Где применяются подшипники скольжения – Сфера и область применения подшипников. Где применяются подшипники

Подшипники скольжения | Подшипники в России

Шарнирные подшипники скольжения — изделия, работающие по несколько иному принципу, чем привычные нам подшипники качения. Если в последних сила трения снижается за счет применения тел качения, которые имеют небольшую площадь контакта с дорожкой качения, то в шарнирных подшипниках это осуществляется за счет поверхностей скольжения сферической формы внутреннего и наружного кольца. Назначение подшипника скольжения — восприятие радиальных, осевых и комбинированных нагрузок в подвижных или неподвижных соединениях разнообразных машин и механизмов, при этом важнейшую роль при его функционировании играет смазка, которая не только обеспечивает минимальное трение, но и служит для отвода тепла от нагревающегося во время работы подшипника, прежде всего, если материалы подшипника скольжения — стали, а это большинство распространенных шарнирных подшипников. Чаще всего это стали ШХ-15, ШХ15СГ, нержавеющая 95Х18Ш и другие сплавы для подшипников скольжения.

Как правило, большинство потребителей имеют дело со сферическими шарнирными подшипниками, хотя есть и другие, например, линейные подшипники скольжения. В данном материале мы подробно рассмотрим именно сферические, поскольку исторически сложилось так, что они конструируются и выпускаются на тех же заводах, что и подшипники качения, да и купить их можно в тех же фирмах, где и подшипники качения.

Где купить

Данному вопросу на сайте посвящена отдельная статья — «Купить подшипники скольжения».

Конструкция подшипников скольжения

Подшипник скольжения состоит из корпуса (который может быть разъемным, т. н. «ломаным») и рабочего элемента — втулки, которая монтируется на вал. В последнее время выпускаются модификации с разборным наружным кольцом (корпусом), для облегчения монтажа (при этом отдельные части должны скрепляться проволокой на заводе). С различными особенностями конструкций (наличие канавок, отверстий для смазки, прорезей, разломов можно ознакомиться в статье «Виды подшипников скольжения«. Устройство подшипников скольжения постоянно совершенствуется, так, к примеру, если вы возьмете каталог подшипников скольжения, производимых во времена СССР, то не увидите там большинство из применяемых в настоящее время типов, и наоборот, большая часть представленных в нем модификаций уже снята с производства.

Смазка для подшипников скольжения

Как уже указывалось, смазка чрезвычайно важна для функционирования для этих изделий, ведь трение подшипников скольжения существенно выше, чем подшипников качения из-за большой площади контакта, она может быть жидкой (минеральные масла), пластичной (на основе лития, например, литол, или  кальция, например, 158 Ф), твёрдой (графитовая, на основе дисульфида молибдена) и
газообразной (различные инертные газы, азот). Чаще всего применяются жидкие и пластические смазки, причем предельное число оборотов у первых значительно выше.

Классификация подшипников скольжения

Изделия классифицируют по разным признакам. Традиционная классификация, принятая в нашей промышленности, описана в материале «Типы подшипников скольжения«, для импортных подшипников скольжения применяют более широкую, в первую очередь, на основании направления действующей нагрузки (аналогично подшипникам качения):

  • радиальные
  • упорные
  • радиально-упорные;

Кроме того, данную группу можно разделить по тому, разъемны ли отдельные детали или нет (бывают также встроенные шарнирные подшипники), по возможности регулирования и т.д. В основном же, в нашей промышленности и транспорте применяются радиальные подшипники скольжения. Еще одной группой являются втулки скольжения.

Область применения подшипников скольжения

Радиальные подшипники скольжения массово применяются в отечественной промышленности, их устанавливают в различное производственное оборудование и транспортные средства. Наиболее часто они используются в грузовой технике и сельскохозяйственной технике. Размеры подшипников скольжения определяют узлы их эксплуатации, например, небольшие ШСП20 и ШСП30 применяются в комбайнах «Дон» и других (рулевая тяга, гидроцилиндры, шатуны), а крупные по размерам ШСЛ90, 100, 120 в поворотных цилиндрах и подвесках многотоннажных грузовиков и самосвалов. Применение подшипников скольжения особенно оправдано в узлах, где возникают тяжелые ударные или статические нагрузки, их можно эксплуатировать в экстремальных условиях, например, в воде, монтируются достаточно легко, однако у них есть и существенные недостатки. К последним можно отнести вес, невысокий КПД, большие расходы смазки.

ГОСТ на подшипники скольжения

Шарнирные подшипники выпускаются по ГОСТ, ТУ и ВНИПП. Основные ГОСТы, регламентирующие производство и эксплуатацию подшипников скольжения.

ГОСТ 7904-1-2001. Подшипники скольжения. Условные обозначения. Часть 1. Основные условные обозначения.

ГОСТ 7904-2-2001. Подшипники скольжения. Условные обозначения. Часть 2. Применение.

ГОСТ 4378-1-2001. Подшипники скольжения. Термины, определения и классификация. Часть 1. Конструкция, подшипниковые материалы и их свойства.

ГОСТ 4378-4-2001. Подшипники скольжения. Термины, определения и классификация. Часть 4. Расчетные параметры и их обозначения.

ГОСТ 18282-88. Подшипники скольжения машин. Термины и определения.

ГОСТ 28801-90. Подшипники скольжения. Кольца упорные. Типы, размеры и допуски.

ГОСТ 29201-91. Подшипники скольжения. Втулки из медных сплавов.

Подшипники скольжения каталог

Многие подшипники скольжения, производимые в нашей стране, уже вышли из употребления и производства, но разрабатываются новые, редкий каталог подшипников удовлетворяет реалиям сегодняшнего времени. Для получения подробной информации по подшипникам скольжения пользуйтесь поиском на нашем сайте (расположен в правом верхнем углу). Также вы можете скачать подробный каталог подшипников скольжения шведского производителя SKF. Это справочник на английском языке. Дополнительную информацию по другим маркам можно получить в разделе, посвященном импортным подшипникам (там же есть каталоги других производителей, цены на продукцию которых заметно ниже).

samip.ru

Конструкция подшипников скольжения

Лекция 9

Подшипники. Подшипники скольжения. Классификация. Конструкция подшипников скольжения. Материалы деталей подшипников. Расчет подшипников скольжения. Смазывание подшипников скольжения. КПД подшипников скольжения. Условия работы и виды разрушения подшипников скольжения

 

Подшипники – это опоры вращающихся осей и валов, которые воспринимают радиальные и осевые нагрузки, приложенные к валу или оси, и передают их на раму, корпус или станину машины.

По принципу работы различают подшипники скольжения, в которых цапфа вала скользит по опорной поверхности, и подшипники качения, в которых между поверхностью вращающейся детали и опорной поверхностью расположены тела качения.

Подшипники вращающихся осей некоторых транспортных средств (например, железнодорожных вагонов) с преобладающей вертикальной нагрузкой называют буксами.

 

Подшипники скольжения

Подшипники, работающие по принципу трения скольжения, называются подшипниками скольжения.

Простейшим подшипником скольжения является отверстие, расточенное непосредственно в корпусе машины, в которое обычно вставляют втулку (вкладыш) из антифрикционного материала.

 

Достоинства подшипников скольжения:

а) малые габариты в радиальном направлении;

б) хорошая восприимчивость ударных и вибрационных нагрузок;

в) возможность применения при очень высоких частотах вращения вала и в прецизионных машинах;

г) большая долговечность в условиях жидкостного трения;

д) возможность использования при работе в воде или агрессивной среде.

 

Недостатки подшипников скольжения:

а) большие габариты в осевом направлении;

б) значительный расход смазочного материала и необходимость систематического наблюдения за процессом смазывания;



в) необходимость применения дорогостоящих и дефицитных антифрикционных материалов для вкладышей.

 

Вышеперечисленные достоинства и недостатки определяют применение подшипников скольжения, например в молотах, поршневых машинах, турбинах, центрифугах, координатно-расточных станках, для валов очень больших диаметров, а также для валов тихоходных машин. КПД подшипников скольжения h = 0,95...0,99.

 

Классификация

По воспринимаемой нагрузке различают подшипники:

а) радиальные – воспринимают радиальные нагрузки;

б) радиально-упорные – воспринимают радиальные и осевые нагрузки;

в) упорные – воспринимают упорные нагрузки.

От качества подшипников в значительной степени зависит работоспособность, долговечность и КПД машин.

 

Рисунок 1

– Рабочая поверхность подшипника: а) цилиндрическая; б) плоская; в) коническая; г) сферическая

 

 

Материалы деталей подшипников

Корпус и крышку подшипника отливают из серого чугуна, обладающего хорошими литейными свойствами. Шейки валов подвергают термической и химико-термической обработке для получения высокой твердости (HRC 55...60), что уменьшает их изнашивание. Последнее очень важно, так как стоимость валов выше стоимости вкладышей.

Вкладыш является наиболее ответственной деталью подшипника, непосредственно воспринимающей передаваемую цапфой нагрузку. Поэтому к его материалу предъявляют целый комплекс требований:

а) износостойкость;

б) низкий коэффициент трения в паре с материалом шейки вала;

в) высокая сопротивляемость заеданию;

г) достаточная пластичность и высокая теплопроводность;

д) хорошая прирабатываемость и смачиваемость смазочным материалом;

е) способность образовывать на трущихся поверхностях цапфа — вкладыш стойкие и быстро восстанавливаемые пленки;

ж) стойкость против коррозионно-механического изнашивания.

Вкладыши устанавливают в корпус с натягом, предупреждая их проворачивание и осевое смещение установкой штифтов, винтов.

Вкладыши (втулки подшипников) изготовляют металлическими (ГОСТ 1978—81), биметаллическими (ГОСТ 24832—81) и из порошковых материалов (ГОСТ 24833—81). Для металлических вкладышей применяют бронзы и антифрикционные чугуны; для биметаллических вкладышей сталь или чугун покрывают баббитом; для вкладышей из порошковых материалов используют порошки железа или бронзы. Вкладыши также изготовляют из пластмасс, древесно-слоистых пластиков и т. д. Выбор материала вкладыша зависит от:

а) условий эксплуатации,

б) характера нагрузки,

в) скорости вращения вала и метода смазывания.

Стандартизованы корпуса неразъемных подшипников скольжения и корпуса и вкладыши разъемных подшипников скольжения с двумя крепежными отверстиями.

 

Рисунок 10

 

В герметически закрытых механизмах может применяться смазывание разбрызгиванием движущимися деталями или смазывание погружением, при котором поверхность трения полностью или частично помещена в ванну с жидким смазочным материалом.

В зависимости от периодичности и способа подведения смазочного материала к подшипникам различают следующие методы смазывания (ГОСТ 23.002—78):

а) непрерывное;

б) периодическое;

в) капельное;

г) ресурсное;

д) под давлением;

е) погружением;

ж) масляным туманом;

з) фитильное;

и) кольцом;

к) циркуляционное.

При последнем жидкий смазочный материал многократно циркулирует от смазочного насоса к поверхностям трения, по пути фильтруясь и охлаждаясь.

При работе машины трение между цапфой вала и вкладышем подшипника при жидком смазочном материале может происходить в условиях жидкостной, полужидкостной и граничной смазки.

 

Жидкостная и граничная смазка. Жидкостной называется смазка, при которой поверхность трения деталей, находящихся в относительном движении, полностью разделены жидким смазочным материалом. При жидкостной смазке толщина слоя масла больше суммарной высоты неровностей профиля рабочих поверхностей цапфы и вкладыша, поэтому всю нагрузку несет масляный слой и значительно снижается трение и изнашивание рабочих поверхностей. Так как жидкость несжимаема, то при жидкостной смазке это объемное свойство масла проявляется в полной мере и нагрузочная способность слоя смазочного материала оказывается очень высокой. Сопротивление движению при жидкостной смазке определяется только внутренним трением в смазочном материале, зависящем от его вязкости.

Если жидкостная смазка осуществляется частично, то она называется полужидкостной.

Благодаря маслянистости, смазочный материал способен образовывать на сопряженных поверхностях тонкие пленки, называемые граничными слоями. Свойства масла в граничном слое резко отличаются от его объемных свойств. Граничный слой обладает высокой прочностью и может выдерживать давление до 3000 МПа и более.

Граничнойназывается смазка, при которой трение и износ между поверхностями, находящимися в относительном движении, определяются свойствами этих поверхностей и свойствами смазочного материала, отличными от объемных.

Следует помнить, что при повышении температуры вязкость масла уменьшается, увеличивается возможность разрушения граничных пленок и появления чистого контакта цапфы и вкладыша, что может привести к схватыванию материала и заеданию подшипника.

Очевидно, что для работы подшипников скольжения наиболее благоприятным является режим жидкостной смазки. Однако большинство подшипников скольжения работает в условиях полужидкостной или граничной смазки. В подшипниках скольжения, постоянно работающих при жидкостной смазке, в периоды пусков или остановок могут осуществляться другие виды смазки.

 

Понятие о гидростатической и гидродинамической смазке. Гидростатическойназывается жидкостная смазка, при которой полное разделение поверхностей трения осуществляется в результате поступления жидкости в зазор между ними под внешним давлением (например, от насоса).

Гидродинамическойназывается жидкостная смазка, при которой полное разделение поверхностей трения осуществляется в результате давления, самовозникающего в слое жидкости при относительном движении поверхностей.

 

 

Рисунок 11 – Смазка валов: а) невращающийся вал; б) вращающийся вал

 

На рисунке 11, а изображен невращающийся вал, опирающийся на подшипник скольжения, заполненный смазочным маслом. Обратим внимание на то, что зазор между валом и подшипником имеет клиновидную форму. После пуска машины благодаря маслянистости и вязкости масло будет увлекаться вращающимся валом и нагнетаться в клиновидный зазор, в результате чего в масляном слое возникнет избыточное давление, возрастающее с увеличением угловой скорости вала. Избыточное давление создает гидродинамическую подъемную силу. После достижения какого-то критического значения угловой скорости цапфа вала всплывает в масле и несколько смещается в сторону вращения, как показано на рисунке 11, б. С увеличением угловой скорости вала, а также вязкости масла, увеличивается толщина разделяющего масляного слоя; с увеличением радиальной нагрузки на цапфу толщина масляного слоя уменьшается.

Расчет подшипников скольжения в условиях жидкостной смазки выполняется на основе гидродинамической теории, основоположником которой является русский ученый Н. П. Петров, награжденный за эту работу в 1884 г. Ломоносовской премией.

Так как все жидкости и газы обладают вязкостью, то в качестве смазочного материала можно применять, например, воду или воздух (газодинамическая смазка).

 

КПД подшипников скольжения

Величина КПД зависит от потерь на трение. В условиях граничной смазки КПД одной пары подшипников принимают для вкладышей из чугуна h = 0,95...0,96; для вкладышей из бронзы h = 0,97...0,98; для вкладышей с баббитовой заливкой h = 0,98...0,99; для вкладышей из древеснослоистых пластиков при смазывании водой h = 0,98.

 

Лекция 9

Подшипники. Подшипники скольжения. Классификация. Конструкция подшипников скольжения. Материалы деталей подшипников. Расчет подшипников скольжения. Смазывание подшипников скольжения. КПД подшипников скольжения. Условия работы и виды разрушения подшипников скольжения

 

Подшипники – это опоры вращающихся осей и валов, которые воспринимают радиальные и осевые нагрузки, приложенные к валу или оси, и передают их на раму, корпус или станину машины.

По принципу работы различают подшипники скольжения, в которых цапфа вала скользит по опорной поверхности, и подшипники качения, в которых между поверхностью вращающейся детали и опорной поверхностью расположены тела качения.

Подшипники вращающихся осей некоторых транспортных средств (например, железнодорожных вагонов) с преобладающей вертикальной нагрузкой называют буксами.

 

Подшипники скольжения

Подшипники, работающие по принципу трения скольжения, называются подшипниками скольжения.

Простейшим подшипником скольжения является отверстие, расточенное непосредственно в корпусе машины, в которое обычно вставляют втулку (вкладыш) из антифрикционного материала.

 

Достоинства подшипников скольжения:

а) малые габариты в радиальном направлении;

б) хорошая восприимчивость ударных и вибрационных нагрузок;

в) возможность применения при очень высоких частотах вращения вала и в прецизионных машинах;

г) большая долговечность в условиях жидкостного трения;

д) возможность использования при работе в воде или агрессивной среде.

 

Недостатки подшипников скольжения:

а) большие габариты в осевом направлении;

б) значительный расход смазочного материала и необходимость систематического наблюдения за процессом смазывания;

в) необходимость применения дорогостоящих и дефицитных антифрикционных материалов для вкладышей.

 

Вышеперечисленные достоинства и недостатки определяют применение подшипников скольжения, например в молотах, поршневых машинах, турбинах, центрифугах, координатно-расточных станках, для валов очень больших диаметров, а также для валов тихоходных машин. КПД подшипников скольжения h = 0,95...0,99.

 

Классификация

По воспринимаемой нагрузке различают подшипники:

а) радиальные – воспринимают радиальные нагрузки;

б) радиально-упорные – воспринимают радиальные и осевые нагрузки;

в) упорные – воспринимают упорные нагрузки.

От качества подшипников в значительной степени зависит работоспособность, долговечность и КПД машин.

 

Рисунок 1 – Рабочая поверхность подшипника: а) цилиндрическая; б) плоская; в) коническая; г) сферическая

 

 

Конструкция подшипников скольжения

Условно подшипники скольжения можно разделить на следующие виды:

а) разъемные и неразъемные, в зависимости от конструкции их корпуса;

б) присоединенные и встроенные, в зависимости от особенностей их установки;

в) вкладышные и безвкладышные, в зависимости от наличия вкладышей;

г) несамоустанавливающиеся и самоустанавливающиеся, в зависимости от способности вкладышей подшипника к самоустанавливанию.

 

Принципиальные конструктивные различия подшипников скольжения:

 

Рисунок 2 – Подшипники скольжения:

а) вкладыш непосредственно в станине; б) вкладыш непосредственно раме

 

Очень часто подшипники не имеют специального корпуса. При этом вкладыши размещают непосредственно в станине (рис. 2, а) или раме (рис. 2, 6) машины. Таково, например, большинство подшипников двигателей, турбин, станков, редукторов и т.д. Подшипники с отдельными корпусами устанавливают главным образом в таких устройствах, как конвейеры, грузоподъемные машины, трансмиссии и т. д. В этих случаях подшипники крепят на фермах, стенах, колоннах.

Корпус и вкладыш, как отмечалось выше, могут быть неразъемными или разъемными. Разъемный подшипник позволяет легко укладывать вал и ремонтировать подшипник путем повторных расточек вкладыша при его износе. Неразъемные подшипники дешевле. Вкладыши в этих подшипниках обычно запрессовывают в корпус.

 

 

Рисунок 3 – Нагрузка во вкладыше разъемного подшипника

 

Разъем вкладыша рекомендуют выполнять перпендикулярно нагрузке Fr или близко к этому положению (рис. 3). При этом не нарушается непрерывность несущего масляного слоя.

В тех случаях, когда возможны большие деформации вала или монтаж выполняется неточно, рекомендуется применять самоустанавливающиеся подшипники. Сферическая поверхность этих подшипников позволяет им поворачиваться в направлении оси вала.

 

Конструктивные особенности подшипников скольжения. По приведенным признакам можно полностью охарактеризовать конструктивные особенности того или иного подшипника скольжения.

 

Втулка подшипника

 

Рисунок 4 - Неразъемный подшипник

 

Неразъемный подшипник (рис. .4) состоит из корпуса и втулки, которая может быть неподвижно закреплена в корпусе подшипника или свободно заложена в него(«плавающая втулка»). Неразъемные подшипники используют главным образом, в тихоходных машинах, приборах и т. д. Их основное преимущество — простота конструкции и низкая стоимость. Если корпус подшипника выполнен в виде фланца с опорной плоскостью, нормальной к оси вала, то такой подшипник называют фланцевым.

 

 

Рисунок 5 – Разъемный подшипник

 

Разъемный подшипник (рис. 5) состоит из основания 1 и крышки корпуса 3, разъемного вкладыша 2, смазочного устройства 4 и болтового или шпилечного соединения основания с крышкой. Износ вкладышей в процессе работы компенсируется поджатием крышки к основанию. Разъемные подшипники значительно облегчают сборку и являются незаменимыми для конструкций с коленчатыми валами. Разъемные подшипники широко применяются в особенно тяжелом машиностроении.

 

Антифрикционный слой

Рисунок 6 – Самоустанавливающийся подшипник

 

На рисунке 6 изображен самоустанавливающийся подшипник скольжения, у которого сопряженные поверхности вкладыша и корпуса выполнены по сфере радиуса R. Сферическая поверхность позволяет вкладышу самоустанавливаться, компенсируя неточности монтажа и деформации вала, обеспечивая тем самым равномерное распределение нагрузки по длине вкладыша. Такие подшипники применяются при большой длине цапф.

На рисунке 7 показан сегментный подшипник с качающимися вкладышами. Такие подшипники хорошо центрируют вал и обеспечивают стабильную работу подшипниковых узлов, поэтому их применяют для быстроходных валов, особенно при опасности возникновения вибраций.

 

 

Рисунок 7 – Сегментный подшипник

 

Втулки подшипников скольжения (металлические, биметаллические и из спекаемых материалов) стандартизованы.

 


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Подшипники скольжения и качения: классификация,


Каждый из нас на не раз сталкивается со словом "подшипник" в повседневной жизни. Но не каждый знает что такое подшипник, для чего нужен подшипник, и какие виды подшипников бывают. В этой статье мы постараемся рассказать вам о подшипниках скольжения и качения, их назначение, принцип работы, преимущества, виды воспринимаемых нагрузок и многое другое.

Подшипники поддерживают вращающиеся оси и валы, воспринимают от них радиальные и осевые нагрузки и сохраняют заданное положение оси вращения вала.
Подшипники классифицируют по виду трения и воспринимаемой нагрузке.

По виду трения различают: подшипники скольжения, у которых опорный участок вала скользит по поверхности подшипника; подшипники качения, у которых трение скольжения заменяют трением качения посредством установки шариков или роликов между опорными поверхностями подшипника и вала.

По воспринимаемой нагрузке различают подшипники: радиальные – воспринимают радиальные нагрузки; упорные – воспринимают осевые нагрузки; радиально-упорные – воспринимают радиальные и осевые нагрузки.
Все типы подшипников широко распространены.

Подшипники скольжения

– это опоры вращающихся деталей, работающие при относительном скольжении цапфы по поверхности подшипника.

Достоинства подшипников скольжения:
- малые габариты в радиальном направлении;
- возможность работы при высоких скоростях вращения и нагрузках, в воде и в агрессивных средах;
- обеспечение высокой точности установки валов;
- малая чувствительность к ударным и вибрационным нагрузкам;
- незаменимость в случаях, когда по условиям сборки подшипник должен быть разъемным (на шейках коленчатых валов).

Недостатки:
- выше, чем у подшипников качения, потери мощности на трение;
- более сложная смазочная система;
- необходимость использования дефицитных материалов.

Подшипник (рис. 4.1, а) представляет собой втулку из износоустойчивого материала (оловянистые бронзы, алюминиевые бронзы, металлографитовые сплавы и др.). Втулка неразъемного подшипника может быть запрессована непосредственно в стенку корпуса. При возможных перекосах вала подшипник делают самоустанавливающимся (рис. 4.1, б). Подобные подшипники расположены в сочленениях деталей шасси.
В сочленениях деталей системы управления самолетом широко применяют специальные стальные шарнирные подшипники (рис. 4.2).

Смазка и режимы трения подшипников

Для смазывания трущихся поверхностей подшипников применяют жидкие, пластичные (густые), твердые и газообразные смазочные материалы. Для уменьшения износа поверхности цапфы и подшипника разделены слоем смазки достаточной толщины, которая больше суммы высот шероховатостей поверхностей (h > RZ1 + RZ2).
При соблюдении этого условия не происходит непосредственного касания и изнашивания трущихся поверхностей. Несущая поверхность масляного слоя очень высока, и он воспринимает передаваемую нагрузку. Сопротивление вращению подшипника в этом случае определяется только внутренним трением в смазочном материале, а коэффициент трения f = 0,001…0,005.
При непрерывном вращении вала с достаточно большой скоростью масло увлекается вращающимся валом, в нем создается гидродинамическое давление, образуется «масляный клин», разделяющий трущиеся поверхности (рис. 4.3).
Скорость вращения вала, зазор между цапфой и подшипником, вязкость и количество подаваемого масла связаны между собой. При правильном соотношении между ними подшипник скольжения может длительное время эксплуатироваться без заметного износа.

Рис. 4.3. Положение шипа в подшипнике

Масло не только смазывает трущиеся детали, но и отводит от них тепло, поэтому в масляную систему (например, авиационного двигателя) входят масляные радиаторы, в которых масло охлаждается.
В условиях полужидкостного трения нарушается непрерывность масляного слоя и в отдельных местах происходит соприкосновение неровностей трущихся поверхностей. Поэтому здесь не исключается изнашивание поверхностей, а только уменьшается его интенсивность (коэффициент полужидкостного трения f = 0,008…0,1).

Подшипники качения

состоят из наружного и внутреннего колец, между которыми в сепараторе расположены шарики или ролики. Сепаратор разделяет тела качения, чтобы они не соприкасались.
Применение подшипников качения позволило заменить трение скольжения трением качения. Трение качения существенно меньше зависит от смазки. Условный коэффициент трения качения мал и близок к коэффициенту жидкостного трения в подшипниках скольжения (f = 0,0015…0,006). При этом упрощаются система смазки и обслуживание подшипника.

Преимуществами подшипников качения являются:
- небольшие потери на трение;
- взаимозаменяемость, облегчающая монтаж и ремонт подшипниковых узлов;
- малые пусковые моменты;
- нетребовательность к смазке и уходу (за исключением случаев, когда от подшипников, например, роторов авиационных двигателей, необходимо отводить тепло).

Недостатками подшипников качения являются:
- чувствительность к ударам и вибрациям вследствие большой жесткости подшипника;
- сравнительно большие радиальные габаритные размеры;
- шум при работе с высокой частотой вращения.
Большая часть вращающихся деталей авиационных конструкций установлена на подшипниках качения.

Классификация подшипников качения

По форме тел качения подшипники разделяют на шариковые и роликовые, по направлению воспринимаемой нагрузки – на радиальные, упорные, радиально-упорные и упорно-радиальные.

Рис. 4.4. Подшипники качения

Радиальные шариковые подшипники (рис. 4.4, 1) – наиболее простые и дешевые. Они допускают небольшие перекосы вала (до 1/4°) и могут воспринимать осевые нагрузки, но меньшие радиальных. Эти подшипники широко распространены в машиностроении.
Радиальные роликовые подшипники (рис. 4.4, 4) благодаря увеличенной контактной поверхности допускают значительно большие нагрузки, чем шариковые. Однако они не воспринимают осевые нагрузки и плохо работают при перекосах вала. В роликовых цилиндрических и конических подшипниках с комбинированными (бочкообразными) роликами концентрация нагрузки от неизбежного перекоса вала существенно снижается. Аналогичное сравнение можно провести и между радиально-упорными шариковыми (рис. 4.4, 3) и роликовыми (рис. 4.4, 5) подшипниками.
Самоустанавливающиеся шариковые (рис. 4.4, 2) и роликовые(рис. 4.4, 6) подшипники применяют в тех случаях, когда допускают значительный перекос вала (до 2…3°). Они имеют сферическую поверхность наружного кольца и ролики бочкообразной формы. Эти подшипники допускают небольшие осевые нагрузки.
Применение игольчатых подшипников (рис. 4.4, 7) позволяет уменьшить габариты (диаметр) при значительных нагрузках. Упорный подшипник (рис. 4.4, 8) воспринимает только осевые нагрузки и плохо работает при перекосе оси.
По нагрузочной способности (ширине и наружному диаметру) подшипники разделяют на семь серий – от сверхлегкой до тяжелой; по классам точности – нормального класса (0), повышенного (6), высокого (5), особо высокого (4) и сверхвысокого (2). Класс точности подшипника назначают в зависимости от требований к сборочной единице. Чаще применяют дешевые подшипники класса 0. Для авиационных конструкций с тяжелыми условиями работы (например, для роторов авиационных двигателей) используют подшипники повышенных классов точности.

Обозначения подшипников качения

В условных обозначениях приводят внутренний диаметр подшипника, его серию, тип, конструктивные особенности и класс точности.
Две первые цифры справа указывают внутренний диаметр d. Для подшипников с d = 20…495 мм диаметр определяют умножением двух крайних цифр в обозначении на 5. Третья цифра справа указывает серию: подшипник особо легкой серии – 1, легкой – 2, средней – 3, средней широкой – 6, тяжелой – 4 и т.д. Четвертая цифра справа характеризует тип подшипника: радиальный шариковый – 0 (в обозначении нуль опускают), радиальный шариковый сферический – 1, роликовый радиальный с короткими цилиндрическими роликами – 2, роликовый радиальный со сферическими роликами – 3, шариковый радиально-упорный – 6, роликовый конический – 7 и т.д. Например, подшипник 308 – шариковый радиальный средней серии с d = 40 мм; подшипник 7216 – роликовый конический легкой серии с d = 80 мм.
Пятая и шестая цифры в обозначении подшипника отражают его конструктивные особенности (наличие защитных шайб, упорных буртов или канавок на наружном кольце и др.). Цифры 6, 5, 4, 2, указывающие класс точности подшипников, ставят через тире перед обозначением, нуль не пишут.

Повреждения подшипников качения

Подшипники выходят из строя вследствие усталостного выкрашивания, абразивного изнашивания при попадании пыли или пластических деформаций при перегрузках. Усталостное выкрашивание является наиболее распространенным видом разрушения подшипников при длительной работе. Интенсивность абразивного изнашивания можно уменьшить за счет применения совершенных уплотнителей и надлежащей очистки масла.
Наблюдается также разрушение сепараторов от центробежных сил и действия тел качения. Раскалывание колец и тел качения происходит при их работе с сильными ударами, при перекосах.

Расчет подшипников качения

Выполняют расчет подшипников на долговечность по усталостному выкрашиванию и на предотвращение возникновения пластических деформаций.
При постоянном режиме расчет подшипников ведут по эквивалентной динамической нагрузке с учетом характера и направления действующих сил. Принимают такую эквивалентную нагрузку, при которой обеспечивается та же долговечность подшипника, что и в действительных условиях нагружения.
Для радиальных и радиально-упорных
Р = (XVFr + YFa) Kб KТ, (4.1)
где Fr, Fa – соответственно радиальная и осевая нагрузки на подшипник, Н;
Х, Y – коэффициенты соответственно радиальной и осевой нагрузок;
V – коэффициент вращения: при вращении внутреннего кольца V = 1, наружного – V = 1,2;
Кб – коэффициент безопасности: Кб = 1 при спокойной нагрузке, Кб = 2,5…3 при сильных ударах;
КТ – температурный коэффициент, при нагреве подшипникового узла до 125° С КТ = 1.
Грузоподъемность подшипников
характеризуется базовой динамической грузоподъемностью С и базовой статической грузоподъемностью С0.
Под базовой динамической грузоподъемностью подшипника понимают радиальную или осевую нагрузку, которую он может выдержать при долговечности в 1 млн. оборотов. Базовой считают долговечность при 90-процентной надежности.
Расчетная долговечность выражается числом его оборотов L (в миллионах) или часов работы LH, при которых на рабочих поверхностях у 90 % подшипников из партии не должно появляться признаков усталости металла (выкрашивания, отслаивания).
Долговечность подшипника определяют по эмпирическим зависимостям:
и , (4.2)
где С – динамическая грузоподъемность подшипника, кН;
Р – динамическая эквивалентная нагрузка, кН;
р – показатель степени, равный 3 для шарикоподшипников и 10/3 для роликоподшипников;
n – частота вращения подшипника, мин-1.
Подбор подшипников
В конструкциях самолета, в отличие от конструкций в машиностроении, шарикоподшипники работают, как правило, с небольшими скоростями вращения. Поэтому их подбирают не по допускаемым нагрузкам и по сроку службы, а по разрушающим нагрузкам. Заделка подшипников осуществляется сплошной завальцовкой обкатыванием шариком без проточки и с проточкой в детали, обжатие пуансоном – без проточки в детали в шести или восьми точках, обжатие пуансоном – в шести и восьми точках по специальной проточке в детали, установкой пружинных упорных колец – в специальную канавку в детали.
Вид заделки зависит от предела прочности материала и от диаметра подшипника и берется по ГОСТ. Посадки под подшипники также задаются ГОСТ.

Предлагаем вашему вниманию подшипники качения справочник-каталог.

techliter.ru

Глава 13. ПОДШИПНИКИ СКОЛЬЖЕНИЯ

Общие сведения

Подшипники являются опорами валов и вращающихся осей. Они воспринимают нагрузки, приложенные к валу или оси, и пе­редают их на корпус машины. Качество подшипников в значи­тельной степени определяет надежность и долговечность машин.

В зависимости от вида трения подшипники делятся на подшипники скольжения и подшипники качения.

В зависимости от направления воспринимаемой нагрузки подшипники бывают:

радиальные — воспринимают радиальные нагрузки, перпендикулярные оси цапфы;

упорные — воспринимают осевые нагрузки;

радиально-упорные — воспринимают радиальные и осевые нагрузки.

Упорные подшипники часто называют подпятниками.


Рис..2. Фланцевый (неразъемный)   Рис. .3. Подшипник с разъемным корпусом и вкладышем подшипник

Конструкции подшипников. В большинстве случаев подшипники скольжения состоят из корпуса, вкладышей и смазывающих устройств. Конструкции подшипников разнообразны и определяются конструкцией машины. В простейшем виде подшипник скольжения представляет собой втулку (вкладыш), встроенную в станину машины.

Рис.1. Неразъемный подшип­ник, встроенный в станину ма­шины: / — втулка; 2 — смазочная канав­ка; 3 — стопорный винт; 4 — стани­на машины

Основным элементом подшипника скольжения является вкладыш /, который устанавливают в корпусе подшипника

или непосредственно в станине или раме машины. В процессе работы трущиеся поверхности цапфы и вкладыша находятся в состоянии относительного скольжения. Подшипники скольжения делятся на неразъемные (рис.2) и разъемные (рис.3).

Неразъемные (глухие) подшипники применяют при малой скорости скольжения с перерывами в работе (механизмы управления и др.).

Разъемные подшипники имеют основное применение в общем и особенно в тяжелом машиностроении. Они облегчают монтаж валов.

При большой длине цапф применяют самоустанавливающиеся подшипники (рис. 4). Сферические выступы вкладышей позволяют им самоустанавливаться, устраняя тем самым перекосы цапф от деформации вала и неточностей монтажа, обеспечивая равномерное распределение нагрузки по длине вкладыша.

Пример конструкции подпятника показан на рис. 5.

Достоинства подшипников скольжения. 1. Надежно работают в высокоскоростных приводах (подшипники качения в этих условиях имеют низкую долговечность). 2. Способны воспринимать большие ударные и вибрационные нагрузки вследствие демпфирующего действия масляного слоя. 3. Работают бесшумно. 4. Имеют сравнительно малые радиальные размеры (рис.2). 5. Разъемные подшипники допускают установку их на шейки коленчатых валов; при ремонте не требуют демонтажа муфт, шкивов и т. д. 6. Для тихоходных машин могут иметь весьма простую конструкцию

(рис. 2).

Рис. 4. Самоустанавливающийся подшипник:

/ — баббитовая заливка

Недостатки.В процессе работы требуют постоянного надзора из-за высоких требований к смазыванию и опасности перегрева; перерыв в подаче смазочного материала ведет к выходу из строя подшипника. 2. Имеют сравнительно большие осевые размеры. 3. Значительные потери на трение в период пуска и при несовершенной смазке. 4. Большой расход смазочного материала.

Применение.Для валов с ударными и вибрационными нагрузками (молоты, поршневые машины и др.). 2. Для коленчатых валов, когда по условиям сборки требуются разъемные подшипники. 3.Для валов больших диаметров, для которых отсутствуют подшипники качения. 4. Для высокоскоростных валов, когда подшипники качения непригодны (центрифуги и др.) 5. При высоких требованиях к точности работы вала (шпиндели станков и др.). 6. В тихоходных машинах. 7. При работе в воде и агрессивных средах, в которых подшипники качения неработоспособны.

Виды смазки

В подшипниках скольжения может быть полужидкостная и жидкостная смазка, переходящая последовательно одна в другую по мере возрастания угловой скорости вала от нуля до определенного значения.

Вращающийся вал увлекает смазочный материал в клиновой зазор между цапфой и вкладышем и создает гидродинамическую подъемную силу, вследствие которой цапфа всплывает по мере увеличения скорости (рис. 6).

Рис. 23.6. Положение цапфы в подшипнике в состоя­нии покоя (а) и при вращении (б): 1 — эпюра давлений в масляном слое

В период пуска, когда скорость скольжения мала, большая часть поверхности трения разделена тонкой масляной пленкой. Приувеличении скорости цапфа всплывает и толщина смазывающегослоя увеличивается, но отдельные выступы трущихся поверхностей остаются не разделенными смазочным материалом. Смазка вэтом случае будет полужидкостная.

При дальнейшем возрастании угловой скорости и соблюдении определенных условий появляется сплошной устойчивый слой масла, полностью разделяющий шероховатости поверхностей трения. Возникает жидкостная смазка, при которой изнашивание и заедание отсутствуют.

При малой угловой скорости вала создается граничная смазка,когда трущиеся поверхности не разделены слоем смазывающего материала, но на поверхностях цапфы и вкладыша имеется тонкая адсорбированная масляная пленка толщиной порядка 0,1 мкм.

Жидкостная смазка возникает лишь в специальных подшипниках при соблюдении определенных условий. Большинство подшипников скольжения работает в условиях полужидкостной смазки, а в периоды пуска и останова в условиях граничной смазки.

Граничная и полужидкостная смазка объединяются одним понятием -несовершенная смазка.

Материалы вкладышей

Материалы вкладышей подшипников должны иметь: 1. Достаточную износостойкость и высокую сопротивляемость заеданию в периоды отсутствия жидкостной смазки (пуск, торможение и др). Изнашиванию должны подвергаться вкладыши, а не цапфа вала, так как замена вала значительно дороже вкладыша. Подшипник скольжения работает тем надежнее, чем выше твердость цапфы вала. Цапфы, как правило, закаливают. 2. Высокую сопротивляемость хрупкому разрушению при действии ударных нагрузок и достаточное сопротивление усталости. 3. Низкий коэффициент трения и высокую теплопроводность с малым расши­рением.

Вкладыши выполняют из следующих материалов. Бронзовые вкладыши широко используют при средних скоро­стях и больших нагрузках. Наилучшими антифрикционными свойствами обладают оловянные бронзы (БрО10Ф1, БрО5Ц5С5 и др.). Алюминиевые (БрА9ЖЗА и др.) и свинцовые (БрСЗО) бронзы вызывают повышенное изнашивание цапф ва­лов, поэтому применяются в паре с закаленными цапфами. Свинцовые бронзы используют при знакопеременных ударных нагрузках.

Вкладыш с баббитовой заливкой применяют для ответственных подшипников при тяжелых и средних режимах работы (дизели, компрессоры и др.). Баббит является одним из лучших антифрикционных материалов для подшипников скольжения. Хорошо прирабатывается, стоек против заедания, но имеет невысокую прочность, поэтому баббит заливают лишь тонким слоем на рабочую поверхность стального, чугунного или бронзового вкладыша. Лучшими являются высокооловянные баббиты Б86, Б83.

Чугунные вкладыши без заливки применяют в малоответственных тихоходных механизмах. Наибольшее применение получили антифрикционные чугуны АЧС-1 и др.

Металлокерамические вкладыши изготовляют прессованием и последующим спеканием порошков меди или железа с добавлением графита, олова или свинца. Особенностью этих материалов является большая пористость, которая используется для предварительного насыщения горячим маслом. Вкладыши, пропитанные маслом, могут долго работать без подвода смазочного материала. Их применяют в тихоходных механизмах в местах, труднодоступных для подвода масла.

Для вкладышей из неметаллических материалов применяют антифрикционные самосмазывающие пластмассы (АСП), древеснослоистые пластики, твердые породы дерева, резину и др. Неметаллические материалы устойчивы против заедания, хорошо прирабатываются, могут работать при смазывании водой, что имеет существенное значение для подшипников гребных винтов, насосов, пищевых машин и т. п.

В массовом производстве вкладыши штампуют из стальной ленты, на которую нанесен тонкий антифрикционный слой (оловянные и свинцовые бронзы, баббиты, фторопласт, нейлон и др.).

Смазочные материалы

Для уменьшения трения и изнашивания подшипники смазывают смазочными материалами, которые должны быть маслянистыми и вязкими.

Маслянистостью называется способность смазочного материала образовывать на поверхности трения устойчивые адсорбированные пленки.

Вязкостью называется объемное свойство смазочного материала оказывать сопротивление относительному перемещению его слоев. В технических характеристиках масел указывают так называемую кинематическую вязкость — v в мм2/с, которая зависит от плотности. Эта вязкость приводится в справочной литературе при температурах, приближающихся к рабочим, чаще всего при 50 и 100 °С.

Вязкость является важнейшим свойством масел, определяющим их смазывающую способность. Она существенно понижается с ростом температуры.

Смазочные материалы могут быть жидкими, пластичными (густыми), твердыми и газообразными.

Жидкие масла являются основным смазочным материалом. Они имеют низкий коэффициент внутреннего трения, их легко подавать к местам смазывания, они оказывают охлаждающее действие. Недостатком является вытекание масла из мест смазы­вания.

Жидкие масла бывают органические и минеральные.

Органические масла — растительные (касторовое идр.) и животные (костный жир и др.) — обладают высокими смазывающими свойствами, но дефицитны и применяются в спе­циальных случаях.

Минеральные масла — продукты перегонки нефти — находят преимущественное применение для подшипников. К ним относят индустриальные масла различных марок, моторные и др.

Водаприменяется для смазывания подшипников с вкладышами из дерева, резины и некоторых пластмасс. Поскольку теплопроводность этих материалов низкая, то применяют проточную воду, которая одновременно охлаждает опору; во избежание коррозии вал выполняют с покрытием или облицовкой из нержавеющей стали.

Пластичный смазочный материал (мази)изготовляют путем загущения жидких минеральных масел мылами жирных кислот или углеводородами. К ним относятся солидол ы, к о н с т алины и др. Эти мази хорошо заполняют зазоры, герметизируя узлы трения. Вязкость их мало меняется с изменением температуры. Применяются в подшипниках при малых скоростях скольжения и ударных нагрузках.

Твердые смазочные материалы— графит, слюда и др.— применяются в машинах, когда по условиям производства нельзя применить жидкие масла или мази (ткацкие станки, пищевые машины и др.).

Газообразные смазочные материалы— воздух, пары углеводородов и др.— применяются в малонагруженных подшипниках при очень большой угловой скорости вала (центрифуги, шпиндели шлифовальные и др.).

Виды разрушения вкладышей

Работа подшипников скольжения сопровождается абразивным изнашиванием вкладышей и цапф, заеданием и усталостным выкрашиванием.

Абразивное изнашиваниевозникает вследствие попаданий со смазочным материалом абразивных частиц и неизбежной гранич­ной смазки при пуске и останове.

В обычных конструкциях подшипников скольжения в результате износа вкладыш принимает овальную форму. Для устранения этого недостатка в отдельных случаях применяют обращенную подшипниковую пару, в которой цапфу выполняют из антифрикционного материала, а вкладыш — из низкоуглеродистой стали с последующей цементацией и закалкой. В этом случае цапфа изнашивается равномерно, сохраняя длительное время цилиндрическую форму, а вкладыш — незначительно. В обращенных подшипниковых парах антифрикционный материал на цапфы наносят наплавкой, металлизацией, напрессовкой гильз и т. п.

Заедание возникает при перегреве подшипника, так как вследствие трения вкладыш и цапфа нагреваются. При установившемся режиме работы температура подшипника не должна превышать допускаемого значения для данного материала вкладыша и сорта масла. С повышением температуры понижается вязкость масла; масляная пленка местами разрывается, образу­ется металлический контакт с температурными пиками. Происходит заедание цапфы в подшипнике и, как следствие этого, вкладыши выплавляются ( рис.4) или полностью захватываются разогретой цапфой — подшипник выходит из строя.

Усталостное выкрашиваниеповерхности вкладышей происхо­дит редко и встречается при пульсирующих нагрузках (в поршне­вых двигателях и т. п.).




infopedia.su

Подшипники скольжения и качения

Подшипники скольжения и качения

Подшипники поддерживают вращающиеся оси и валы, воспринимают от них радиальные и осевые нагрузки и сохраняют заданное положение оси вращения вала.

Подшипники классифицируют по виду трения и воспринимаемой нагрузке.

По виду трения различают: подшипники скольжения, у которых опорный участок вала скользит по поверхности подшипника; подшипники качения, у которых трение скольжения заменяют трением качения посредством установки шариков или роликов между опорными поверхностями подшипника и вала.

По воспринимаемой нагрузке различают подшипники: радиальные – воспринимают радиальные нагрузки; упорные – воспринимают осевые нагрузки; радиально-упорные – воспринимают радиальные и осевые нагрузки.

Все типы подшипников широко распространены.

Подшипники скольжения – это опоры вращающихся деталей, работающие при относительном скольжении цапфы по поверхности подшипника.

Достоинства подшипников скольжения:

-     малые габариты в радиальном направлении;

-     возможность работы при высоких скоростях вращения и нагрузках, в воде и в агрессивных средах;

-     обеспечение высокой точности установки валов;

-     малая чувствительность к ударным и вибрационным нагрузкам;

-     незаменимость в случаях, когда по условиям сборки подшипник должен быть разъемным (на шейках коленчатых валов).

Недостатки:

-     выше, чем у подшипников качения, потери мощности на трение;

-     более сложная смазочная система;

-     необходимость использования дефицитных материалов.

Подшипник (рис. 4.1, а) представляет собой втулку из износоустойчивого материала (оловянистые бронзы, алюминиевые бронзы, металлографитовые сплавы и др.). Втулка неразъемного подшипника может быть запрессована непосредственно в стенку корпуса. При возможных перекосах вала подшипник делают самоустанавливающимся (рис. 4.1, б). Подобные подшипники расположены в сочленениях деталей шасси.

В сочленениях деталей системы управления самолетом широко применяют специальные стальные шарнирные подшипники (рис. 4.2).

 

           

 

Смазка и режимы трения. Для смазывания трущихся поверхностей подшипников применяют жидкие, пластичные (густые), твердые и газообразные смазочные материалы. Для уменьшения износа поверхности цапфы и подшипника разделены слоем смазки достаточной толщины, которая больше суммы высот шероховатостей поверхностей (h > RZ1 + RZ2).

При соблюдении этого условия не происходит непосредственного касания и изнашивания трущихся поверхностей. Несущая поверхность масляного слоя очень высока, и он воспринимает передаваемую нагрузку. Сопротивление вращению подшипника в этом случае определяется только внутренним трением в смазочном материале, а коэффициент трения f = 0,001…0,005.

При непрерывном вращении вала с достаточно большой скоростью масло увлекается вращающимся валом, в нем создается гидродинамическое давление, образуется «масляный клин», разделяющий трущиеся поверхности (рис. 4.3).

Скорость вращения вала, зазор между цапфой и подшипником, вязкость и количество подаваемого масла связаны между собой. При правильном соотношении между ними подшипник скольжения может длительное время эксплуатироваться без заметного износа.

Рис. 4.3. Положение шипа в подшипнике

Масло не только смазывает трущиеся детали, но и отводит от них тепло, поэтому в масляную систему (например, авиационного двигателя) входят масляные радиаторы, в которых масло охлаждается.

В условиях полужидкостного трения нарушается непрерывность масляного слоя и в отдельных местах происходит соприкосновение неровностей трущихся поверхностей. Поэтому здесь не исключается изнашивание поверхностей, а только уменьшается его интенсивность (коэффициент полужидкостного трения f = 0,008…0,1).

Подшипники качения состоят из наружного и внутреннего колец, между которыми в сепараторе расположены шарики или ролики. Сепаратор разделяет тела качения, чтобы они не соприкасались.

Применение подшипников качения позволило заменить трение скольжения трением качения. Трение качения существенно меньше зависит от смазки. Условный коэффициент трения качения мал и близок к коэффициенту жидкостного трения в подшипниках скольжения (f = 0,0015…0,006). При этом упрощаются система смазки и обслуживание подшипника.

Преимуществами подшипников качения являются:

-     небольшие потери на трение;

-     взаимозаменяемость, облегчающая монтаж и ремонт подшипниковых узлов;

-     малые пусковые моменты;

-     нетребовательность к смазке и уходу (за исключением случаев, когда от подшипников, например, роторов авиационных двигателей, необходимо отводить тепло).

Недостатками подшипников качения являются:

-     чувствительность к ударам и вибрациям вследствие большой жесткости подшипника;

-     сравнительно большие радиальные габаритные размеры;

-     шум при работе с высокой частотой вращения.

Большая часть вращающихся деталей авиационных конструкций установлена на подшипниках качения.

Классификация. По форме тел качения подшипники разделяют на шариковые и роликовые, по направлению воспринимаемой нагрузки – на радиальные, упорные, радиально-упорные и упорно-радиальные.

Рис. 4.4. Подшипники качения

Радиальные шариковые подшипники (рис. 4.4, 1) – наиболее простые и дешевые. Они допускают небольшие перекосы вала (до 1/4°) и могут воспринимать осевые нагрузки, но меньшие радиальных. Эти подшипники широко распространены в машиностроении.

Радиальные роликовые подшипники (рис. 4.4, 4) благодаря увеличенной контактной поверхности допускают значительно большие нагрузки, чем шариковые. Однако они не воспринимают осевые нагрузки и плохо работают при перекосах вала. В роликовых цилиндрических и конических подшипниках с комбинированными (бочкообразными) роликами концентрация нагрузки от неизбежного перекоса вала существенно снижается. Аналогичное сравнение можно провести и между радиально-упорными шариковыми (рис. 4.4, 3) и роликовыми (рис. 4.4, 5) подшипниками.

Самоустанавливающиеся шариковые (рис. 4.4, 2) и роликовые (рис. 4.4, 6) подшипники применяют в тех случаях, когда допускают значительный перекос вала (до 2…3°). Они имеют сферическую поверхность наружного кольца и ролики бочкообразной формы. Эти подшипники допускают небольшие осевые нагрузки.

Применение игольчатых подшипников (рис. 4.4, 7) позволяет уменьшить габариты (диаметр) при значительных нагрузках. Упорный подшипник (рис. 4.4, 8) воспринимает только осевые нагрузки и плохо работает при перекосе оси.

По нагрузочной способности (ширине и наружному диаметру) подшипники разделяют на семь серий – от сверхлегкой до тяжелой; по классам точности – нормального класса (0), повышенного (6), высокого (5), особо высокого (4) и сверхвысокого (2). Класс точности подшипника назначают в зависимости от требований к сборочной единице. Чаще применяют дешевые подшипники класса 0. Для авиационных конструкций с тяжелыми условиями работы (например, для роторов авиационных двигателей) используют подшипники повышенных классов точности.

Применение в авиационных конструкциях. Шарикоподшипники в среднем быстроходнее в отличие от роликовых (цилиндрических) и способны воспринимать осевые нагрузки, но их грузоподъемность на 30-40 % ниже.

Радиально-упорные шарикоподшипники применяют для самых ответственных узлов авиационных конструкций, например, для роторов двигателей, воздушных винтов самолетов, несущих и рулевых винтов вертолетов. Для повышения работоспособности подшипников их часто выполняют с четырехточечным контактом шариков, для чего внутреннее (или внешнее) кольцо делают двойным.

Конические роликоподшипники одинаково пригодны для радиальных и осевых нагрузок при средних скоростях вращения. Их применяют в частности для колес шасси (рис. 4.5).

Рис. 4.5. Конические роликоподшипники

Шариковые самоустанавливающиеся подшипники используют в качестве опор длинных валов, перекос которых неизбежен.

Игольчатые подшипники непригодны при средних и высоких скоростях вращения вала. Эти подшипники применяют в некоторых сочленениях авиационных конструкций при качательном движении (например, подшипники рычагов клапанов поршневых двигателей).

Упорные шариковые и роликовые подшипники способны воспринимать большие осевые нагрузки при малых скоростях вращения. Они используются, например, во втулках воздушных винтов. Воспринимая огромные центробежные силы лопасти, подшипник позволяет поворачивать лопасть при изменении шага винта.

Кольца и тела качения подшипников изготавливают из высокоуглеродистых хромистых сталей и закаливают до высокой твердости. Подшипники турбин ГТД делают из жаропрочных сталей. Это связано с тем, что после выключения двигателя прекращается прокачка масла через подшипники, и они сильно нагреваются (до 300° и более) за счет тепла, постепенно переходящего к ним от раскаленных лопаток и диска турбины.

Обозначения. В условных обозначениях приводят внутренний диаметр подшипника, его серию, тип, конструктивные особенности и класс точности.

Две первые цифры справа указывают внутренний диаметр d. Для подшипников с d = 20…495 мм диаметр определяют умножением двух крайних цифр в обозначении на 5. Третья цифра справа указывает серию: подшипник особо легкой серии – 1, легкой – 2, средней – 3, средней широкой – 6, тяжелой – 4 и т.д. Четвертая цифра справа характеризует тип подшипника: радиальный шариковый – 0 (в обозначении нуль опускают), радиальный шариковый сферический – 1, роликовый радиальный с короткими цилиндрическими роликами – 2, роликовый радиальный со сферическими роликами – 3, шариковый радиально-упорный – 6, роликовый конический – 7 и т.д. Например, подшипник 308 – шариковый радиальный средней серии с d = 40 мм; подшипник 7216 – роликовый конический легкой серии с d = 80 мм.

Пятая и шестая цифры в обозначении подшипника отражают его конструктивные особенности (наличие защитных шайб, упорных буртов или канавок на наружном кольце и др.). Цифры 6, 5, 4, 2, указывающие класс точности подшипников, ставят через тире перед обозначением, нуль не пишут.

Повреждения подшипников. Подшипники выходят из строя вследствие усталостного выкрашивания, абразивного изнашивания при попадании пыли или пластических деформаций при перегрузках. Усталостное выкрашивание является наиболее распространенным видом разрушения подшипников при длительной работе. Интенсивность абразивного изнашивания можно уменьшить за счет применения совершенных уплотнителей и надлежащей очистки масла.

Наблюдается также разрушение сепараторов от центробежных сил и действия тел качения. Раскалывание колец и тел качения происходит при их работе с сильными ударами, при перекосах.

Расчет подшипников качения. Выполняют расчет подшипников на долговечность по усталостному выкрашиванию и на предотвращение возникновения пластических деформаций.

При постоянном режиме расчет подшипников ведут по эквивалентной динамической нагрузке с учетом характера и направления действующих сил. Принимают такую эквивалентную нагрузку, при которой обеспечивается та же долговечность подшипника, что и в действительных условиях нагружения.

Для радиальных и радиально-упорных

Р = (XVFr + YFa) KбKТ,                              (4.1)

где Fr, Fa – соответственно радиальная и осевая нагрузки на подшипник, Н;

Х, Y – коэффициенты соответственно радиальной и осевой нагрузок;

V – коэффициент вращения: при вращении внутреннего кольца V = 1, наружного – V = 1,2;

Кб – коэффициент безопасности: Кб = 1 при спокойной нагрузке,     Кб = 2,5…3 при сильных ударах;

КТ – температурный коэффициент, при нагреве подшипникового узла до 125° С КТ = 1.

Грузоподъемность подшипников характеризуется базовой динамической грузоподъемностью С и базовой статической грузоподъемностью С0.

Под базовой динамической грузоподъемностью подшипника понимают радиальную или осевую нагрузку, которую он может выдержать при долговечности в 1 млн. оборотов. Базовой считают долговечность при 90-процентной надежности.

Расчетная долговечность выражается числом его оборотов L (в миллионах) или часов работы LH, при которых на рабочих поверхностях у 90 % подшипников из партии не должно появляться признаков усталости металла (выкрашивания, отслаивания).

Долговечность подшипника определяют по эмпирическим зависимостям:

  и  ,                                (4.2)

где С – динамическая грузоподъемность подшипника, кН;

Р – динамическая эквивалентная нагрузка, кН;

р – показатель степени, равный 3 для шарикоподшипников и 10/3 для роликоподшипников;

n – частота вращения подшипника, мин-1.

Подбор подшипников. В конструкциях самолета, в отличие от конструкций в машиностроении, шарикоподшипники работают, как правило, с небольшими скоростями вращения. Поэтому их подбирают не по допускаемым нагрузкам и по сроку службы, а по разрушающим нагрузкам. Заделка подшипников осуществляется сплошной завальцовкой обкатыванием шариком без проточки и с проточкой в детали, обжатие пуансоном – без проточки в детали в шести или восьми точках, обжатие пуансоном – в шести и восьми точках по специальной проточке в детали, установкой пружинных упорных колец – в специальную канавку в детали.

Вид заделки зависит от предела прочности материала и от диаметра подшипника и берется по ГОСТ. Посадки под подшипники также задаются ГОСТ.


www.mehanica-kvs.narod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *