовыхлопной тракт от нагаров и отложений;
  • уменьшить удельный расход топлива до 7 %;
  • повысить экономичность эксплуатации автотранспорта;
  • увеличить мощность двигателя за счет увеличения полноты сгорания топлива;
  • снизить чувствительность двигателя к качеству топлива;
  • использовать топливо с более низким октановым числом;
  • получить большую эффективность на менее качественном топливе;
  • ускорить регенерацию катализаторов дожига;
  • уменьшить нагрузку на катализаторы дожига и сажевые фильтры;
  • снизить содержание вредных примесей в отработавших газах;
  • сохранить физико-химические свойства топлива;
  • снизить жесткость работы двигателя;
  • несколько увеличить октановое число бензинов;
  • возможность вводить их в баки автотранспорта, автоцистерны, танки судов, цистерны хранения, хранилища АЗС перед их заливкой топливом;

Недостатки катализаторов горения

Катализаторы горения имеют и некоторые НЕДОСТАТКИ:

  • увеличивают стоимости топлива;
  • при применении присадок на базе щелочных металлов возможна коррекция угла опережения зажигания;
  • мировой опыт использования катализаторов горения невелик. Поэтому многие вопросы, связанные с оптимальными условиями применения присадок, их побочным действием и т.д., до конца не выяснены.

Стоит ли применять катализаторы горения?

Плюсы

Проведению исследований и испытаний с целью создания катализатора горения для улучшения топлива с целью получения экономии и уменьшения выброса загрязняющих веществ в отработанных газах.

Минусы

В связи с малоизученностью темы недобросовестные предприниматели используют данную тему для получения сверхприбыли. За последние два года отмечается наибольшее увеличение предложений «катализаторов горения».

miksent.ru

Катализаторы бария — Справочник химика 21

    Кроме того, для снижения потерь ката — лизатора от испарения и уменьшения коррозии аппаратуры в системах ката — лизатора в циркулирующий катализатор вводят смазывающие порошки из смеси окиси магния, карбоната и фосфата кальция, иногда титаната бария. Эти добавки взаимодействуют при высокой температуре с поверхностью катализатора, в результате чего на ней образуется глянец, способствующий снижению истирания. [c.116]
    Процесс производства присадки состоит из стадий хлорирования парафина, алкилирования фенола хлорпарафином, обработки алкилфенола хлоридом серы(1), нейтрализации бис (алкилфенол)-сульфида гидроксидом бария, сушки и центрифугирования присадки. В производстве используют парафин, жидкий хлор, фенол, хлорид серы(1), гидроксид бария, масла И-12 (разбавитель) и хлорид алюминия (катализатор). [c.226]

    Катализатор содержит 5— 90 мас.% никеля на алюминате кальция. Таблетки катализатора пропитывают водным раствором ацетата бария, сушат при 110° С, восстанавливают водородом в течение 12 ч при температуре 420° С [c.130]

    Катализатор Филлипс Ко приготовлялся из боксита, пропитанного 5%-ным раствором гидроокиси бария, активность его, как предполагается, связана с каталитическими свойствами содержащегося в боксите железа. В связи с тем, что при использовании этого катализатора предельные выходы бутадиена не превышали 50—37%, он был заменен описанным ниже промотированным катализатором из окиси железа. [c.202]

    Наиболее часто используемым элементом является никель — активный компонент подавляющего большинства катализаторов конверсии углеводородного сырья. На втором месте находится алюминий, который (в составе окиси алюминия) входит в носители, наполнители, промоторы. Значительно реже встречается магний (в составе окиси магния). Еще реже в состав катализатора вводятся кальций, натрий, калий, уран, барий. В составе сырья относительно редко встречается кремний, титан, цирконий, хром, марганец. [c.17]

    Из материалов, сведенных в табл. 7—9, можно сделать вывод о том, что промотором, вводимым в катализатор пропиткой (совместно с активным компонентом), чаще всего является уран в окисной форме. По распространенности на втором месте находятся окислы калия, бария и алюминия. Реже применяется окись магния. Окись кальция, хрома, молибдена, вольфрама, а также окись меди применяются в качестве промоторов лишь в единичных случаях. [c.25]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]

    Катализатор, нанесенный на носитель (окись алюминия), содержит 45,6 мас.% никеля и 3,2 мас.% бария. Катализатор имеет удельную поверхность 145 м /г. Удельная поверхность никеля 22 м /г [c.129]

    Катализатор получают соосаждением гелей гидроокисей алюминия и никеля с последующими их обжигом при температуре 870° С и обработкой уксуснокислым барием [c.69]

    Катализатор получают совместным осаждением нитратов никеля и алюминия бикарбонатом аммония с последующей добавкой нитрата бария [c.70]

    Катализатор содержит 10—25 мас.% никеля, диспергированного в 75—90 мас.% окиси алюминия, и металл-промотор (Ва, 5г, Са, К, Ьа, О, Се, Ре или Си). Количество бария в катализаторе может составлять 20 мас.%. Общая поверхность катализатора — 300 м г, поверхность никеля — 5—20 м /г. При паровой конверсии углеводородов, состоящих в основном из парафинов с 5—10 атомами углерода, в присутствии катализатора при температуре 343— 496° С и давлении 10,5—105 ат получают газ, содержащий в основном водород и незначительное количество метана, двуокиси и окиси углерода. На 1 кг углерода расходуется 1,5—3,0 кг водяного пара [c.70]

    Конверсию проводят при температуре 815° С и давлении 14,4 бар в присутствии никелевого катализатора [c.123]

    Никель-алюминиевый катализатор, промотированный барием [c.138]

    Процесс конверсии ведут с водяным паром при давлении 150—200 бар. Сырье вводят на катализатор при температуре 500—660° С, объемной скорости I—15, соотношении водяной пар углерод, равным 3—4 1. Внутренний диаметр зоны конверсии равен 10—100 мм, полезная длина — 6—15 мм. Этим способом при температуре 700—900° С можно получить водород или газ для синтеза аммиака, либо при температуре 500—750° С— городской газ, обогащенный метаном [c.155]

    Процесс проводят под давлением 0—80 бар и при температуре на входе 480—550° С. Скорость подачи сырья и температуру нагревания в зоне риформинга поддерживают таким образом, чтобы обеспечивалось постепенное возрастание температуры в слое катализатора [c.159]

    В реакционную трубку диаметром 90 мм под давлением 20 бар подается 35 кг/ч легкой нефтяной фракции. Трубку наполовину заполняют катализатором, содержащим 8% N1 на носителе [c.159]

    Легкие нефтя- Процесс производят при давленые фракции с НИИ 70—150 (100) бар, тем-температурой пературе 500—600° С и объем-кипения менее ной скорости 2—10 мм сухо-350° С го газа на 1 л катализатора [c.161]

    Промывка микросфер. Процесс проводят в промывочных чанах в течение 24 ч прп 45—50° С, т. е. при температуре процессов термообработки и активации. Выдерживать одинаковую температуру на всех стадиях мокрой обработки очень важно — катализатор не испытывает резких температурных напряжений, что положительно влияет на прочность его структуры. Окончание процесса промывки устанавливают ио отсутствию в промывной воде ионов ЗО » (лабораторный анализ с хлористым барием). [c.61]

    Процесс производства присадки БФК состоит из стадий алкилирования фенола полимердистиллятом, конденсации алкилфенола с формальдегидом, нейтрализации продукта конденсации, сушки и центрифугирования присадки, В синтезе используют полимер-дистиллят, фенол, формалин, гидроксид бария, масло И-12А (разбавитель), соляную кислоту и бензолсульфокислоту (катализатор). [c.228]

    В ЛепНИИ НП разработаны методы количественного анализа натрия, калия и кальция и других элементов в алюмосиликатных катализаторах и окиси алюминия, свпнца в тетраэтилсвинце и др. Во ВНИИ НП разработаны методы количественного определения различных элементов в природных катализаторах, бария и кальция в свежих и отработанных маслах, содержащих присадки. В качестве примера,

www.chem21.info

Катализаторы горения — Справочник химика 21

    I — теплоотвод 2 — термоэлемент 3 — горячие пластины — катализатор горения 5 — смесительная камера / — СНГ // — воздух /// — горючие газы [c.334]

    С учетом полученных данных сформирован состав, включающий октоген, стабилизатор химической стойкости, катализатор горения, поверхностно-активное вещество, с использованием в качестве связующего по ш- [c.193]

    Разработаны теоретические основы конструирования шпинельных гетерофазных катализаторов горения ВКС. Зависимость температуры появления особых точек повышенной активности шпинелей от состава позволяет подбирать катализатор для узких температурных областей горения ВКС. [c.61]


    Кокс, прокаленный в камерной печи, имеет более упорядоченную структуру меньшее межплоскостное расстояние (0,3470 нм), тогда на прокаленный в подовой печи 0,3472—0,3478 нм. Меньшая окисляемость его объясняется длительным пребыванием в зоне высоких температур и соответственно возгонкой части легколетучих щелочно-земель-ных металлов (катализаторов горения), интенсивной продувкой газами прокаливания, выносящими испарившиеся зольные элементы, и, возможно, экранированием зольных элементов пироуглеродом. Различие показателей качества коксов, прокаленных в камерной и подовой печах, объясняется различием скорости нагрева. Высокая скорость нагрева не [c.158]

    Органозоли металлов широко применяются при гидрировании и восстановлении различных органических соединений, в качестве катализаторов горения жидкого топлива в ракетах, как наполнители пластических масс, клеев, антикоррозионных лаков и красок, в медицине ДЛЯ изготовления лекарственных препаратов и т, д. [c.253]

    Катализаторы горения соединения меди, марганца, железа и других металлов [c.371]

    Применяются три категории присадок, влияющих на процесс горения дизельных топлив присадки, улучшающие цетановое число, катализаторы горения и модификаторы отложений. Напомним, что цетановое число, отражающее воспламеняемость дизельного топлива, является критическим свойством ДТ. Цетановое число — основной показатель воспламеняемости дизельного топлива. Повышение цетанового числа способствует более легкому запуску двигателя на холоде, снижает его перебои в процессе прогрева, способ- [c.423]

    Присадки, улучшающие полноту сгорания остаточных топлив, позволяют получить положительный эффект за счет снижения расхода топлива и уменьшения токсичности продуктов сгорания. По принципу действия их разделяют на катализаторы сгорания, ПАВ, окислители. В остаточных топливах наиболее эффективны соединения, улучшающие поверхностное натяжение топлива. Эффективность действия ПАВ и катализаторов горения увеличивается при их сочетании в различных композициях. [c.436]

    Для количественной оценки процесса горения конденсированных систем используют либо скорость перемещения фронта горения, либо маосу топлива, сгорающего в единицу времени с единицы поверхности. В первом случае скорость горения и называют линейной и выражают в м/с, во втором — массовой и выражают в кг/(м -с). Скорость горения является одной из важнейших характеристик горения топлива зависит от давления, начальной температуры топлива, его плотности, энергетических характеристик, природы составных частей топлива и катализаторов горения. [c.271]

    Среди многочисленных катализаторов горения смесевых топлив типа горючее — окислитель высокую эффективность проя вляют соединения железа [101, 110]. В сопоставимых условиях активность этих соединений в отношении систем на основе перхлората аммония (ПХА) примерно одинакова (одного порядка). [c.308]

    Катализаторы горения мазутов [c.356]

    Катализаторы горения. Срединное положение между высокозольными соединениями щелочноземельных металлов и органическими инициаторами горения занимают присадки, содержащие небольшие количества металлосодержащих катализаторов соединений меди, железа, марганца, никеля, кобальта и других металлов. Количество присадки обычно таково, чтобы содержание металла в топливе составляло тысячные доли процента. При использовании катализаторов горения снижается выход оксидов азота. Присадки могут частично выполнять роль каталитических нейтрализаторов. Например, в бензин вводят соединения платины, палладия, рения. [c.371]

    Противодымные присадки, как правило, содержат соединения бария, железа, марганца и других элементов. Они снижают в продуктах сгорания содержание частиц углерода. Так, в условиях модельной камеры сгорания добавление к топливу циклопентадиенилмарганца [176] уменьшает содержание частиц углерода в продуктах сгорания примерно на 50%. Однако указанные соединения, являясь катализаторами горения (окисле- [c.201]

    Исследованы пути получения энергонасыщенных соединений на основе производных 1,2,5-оксадиазола. Оптимизация метода получения 3,5-ди(4-амино-1,2,5-оксадиазол-3-ил)-/Я-1,2,4-триазола (I) позволила поднять выход до 90%. Обменной реакцией Na-соли соединения (I) получен ряд неорганических солей, которые предложены как катализаторы горения смесевых композиций. Нитрование соединения (I) привело к соответствующему динитроаминовому производному. Изучается алкилирование этого соединения. [c.151]

    Для улучшения сгорания могут быть использованы также катализаторы горения, представляюпцие собой главным образом органические соединения металлов — меди, железа, кобальта, хрома, никеля или марганца [74]. [c.314]

    Отработанный и отпаренный катализатор по катализатопроводу подавался через задвижку / в транспортную линию регенератора. Потоком воздуха катализатор транспортировался в виде фазы с низкой концентрацией катализатора в регенератор 5. В транспортную линию регенератора подавалось около половины воздуха, необходимого для сжигания кокса. Остальной воздух поступал в регенератор через воздушные коробы, расположенные на одном уровне с рас-предежгельной решеткой регенератора. При движении воздуха через слой катализатора кислород контактировал с отложениями кокса на внешней и внутренней поверхностях частиц катализатора. Горение кокса в регенераторе происходило при 570-600 °С. Воздух для подачи катализатора в регенератор подавали турбовоздуходувкой 11. При пуске установки воздух нагревали в топке 10. При нормальной эксплуатации установки топка отключалась. [c.114]

    Из асфальтитов получают асфальто-битумные сплавы (сплав АБ), которые используются в качестве основы для покрытий по дереву, металлу, для дорожных покрытий специального назначения [172], в качестве связующих при брикетировании углей [173]. Брикеты обладают достаточной прочностью и хорошими теплотехническими свойствами — в топке го

www.chem21.info

4.4. Катализаторы горения — GlobeCore.ru

Назначение – инициировать горение топлива, особенно на последних стадиях, характеризующихся недостатком кислорода. Присадки этого типа используют преимущественно в мазутах, но в некоторых случаях вводят и в светлые топлива. Наиболь­ший эффект от применения катализаторов горения наблюдает­ся в дизельных топливах, горючая смесь которых в камере сго­рания гетерогенна, т. е. образована парами и мелкими каплями топлива, а также частицами сажи. Вообще, чем тяжелее топли­во, тем эффективнее действие присадки. В качестве активного компонента катализаторы горения содержат соединения метал­лов, катализирующих окисление углеводородов: железа, меди, марганца и т. д. Патентуются также беззольные присадки, на­пример на основе органических пероксидов. В этом случае их называют инициаторами. Рабочие концентрации катализаторов горения лучше всего устанавливать по металлу. Достаточно, если в топливе будет 5-50 млн”1 металла-катализатора. Кон­центрации самих присадок в таком случае будут составлять сотые доли процента.

Следует заметить, что мировой опыт использования катали­заторов горения в светлых топливах невелик. Поэтому многие вопросы, связанные с оптимальными способами применения присадок, их побочным действием и т. д., до конца не выяснены.

Принцип действия. Ускорение горения углеводородов может достигаться различными путями в зависимости от состава при­садок. Полагают, что соединения щелочных и щелочноземель­ных металлов повышают концентрацию гидроксил-ионов в пламени. Последние, сорбируясь на поверхности горящих час­тиц и являясь сильными окислителями, участвуют в реакции горения. Соединения переходных металлов служат переносчи­ками кислорода с первых стадий горения, характеризующихся его избытком, на последние, где окислителя не хватает.

Показатели эффективности катализаторов горения оцени­ваются по экономичности двигателя и токсичности отработав­ших газов.

Ассортимент. В России к применению в составе дизельных топлив и автомобильных бензинов допущены соответственно присадки 0010 и 0011, представляющие собой растворы ком­плексных железосодержащих соединений. Они выпускаются ЗАО “Академия прикладных исследований” (Санкт-Петербург) по ТУ 0257-010-4895014-98 и 0257-011-4895014-98. В связи с тем, что это – первые отечественные присадки такого назна­чения, их достоинства и особенности подлежат всестороннему изучению. Требования к присадкам, предусмотренные упомя­нутыми техническими условиями, следующие:

Дополнительные свойства. Катализаторы горения на основе меди и железа способствуют ускоренной регенерации катали­тических нейтрализаторов и сажевых фильтров, снижая темпе­ратуру регенерации, т. е. действуя как антисажевые присадки.

Ограничения и недостатки катализаторов горения в светлых топливах известны мало. Следует обратить особое внимание на окислительную стабильность содержащих их топлив. Кроме того, подобно всем металлсодержащим присадкам, катализато­ры горения характеризуются определенной зольностью. Повы­шенная зольность приводит к увеличению эмиссии твердых частиц. Это ограничивает концентрации катализаторов горения в топливах. Точные ограничения не установлены, но, вероятно, увеличение концентрации металла в топливе более 50 млн”1 нежелательно.

globecore.ru

Катализатор горения топлива | Нектон Сиа

Катализатор горения топлива

28.03.2014

В современном мире к экологической безопасности топлива предъявляются высокие требования. Во многих странах мира запрещена эксплуатация старых автомобилей. В нашей стране такого запрета нет. Да и качество используемого топлива у нас далеко от идеала.

Производители проводят научные изыскания, внедряют новые методы очистки, снижающие количество серы и углеводородов в топливе. Однако у очень чистого топлива есть ряд минусов. Его состав повышает износ топливной системы автотехники. Возможен также взрыв топлива вследствие накопления статического электрического заряда.

В двигателях внутреннего сгорания (ДВС) сгорает лишь 2/3 топлива. С целью повышения полноты сгорания топлива в камерах ДВС были разработаны специальные вещества, названные катализаторами горения топлива (КГТ). С 70-х годов прошлого столетия КГТ стали использовать в качестве присадок к ракетному топливу. С тех пор многие фирмы старались внести свой вклад в развитие производства катализаторов.

По своей сути катализатор является веществом, увеличивающим скорость химической реакции. В роли катализаторов для топлива выступают различные соединения металлов, ускоряющие процесс окисления углеводородов. Концентрация катализатора составляет всего тысячные или сотые доли процента. КГТ нейтральны к составу топлива. Но их наличие в топливе снижает потерю энергии при сжигании горючего в ДВС. Это позволяет проводить окислительный процесс при более низких температурах. А это, в свою очередь, ведет к уменьшению давления в камере сгорания. Как следствие, снижается жесткость работы самого двигателя, уменьшается объем вредных выхлопов. Класс топлива, используемого в исправном двигателе, возрастает до уровня ЕВРО-3 и выше.

КГТ позволяют сжигать топливо в более полном объёме в камерах сгорания двигателя, а не при работе катализаторов дожига в системе выхлопа. Это особенно эффективно при использовании некачественного топлива, спиртового или биологического топлива.

Катализаторы изменяют структуру нагара, ускоряют его выгорание, способствуют вымыванию частиц нагара с поверхностей камеры сгорания, клапанов и свечей зажигания. Обычно нагар, оседающий на стенках камеры сгорания, уменьшает теплопроводность и теплоемкость камеры. Потребителю же приходится использовать бензин с высоким октановым числом. Использование катализирующего вещества позволяет снизить требования к октановому числу используемого бензина.

Использование катализаторов позволяет уменьшить объем используемого воздуха, то при сгорании уменьшается и количество оксидов азота.

Визуально судить об эффективности используемых катализаторов горения топлива можно по снижению «дымности» выхлопных газов.

При использовании катализаторов топлива нужно правильно подбирать ту необходимую дозу вещества, которая даст эффект увеличения полноты сгорания топлива. Расчёт производят с учётом марки топлива, в которое добавляется КГТ, состояния двигателя автомобиля, условия окружающей среды. Передозировка вещества ведёт к перерасходу топлива. Следует помнить, что катализатор вводят в бензобаки перед заправкой автотранспорта.

Если же вам удалось правильно подобрать дозу катализатора для вашего автомобиля, то в результате его применения вы сможете получить ряд преимуществ:

· Уменьшится расход топлива на 1/3;

· Повысится мощность двигателя и его КПД;

· Очистятся свечи, камера сгорания, система выхлопа газов от нагара;

· Снизится чувствительность двигателя к октановому числу и качеству топлива;

· Уменьшится загрязнение фильтров;

· Снизится количество выделяемого дыма;

· Значительно снизится количество вредных веществ в выхлопах;

· Снизить нагрузку на систему дожига выхлопного тракта;

· Увеличить скорость восстановления катализаторов дожига;

· Повысить октановое число используемого топлива;

· Уменьшатся вибрации двигателя;

· Снизится шум при работе автомобиля;

· Появится возможность запуска двигателя при более низких температурах среды;

· Уменьшится жёсткость работы двигателя автотранспорта;

· Увеличится срок службы деталей двигателя и топливных насосов, расходных материалов.

Применение каталитического нейтрализатора в качестве добавки к топливу ощутимо увеличивает приёмистость двигателя. Вам придётся заново привыкать к своему автомобилю, вырабатывать новый стиль езды.

В настоящее время многие фирмы–производители выпускают катализаторы горения топлива отдельно для двигателей бензинового и дизельного типа. Выпускаются также универсальные варианты для круглогодичного использования в любых типах двигателей. Изготовлением КГТ занимаются как отечественные, так и иностранные производители. Можем назвать лишь несколько наименований — «Ион» от белорусской компании «Сибион», EnviroTabs® от компании Greenfoot Global.

Следует помнить, что приобретать и применять нужно лишь средства, прошедшие тестирование, имеющие сертификат качества. Проверенные каталитические нейтрализаторы индифферентны к самому топливу, не меняют его состав. Используя их, вы не потеряете гарантии производителя на свой автотранспорт. Поэтому при покупке каталитического конвертера внимательно изучайте прилагающуюся к нему инструкцию. Не стесняйтесь требовать у торгующей организации сертификат на приобретаемый продукт. Это поможет вам сэкономить ваши средства, продлит срок бесперебойной службы автотранспорта, и убережёт вас от негативных переживаний.

Надеемся, что сведения, приведённые в данной статье, принесут вам пользу. Удачи на дорогах!

necton-sea.ru

Ученые о катализаторах горения топлива

Автор блога Топливо 16 Comments

Наш мир не стоит на месте. Если посмотреть на сотовые телефоны начала 90-х годов и потом сравнить их с современными моделями, то разница будет очевидна! И это нормально воспринимается, так и должно быть. Но если речь идет о катализаторах горения — добавках в топливо для улучшения его качеств и характеристик, то большинство водителей почему-то опираются в своих суждениях на информации 80-х годов прошлого века.

Получается примерно так. Представьте, что у Вас нет сотового телефона, ну вот последние 15 лет Вы жили в тайге и не пользовались современными технологиями вообще. И вот к Вам подходит человек, предлагает купить телефон и рассказывает как он работает. Но для Вас это выглядит как сказка и Вы решаете посоветоваться с другом , с которым вместе жили в тайге. Он слышал об этом, служил в армии в войсках связи, а значит разбирается профессионально. И вот этот друг говорит следущее. Ни в коем случае нельзя брать сотовый телефон! Ведь он огромный, стоимость звонков за минуту 3 доллара, дорогущий. Сразу разоришься! Это тебя обмануть пытаются 100%.  

И Вы сразу понимаете, что сотовых телефонов меньше ладони   не бывает и это развод!

Примерно такая же ситуация с катализаторами горения топлива.  Последние современные разработки 4-х летней давности обладают совсем другими свойствами и характеристиками. Они не только безопасны, значительно экономят топливо, но и защищают двигатель автомобиля от некачественного топлива + значительно снижают вредные выбросы в атмосферу! Но некоторые водители сразу вспоминают тетраэтилсвинец и нафталин, которые добавляли в топливо в начале 90-х годков прошлого века  И начинают рассказывать популярные байки, что катализаторы вредят двигателю, что они загрязняют природу, что это ничего не работает … А наиболее активные еще будут говорить, что не надо их разводить! Чувствуете аналогию с предыдущем абзацем? Где про телефоны?

Поэтому сегодня я специально для Вас нашел статью про современные катализаторы горения топлива, что они из себя представляют, как работают, какие у них есть преимущества и недостатки. Автор статьи ученый — он не в курсе нашего продукта EnviroTabs®, который ещё эффективнее указанных в статье наименований. Поэтому здесь нет подвоха.

Перед статьей ученого отзыв живого человека из Израиля ( по катализаторам предыдущего поколения, т.к. называемому MPG)

Ребята, классные новости в Израиле!!! Оснат Бен Цви из моей организации предложила MPG- caps своему знакомому, который только что приобрел новый джип LAND CRUISER у официального диллера в Израиле. Понимаете- машина на гарантии 3 года. Он обратился в компанию Toyota Land Cruiser с вопросом : » А могу ли я применять этот биокатализатор и как это может повлиять на двигатель и отразится на условиях гарантии?» Сразу ответ дать не смогли. Но, какая чудесная для нас с вами ребята новость!!! Перезвонили из Toyota и сообщили:» Не только можно использовать, а РЕКОМЕНДУЕМ.»

Выдержки из статьи о катализаторах горения.

Полный вариант можно найти по ссылке  http://www.newchemistry.ru/letter.php?n_id=125 на сайте про новые химические технологии. Там дается более качественный анализ, с формулами, с графиками, более интересно будет читать химикам. А здесь лишь основные выводы!

Технический прогресс, в результате которого создаются новые мощные и экономичные двигатели, турбины и котлы предъявляет всё более жёсткие требования к предназначенным для них топливам. Часто эти требования могут быть удовлетворены только путём введения в топлива тех или иных присадок. На разных этапах развития техники внимание разработчиков обращалось к присадкам, позволяющим полностью или частично решить возникающие проблемы. В настоящее время растет внимание к катализаторам горения топлив. Это хорошо видно на примере патентования модификаторов горения дизельных топлив, смотрите рисунок рис. 1.

 

 Рис. 1. Патентование модификаторов горения дизельных топлив в 2001-2005 г.г. 

Среди представленных модификаторов горения наибольший интерес представляет новый класс присадок, а именно — катализаторы горения.

Катализаторы горения – это вещества, изменяющие процесс горения (окисления) топлив, которые могут быть отнесены к отдельному, самостоятельному классу присадок, изменяющих скорость и механизм горения топлив. Введение их в исходные топлива позволяет получить новые топлива с улучшенными свойствами.

Катализаторы горения предназначены для снижения энергии активации реакций окисления, происходящих в камере сгорания ДВС. Следствием снижения энергии активации является возможность проведения процесса окисления горючего и обеспечение полноты его сгорания при более низких температурах. Понижение температуры в камере сгорания приводит к уменьшению максимального давления в ней и, следовательно, к снижению жесткости работы двигателя, а также к уменьшению выбросов вредных веществ с отработавшими газами.

Известно, чем выше температура воспламенения горючего, тем меньше скорость его горения, катализаторы горения увеличивают скорость горения таких топлив. При прочих равных условиях ускоряющее действие катализатора будет тем больше, чем медленнее протекает некатализируемый процесс горения. Следовательно, наибольшее действие катализаторы будут оказывать на горение высококипящих углеводородов топлива, т.е. процесс догорания топлив. При повышении давления влияние катализатора на скорость горения будет уменьшаться в соответствии с принципом Ле-Шателье.

Катализаторы горения применяются в концентрации от 0,001 до 0,01%, фактически не изменяют физико-химические свойства базового топлива, но обеспечивают изменение процесса его горения, переводя топливо в новый класс, соответствующий выполнению норм выбросов ЕВРО-2, ЕВРО-3, ЕВРО-4, при работе на исправном двигателе.

К катализаторам горения относятся органические соединения металлов первой, второй и переходной групп, применяемые в рабочей концентрации порядка нескольких ppb (parts per billion — частей на миллиард, например, мкг/кг или 1·10-7%) в пересчете на металл. Столь ничтожная концентрация катализаторов горения практически не влияет на загрязнение ими камеры сгорания и свечей зажигания.

Катализаторы горения могут выполнять частично роль каталитических нейтрализаторов. Например, в бензин вводят соединения платины, палладия, рения, родия, которые, пройдя камеру сгорания, отлагаются в виде металлов на стенках выхлопной системы и действуют как обычные катализаторы дожига. В более тяжелых топливах хороший эффект достигается введением соединений железа, например ферроцена в количестве 0,001-0,003%.

Присадки, в состав которых входят органические соединения металлов, применяют с 1950 г. и интерес к ним не ослабевает. Наиболее широко известны присадки ферроцена (дициклопентадиенилжелеза) и его производных, соединений марганца, меди, никеля, лития и других органических соединений металлов, а в некоторых случаях даже их оксиды. Бензины с такими присадками, в сравнении с бензинами без них, дают некоторое изменение эмиссии углеводородов, оксидов азота, оксида углерода, особенно на автомобилях с большим пробегом (более 60 тыс. км), и повышают эффективность работы каталитических преобразователей отработавших газов, уменьшая нагрузку на них за счет догорания топлива в камере сгорания.

Введение ферроцена в концентрации 15 ppm (parts per million — частей на миллион, например, мг/кг или 0,0001%) не оказывает отрицательного воздействия на работу двигателя, но положительно влияет на работу катализаторов дожига и увеличивает октановое число бензинов. Более того, ферроцен оказывает еще и каталитическое воздействие на процесс горения топлива, частично уменьшая нагар в камере сгорания и улучшая некоторые экологические характеристики двигателя, при одновременном небольшом снижении расхода топлива.

Для предотвращения возможного образования отложений, при использовании металлсодержащих органических соединений в составе катализаторов горения, широко используются присадки-выносители, способствующие удалению металла из камеры сгорания и со свечей зажигания.

Применение некоторых композиций металлорганических соединений позволяет существенно улучшить работу каждой присадки в отдельности, проявляя, в некоторых случаях, синергетический эффект.

В последнее время широко распространяются зольные присадки к автомобильным топливам содержащие металлокомплексные соединения, в которых в качестве лиганда используются соединения хелатного типа. Одним из достоинств металлокомплексных присадок является их многофункциональность. Широко используются композиции металлорганических соединений хелатного типа в растворителях -кетонах, дикетонах, оксимах, эфирах и т.д. Такие присадки являются универсальными многофункциональными перспективными катализаторами горения топлив. Среди них наиболее эффективны и наименее токсичны соли железа, которые были допущены в России к применению в топливах.

В результате давних споров о влиянии на каталитическое действие присадки металла и органического радикала в настоящее время считается общепринятым, что решающее влияние оказывает природа металла, входящего в состав присадки. Влияние лигандов -органической составляющей в формуле присадки незначительно.

ОРМЕКС — это системы новейшего поколения их принцип работы кардинально отличается от всех ныне существующих. В их основе лежат катализаторы горения топлив. В результате применения ОРМЕКС повышается эффективность ГСМ за счет увеличения длительности топливной подготовки в процессе транспортировки, утилизации части радиационной и звуковой энергии в процессе горения, обеспечивается более полное сгорание, глубокое окисление, за счет уменьшения температуры горения, но повышения скорости распространения волны горения по объему, обеспечивается уменьшение синтеза NO2. Эффект достигается за счет наиболее полного сгорания топливной смеси и выравнивания скорости горения у стенки со скоростью горения по объему, что дает значительное снижение детонационного эффекта. Топливная аппаратура работает исправно и надежно, ресурс ее работы увеличивается минимум в 2 раза. Отсутствуют нагары в камере сгорания и на клапанах.

Хорошо зарекомендовало себя семейство катализаторов горения Энергия-3000 французского производства. Катализаторы горения являются зольными присадками, однако концентрация металла содержащегося в них и, соответственно, в топливе ничтожна. Так, например, концентрация каталитических присадок «0010» и «0011» в дизельных топливах и бензинах составляет 0,01%. Содержание органических солей металла в таком количестве присадки менее 1% от общего содержания присадки. Суммарное количество ионов металла, вносимое в камеру сгорания с присадкой, составляет примерно 1 грамм на 50 тыс. л топлива или, примерно, на 500 тыс. км пробега автомобиля, что явно ниже концентрации естественных примесей в топливе, которая достигает 5-6 ppm. При этом основная масса металла, входящего в состав катализатора горения, выносится с отработавшими газами.

Для гарантированного выноса из камеры сгорания такого ничтожно малого количества металла в присадках «0010» и «0011» дополнительно в составе присадок предусмотрен выноситель в концентрации, обеспечивающей содержание камеры сгорания и свечей зажигания в чистоте.

Катализаторы горения по-разному действуют на сгорание бензинов и дизельных топлив, что объясняется разным составом топлив и состоянием горючей смеси в камере сгорания. При добавление катализатора горения в топливо ускоряются процессы окисления, что приводит в дизельном двигателе к более полному сгоранию тяжелых остаточных фракций в основной фазе сгорания и снижению доли топлива, сгорающего в фазе догорания. Это приводит к уменьшению удельного расхода топлива. В присутствии катализаторов горения на последней стадии процесса происходит догорание топлива практически до конца, что приводит к более высокому давлению на поршень в заключительной стадии его движения. В целом топливо сгорает быстрее, хотя и снижается максимальная скорость сгорания топлива. Т.е. на стадии начала горения катализатор тормозит скорость окисления топлива, а на второй при догорании за фронтом пламени ускоряет процесс горения и делает его более полным. В результате двигатель начинает работать «мягче», что снижает напряженность деталей и увеличивает ресурс двигателя.

Предполагается, что в бензиновом двигателе работа на топливе с катализатором горения приводит к более углубленному пиролизу неиспарившейся части топлива, т.к. сгореть эта часть топлива не может из-за недостатка кислорода, вызванного тем, что бензиновый двигатель работает с коэффициентом избытка воздуха близким к единице.

Катализаторы горения способствуют уменьшению нагрузки на каталитические нейтрализаторы и сажевые фильтры, так как происходит более полное сгорание топлива и количество вредных веществ в отработавших газах существенно снижается, в зависимости от марки автомобиля, его состояния и качества исходного топлива.

Таблица 1. Снижение содержания вредных веществ в отработавших газах ДВС при использовании каталитических присадок (0,01% об.)

Вредный компонент ОГПрисадка
«0010»«0011»

Дымность

до 90

Оксиды азота

до 50

до 55

Оксид углерода

до 85

до 85

Углеводороды

до 65

до 80

Бенз(a)пирен

до 40

до 90

Альдегиды

до 60

до 16

Аэрозоль

до 20

Масляный туман

до 20

до 100

Применение катализаторов горения в концентрации от 0,002-0,01% в составе базовых топлив позволяет получить следующие ПРЕИМУЩЕСТВА:

  • — увеличить КПД и мощность двигателя за счет более полного сгорания топлива;
  • — очистить камеру сгорания, свечи и газовыхлопной тракт от нагаров и отложений;
  • — уменьшить удельный расход топлива до 6%;
  • — повысить экономичность эксплуатации автотранспорта;
  • — увеличить мощность двигателя за счет увеличения полноты сгорания топлива;
  • — снизить чувствительность двигателя к качеству топлива;
  • — использовать топливо с более низким октановым числом;
  • — получить большую эффективность на менее качественном топливе;
  • — ускорить регенерацию катализаторов дожига;
  • — уменьшить нагрузку на катализаторы дожига и сажевые фильтры;
  • — снизить содержание вредных примесей в отработавших газах;
  • — сохранить физико-химические свойства топлива;
  • — снизить жесткость работы двигателя;
  • — несколько увеличить октановое число бензинов;
  • — возможность вводить их в баки автотранспорта, автоцистерны, танки судов, цистерны хранения, хранилища АЗС перед их заливкой топливом;

Катализаторы горения имеют и некоторые НЕДОСТАТКИ:

  • — увеличивают стоимости топлива менее чем на 1%;
  • — при применении присадок на базе щелочных металлов возможна коррекция угла опережения зажигания.

Еще об отличии присадок и катализаторов горения топлива можно почитать в статье на нашем блоге.

wicm.ru

Азотнокислый барий — Справочник химика 21

    Прокаливание азотнокислого бария с последующим присоединением к окиси бария кислорода [c.207]

    Раствор, содержащий 26,1 г азотнокислого бария, смешан с 42 мл 26%-ного раствора сернокислого натрия (плотность 1,3). Какие вещества и в каком количестве остались в растворе после того, как осадок был отфильтрован  [c.27]

    Сколько миллилитров 0,2 и. раствора щелочного карбоната нужно прибавить к 200 мл 0,1 М раствора азотнокислого бария, чтобы полностью ссадить барий в виде карбоната бария  [c.28]


    Следовательно, при электролизе раствора смесн солей водород выделяется только за счет электролиза раствора Ва(МОз)а, кислород —за счет обеих солей. Значит, из 1,5 объемов кислорода (при 2 объемах водорода) 1 объем выделился при электролизе Ba(NO i)a, 0,5 объема — u(N0.-i)2. Это значит, что количество грамм-эквивалентов азотнокислого бария, а значит и его молей, было в два раза больше, чем нитрата меди. [c.158]

    Сколько выделится азотнокислого бария из раствора, насыщенного при 100 и охлажденного до 0°, если во взятом растворе было 50 мл воды. Растворимость азотнокислого бария при 0° равна 5 г, а при 100°—34,2 г. [c.359]

    Азотнокислый барий кристаллизуется при обычных условиях без воды. Напротив, нитраты Са и 5г выделяются в виде кристаллогидратов. Последние легкорастворимы в воде, тогда как растворимость Ba(NOз)2 [и Ра (N03)2] значительно меньше. Нитрат кальция широко применяется в качестве азотсодержащего минерального удобрения. Нитраты стронция и бария служат в пиротехнике для изготовления составов, сгорающих красным (Зг) или зеленым (Ва) пламенем. [c.388]

    Окись бария можно получить прокаливанием азотнокислого бария  [c.68]

    Менее чистый препарат можно получить при взаимодействии углекислого натрия с азотнокислым барием  [c.71]

    На присутствие солей серной кислоты от прибавления к раствору азотнокислого бария не должен получаться осадок сернокислого бария. [c.160]

    На присутствие солей серной кислоты водный раствор уротропина не должен давать осадка сернокислого бария от прибавления раствора азотнокислого бария. [c.169]

    На присутствие сернокислых солей он не должен давать мути с азотнокислым барием. [c.217]

    На содержание хлористых и сернокислых солей водный раствор пиперазина, подкисленный азотной кислотой, не должен давать осадка ни с азотнокислым серебром, ни с азотнокислым барием. [c.259]

    Азотнокислый барий плохо растворим в холодной воде и еще хуже в растворе азотнокислой меди. Поэтому для того, чтобы обе соли перевести в раствор, необходимо смесь нагреть. [c.302]

    Барий вводится в качестве одного из компонентов катализатора, потому что он оказывает защитное действие против отравляющего действия сульфатов имеются также указания на то, что он оказывает стабилизирующее действие на катализатор в отношении его восстановления. Приведенную здесь методику можно применить также и к получению медно-хромового катализатора не содержащего бария. В этом случае не берут совсем азотнокислого бария, а азотнокислой меди берут 242 г (1 мол.). Все остальные детали синтеза сохраняются. [c.303]

    Перйодат натрия, приготовленный из 100 г иода (около 225 г), суспендируют в 1 л кипящей воды, содержащей 10 мл концентрированной азотной кислоты (для увеличения растворимости перйодата). Небольшой избыток (против рассчитанного по уравнению) нитрата бария (325 г) растворяют в горячей воде раствор кипятят 1,5—2 часа при энергичном перемешивании. Затем раствор нейтрализуют гидроокисью бария и оставляют охлаждаться. Выкристаллизовавшийся перйодат бария промывают несколько раз декантацией горячей водой (каждый раз перемешивая кристаллы) и затем промывают на воронке Бюхнера. Если соль окрашивает пламя горелки в желтый цвет, ее снова кипятят с раствором азотнокислого бария в присутствии азотной кислоты, как было указано выше. [c.165]

    Барий азотнокислый. Бария нитрат. Ba(NOs)2. М.м. 261,35. Бесцветные кристаллы. Ядовит. ГОСТ 3777-76. [c.105]

    Концентрированная соляная и азотная кислоты осаждают из достаточно концентрированных растворов бариевых солей хлористый ИЛИ азотнокислый барий. [c.298]

    Пример 1. Нужно составить двойную основную смесь из азотнокислого бария и крахмала [c.8]

    Во-первых, напишем реакцию разложения окислителя, т. е. азотнокислого бария  [c.8]

    Как видно из этого примера, при разложении окислителя — азотнокислого бария Ва(ЖЗз)2 —выделяется кислород 1 молекула его содержит 6 атомов кислорода, а в свободном виде выделяется лишь 5 атомов 1 атом кислорода остается в соединении с барием в виде окиси бария ВаО и окисляющего действия не обнаруживает. [c.9]

    Определить теплоту реакции взаимодействия азотнокислого бария с алюминием. [c.21]

    Азотнокислый барий (нитрат бария) Ва(НОз)2, молекулярный вес 261,39 получается при реакции обменного разложения между хлористым барием в растворе и нитратом натрия при 80—90°. [c.31]

    Азотнокислый барий служит окислителем во многих пиротехнических, особенно осветительных составах. Составы с азотнокислым барием значительно менее чувствительны, чем с окислителями, указанными выше. В некоторых случаях азотнокислый барий применяется в составах в смеси с другими, более активно действующими окислителями. [c.31]

    В качестве окислителя для осветительных составов большей частью применяют азотнокислый барий. Прп горении составов с азотно—ки ым барием образуется окпсь бария, при температуре горения состава она излучает яркие линии и полосы в желто-зеленой части спектра. Таким образом, давая кислород для реакции горения, нитрат бария одновременно служит и пламенной добавкой. [c.56]

    Опособ Кариуса состоит в сожжении навески керосяша н его, epit крепкой азотной кислотой в запаянной трубке при нагревании в течение 3. часов до 160°. Несомненно, это лучший способ, но он не-позволяет открывать незначительные количества серы, так как рискованно брать навески больше 0,4—0,5 г. Продукты окисления, ло вскрытии трубки выливаются в воду, прибавляется хлористый или азотнокислый барий, и сера определяется обычным путем-в виде BaS04. [c.207]

    Бауман (146) одновременно определяет н e r, я зщр] подобным же при( ром, но сера осаждается в растворе после подкисления азотной кислотой азотнокислым барием. После отфильтро-вывания его азотнокислым Серебром осаждают хлор. Само собой разумеется, что в таком случае бромноватистую щелочь приходится заменять другими окислителями, не содержащими ни серы,. ни галоидов. Эслинг (147) употребляет для этой цели титроваийый раствор соды, избыток которой оттитровывается по оковяании опыта (326), [c.209]

    Кроме щелочного оксндироааиня, известно бесщелочное (кислое) оксидирование. Раствор для кислого оксидирования содержит азотнокислый барий 40—50 г на 1 дм воды и фосфорную кислоту плотности 1,55 в количестве 3—5 г на 1 дм воды. Оксидирование производится при температуре раствора 98—100°С в течение 30 мин. Коррозионная стойкость пленки из кислого раствора и другие ее свойства выше, чем у иленки, полученной при щелочном способе. [c.329]

    Чтобы установить формулу хромовокалневых ква

www.chem21.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *