Есть ли теплопроводность у алюминия – теплопроводность алюминия — Алюминий обладает высокой теплопроводностью и электропроводностью. Почему в таком случае его широко используют в теплои — 22 ответа

Какой кулер лучше медный или алюминевый, и объясните почему.

Лучше радиатор медный. Теплопроводность меди больше алюминию. Но тут еще играет площадь поверхности. То есть если допустим у медного два ребра, а у алюминиевого 10, то алюминиевый будет лучше отводить тепло.

Изучай: <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Теплопроводность» target=»_blank»>http://ru.wikipedia.org/wiki/Теплопроводность</a>

Лучше хороший. И не обязательно медный будет лучше алюминиевого, играет роль совокупность параметров.

а как ты думаешь у какого материала из представленных наибольшая теплопроводность теплоотдача если узнаешь какой тот и ответ

У любого кулера есть характеристика, которая называется термосопротивление, вот на неё и надо ориентироваться, у любого приличного кулера она указывается в паспорте, если её нет, то это должно вызывать сомнения. Китайцы из «подвалов» уже давно научились «варить» медь, которая по теплопроводности уступает алюминию, который тоже сплавом является, а не алюминием.

правильно ответили, мадный лучше, так как лучше поглощает в себя тепло, но если алюминевый больше, то он будет лучше. есть правда ещё большие алюминевые кулера (в основном шли под интел) с медным пятаком снизу, тоже довольно неплохой вариант

Лучше тот, параметры которого тебе наиболее подходят и совсем не важно, из чего он будет сделан.

Медный лучше аллюминиего (как не парадоксально)… но он дорог (чистый лучше проводит тепло) поэтому — аллюминий….

touch.otvet.mail.ru

Теплопроводность алюминия — Энциклопедия по машиностроению XXL

Алюминий А2. Структурные изменения в зоне нагрева лучом ОКГ в этом материале не обнаружены. Объяснить это можно, с одной стороны, высокой теплопроводностью алюминия, вследствие чего тепло быстро отводится в глубину образца, с другой — весьма малой растворимостью в алюминии железа и кремния, входящих в состав технического алюминия А2. Последнее обстоятельство исключает возможность фазовых превращений в этом материале.  [c.21]

Из сопоставления приведенных данных для алюминия с теплофизическими характеристиками щелочных металлов следует, что температура кипения и теплопроводность алюминия значительно больше, а сечение захвата тепловых нейтронов значительно меньше соответствующих величин для щелочных металлов. Имея в виду, что остальные теплофизические характеристики сравниваемых металлов приближенно одинаковы, и учитывая также малую упругость паров алюминия при высоких температурах, можно сделать заключение, что с точки зрения теплофизических характеристик алюминий, как теплоноситель, имеет определенные преимущества по сравнению со щелочными металлами при решении задач, связанных с высокой температурой теплоносителя.  

[c.69]


В связи с тем, что данные по теплопроводности алюминия автором [5] были изменены, значения критериев Nu и Ре этой работы неа олько ( 11%) отличаются от их значений работы [19].  [c.80]

Через каждое сечение г образца, лежащее книзу от перегиба (2 = 0) его температурной кривой, переходит количество теплоты, собранное на участке О — 2. Если это количество теплоты известно, то для сечения 2 по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.  

[c.85]

В соответствии со сказанным величина коэффициента теплопроводности алюминия будет рассчитываться на основании балансового уравнения для участка О — 2 книзу от перегиба температурной кривой  [c.86]

В этом уравнении = 15,5-10 (м)—наружный диаметр графитового баллона rfo= 11,45-lO» ( vi)—диаметр сечения испытуемого расплавленного металла q z) (ккал/м час) —-тепловой поток на наружной -поверхности графитового баллона Я,а1 и гр ккал м-час-град)—соответственно коэффициенты теплопроводности алюминия и графита.  [c.86]

Теплопроводность алюминия в зависимости от температуры  [c.242]

Коэффициент теплопроводности алюминия в поперечном магнитном поле  [c.25]

К- Теплопроводность алюминия 2,18 дж1 см — сек — град. Зависимость линейного расширения от температуры выражается уравнением  

[c.14]

Большой практический интерес представляют физические свойства расплавленного алюминия. Так, плотность расплавленного алюминия чистотой 99,996 % на 6,6 % меньше, чем у твердого металла, и при температуре 973 К составляет 2357 кг/м и практически линейно снижается до 2304 кг/м при температуре 1173 К. При нагревании алюминия и переходе его из твердого состояния в жидкое у него резко снижается теплопроводность с 2,08 до 0,907 Вт-см -К , а далее, по мере роста температуры, она возрастает и при температуре 1000 °С составляет уже 1,01 Вт-см -К . Более подробные сведения об изменении теплопроводности алюминия при высоких температурах приведены в [5].  [c.13]

Теплопроводность алюминия в три раза выше, чем у низколегированной стали, у него больше теплоемкость и скрытая теплота плавления. Для расплавления алюминия нужно больше теплоты, чем для такого же объема стали, поэтому для его сварки требуется повышенная тепловая мощность и более высокая ее концентрация.  

[c.190]

Бериллий отличается высокой электро- и теплопроводностью, приближающейся к теплопроводности алюминия, а по удельной теплоемкости [ 2500 Дж/(кг град)] превосходит все остальные металлы. Бериллий стоек к коррозии. Подобно алюминию, при взаимодействии бериллия с воздухом на поверхности его образуется тонкая оксидная пленка, защищающая металл от действия кислорода даже при высокой температуре. Лишь при температуре вьппе 700 °С обнаруживаются заметные признаки коррозии, а Щ5И 1200 С металлический бериллий сгорает, превращаясь в белый порошок оксида бериллия.  [c.637]

Алюминий имеет высокую теплопроводность и электропроводность. В зависимости от чистоты при 200° С теплопроводность алюминия составляет 0,531 кал/(см-с-°С) (99,7% А1) и 0,82 кал/(см с-°С) (99,9% А1). Электропроводность алюминия также зависит от его чистоты. Для алюминия технической чистоты (99,5% А1) она составляет 62,5% от электропроводности меди,  

[c.8]

Высота слоя технологического алюминия в шахте электролизера оказывает определенное влияние на выход по току при прочих равных условиях и всегда принимается во внимание при подборе технологических параметров процесса. Чем выше интенсификация процесса (плотность тока) при одинаковых конструктивных размерах электролизера, тем большим должен быть уровень жидкого металла. Технологический металл способствует выравниванию теплового поля под анодом электролизера за счет высокой теплопроводности алюминия и отвода тепла через боковые стороны катодного устройства. Уменьшение уровня металла при прочих равных условиях приводит к снижению выхода по току.  [c.238]

Принцип действия литейных машин основан на использовании высокой теплопроводности алюминия, которая позволяет интен-328  [c.328]

Алюминий — легкий, малопрочный и пластичный материал, отличающийся высокой электропроводностью и теплопроводностью. Алюминий имеет отрицательный потенциал фа1 ==—1,66 В.  

[c.110]

Теплопроводность оксидной пленки намного хуже теплопроводности алюминия, но вследствие незначительной толщины пленки это не оказывает замет-  [c.19]

С целью сочетания высокой жаростойкости и механической прочности чугуна и высокой теплопроводности алюминия в некоторых,  [c.118]

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции. Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.  [c.79]

Алюминиевые сплавы по омедненному слою, нанесенному плакированием, можно паять припоем ПОС 61 паяльником, нагретым до 450—500° С. Крупногабаритные детали вследствие высокой теплопроводности алюминия могут быть запаяны только при применении достаточно массивных паяльников (до 2—  [c.284]

Чистый алюминий используется главным образом в химическом машиностроении для изготовления аппаратуры и трубопроводов. Физические свойства алюминия удельный вес 2,7 г/см , температура плавления 658°, температура кипения 1800°, временное сопротивление разрыву 8—10 кгс/мм , относительное удлинение 32—40%, теплопроводность алюминия в три раза больше, а коэффициент линейного расширения в два раза больше, чем у железа.  [c.354]

Алюминий и его сплавы относятся к хорошим проводникам тепла и электрического тока. Ниже приведены значения теплопроводности алюминия чистотой 99,996% для температур —265°G —100° С [19] и для температур выше 20° С [201.  [c.494]

Примеси оказывают существенное влияние на теплопроводность алюминия в области низких температур. Максимум, наблю-494  [c.494]

Влияние различных легирующих элементов на теплопроводность алюминия характеризует рис. 218 [22]. Повышение теплопроводности при содержании меди в сплаве более 10% не подтверждается П. А. Алиевым и некоторыми другими исследователями [23].  [c.495]

Рис. 7. Изменение удельного электросопротивления и теплопроводности алюминия в зависимое от температуры испытания
Основными способами дуговой сварки алюминия и сплавов на его основе являются аргонодуговая сварка, а также сварка под флюсом и покрытыми электродами. Основные трудности сварки связаны со следующим на поверхности расплавленного металла постоянно появляется тугоплавкая пленка оксида алюминия АЬОз, препятствующая образованию единой жидкой ванны алюминий не изменяет своего цвета при нагревании, что крайне затрудняет контроль над температурным режимом сварки высокая теплопроводность алюминия и сплавов на его основе требует применения источников питания с высокой концентрацией энергии.  [c.275]

Головка блока цилиндров изготовляется из серого чугуна или алюминиевого сплава и крепится к блоку на металло-асбестовой прокладке шпильками или болтами. Двигатели ГАЗ-51 и М-20 Победа- имеют головки из алюминиевого сплава, что позволяет несколько повысить степень сжатия за счет лучшей теплопроводности алюминия и несколько уменьшает вес двигателя.  [c.21]

Температура поршня зависит от металла, из которого он изготовлен. В настоящее время поршни обычно делают либо алюминиевыми, либо чугунными, причем теплопроводность алюминия в три раза больше теплопроводности чугуна. Поэтому тепло, воспринимаемое алюминиевым поршнем, быстрее отводится от центра к его периферии и далее — в стенки цилиндра.  [c.33]

С целью сочетания высокой жаростойкости и механической прочности чугуна и высокой теплопроводности алюминия в некоторых, очень редких случаях встречаются комбинированные головки основание головки и оба патрубка (или только выпускной патрубок) — из чугуна, верхняя часть — из алюминиевого сплава.  [c.126]

Чистота алюминия имеет важное значение, так как примеси оказывают значительное влияние на электрические, коррозионные и технологические свойства технического алюминия. На рис. 457— 459 показано влияние примесей и добавок на электропроводность и теплопроводность алюминия.  [c.381]

Рис. 459. Влияние добавок на теплопроводность алюминия
В связи с большой величиной коэффициента линейного расширения ы низки.м модулем упругости сплав имеет повышенную склонность к короблению. Поэтому 1Шобходимо прибегать к жесткому закреплению листов с помощью грузов, а такгке ннев-мо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированР1ые стали и т. п.).  [c.354]

Вследствие высокой теплопроводности алюминия необходимо нрпмене1гие мощных источников теплоты. С этой точки зре-mu[ в ряд(5 с.лучаев желательны подогрев начальных участков шва до температур]. 120—150 С или применение предварительного и сопутствующего подогрева.  [c.355]

Для сравнения рассмотрим, каким условиям, необходимым для возможности резки окислением, удовлетворяет алюминий. Его температура воспламенения в кислороде 900 °С, а плавления — 660 °С, следовательно, гореть он будет только в жидком состоянии, получить стабильную форму реза невозможно. Алюминий образует окисел AI2O3 с температурой плавления 2050 °С — в три с лишним раза больше, чем у самого алюминия. Такой окисел будет при резке твердым, удалить его трудно. И, наконец, большая теплопроводность алюминия потребует для резки большой концентрации мощности, теплоты от его горения будет недостаточно. Поэтому алюминий резать окислением невозможно.  [c.295]

Алюминий и его сплавы, не имея порога хладноломкости, остаются вязкими при -253… — 269 °С. При охлаждении Ств у них повышается на 35-60 %, — на 15 — 25 %, а ударная вязкость монотонно уменьшается до 0,2 — 0,5МДж/м (см. рис. 15.16). Вязкость разрушения Ki практически не уменьшается, а значит, алюминиевые сплавы при охлаждении менее чувствительны к надрезам, чем при 25 °С. Из-за большого теплового расширения (значительной теплопроводности) алюминия при жестком закреплении элементов конструкций в них неизбежны значительные термические напряжения. Для их уменьшения применяют компенсаторы деформации или отдельные части конструкции (например, горловины криостатов) изготовляют из материалов с меньшей теплопроводностью, например из аустенитных сталей или пластмасс.  [c.516]

Коэффициент теплопроводности алюминия при =200 С Термодинамические свойства диме-тилпропана (С5Н12) удельные 0,530 кал (см-сек-град) 222 вт/(м-град)  [c.38]

Низкотемпературная ДТЦО (НДТЦО) основана на использовании тепла от деформации Или принудительного подогрева в паузах между проходами в качестве операции термоциклирования дисперсионно-твердеющих сплавов. Эту обработку можно осуществить практически на всех агрегатах ОМД. Так, процесс волочения проволоки протекает с изменением теплосодержания заготовки, а именно во время деформации заготовка разогревается за счет деформации и сил трения, затем охлаждается на барабане. Экспериментальные данные, полученные авторами работ [144,147], свидетельствуют о разогреве проволоки в волоке в зависимости от условий волочения до 40—170 °С. Теоретические расчеты [49] показали, что распределение температуры в очаге деформации при волочении алюминия неравномерно (рис. 5.21). Температурное поле меняется с уменьщением диаметра и ростом скорости Волочения На каждом последующем переходе. Однако за счет высокой теплопроводности алюминия температура проволоки по сечению после выхода из волоки может очень быстро выравниваться.  [c.187]

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700° С составляет 0,0309 кал см секО.  [c.378]

Магний, подобно титану, имеет гексагональную кристаллическую решетку. Чистый магний и простые бинарные его сплавы плавятся при 650° С. Более сложные сплавы плавятся в широком интервале температур (460—650°С). Удельная теплоемкость магния и алюминия примерно одинаковая, а скрытая теплота плавления в два раза у него меньше. Теплопроводность магния ниже теплопроводности алюминия, но в два раза выше, чем теплопроводность малоуглеродистой стали. Маглий активнее, чем алюминий, реагирует с кислородом. Чистый, особенно литой, магний обладает малой прочностью и пластичностью, поэтому не применяется как конструкционный материал. Для этого применяют сплавы магния, которые подобно алюминиевым, также разделяют на деформируемые и литые сплавы. Механические свойства сплавов магния сильно зависят от направления волокон, что обусловлено особенностями гексагональной кристаллической решетки.  [c.115]

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность титана низкая она составляет около 7% от теплопроводности алюминия и 16,5% от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке. Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия. Оно, примерно, такое же, как у нержавеющей стали, типа Х18Н9.  [c.91]

Материал трубы — сталь. Материал оребрения — алюминий. Диаметры стальной трубы 18/15 мм. Чистота обработки наружней поверхности трубы 66 класса, внутренней поверхности ребра 6а класса. Температура в зоне контакта труба — оребрение Гк=443 К. Максимальная высота микронеровностей наружней поверхности трубы Лмакс 1=7,1 10- м, внутренней поверхности ребра Амакс 2= =9,2 10- м. В зоне контакта находится воздух при атмосферном давлении. Оребрение трубы осуществлено с натягом. Удельное сжатие на контактные поверхности р=18-№ н/л. Теплопроводность воздуха Яс=3,84 — 10-= втЦм-град) (при 7 к=443°К) теплопроводность стали Ям1=47 вт1(м- град)-, теплопроводность алюминия Хм2= = 191 вт1(м-град) (при Г =443°К). Модуль упругости более мягкого металла (алюминий) =5,5-10 н1м (при Гк=443 К). Приведенная теплопроводность контактирующих металлов  [c.190]


mash-xxl.info

Удельная теплоемкость сплавов алюминия и сферы применения.

 

Мягкий металл Меркурия.

Удельная теплоемкость алюминия является одним из основных параметров, определяющих использование металла в технических целях для производства деталей, техники, конструкций.

Физические свойства металла


Алюминий — это химический элемент (атомный № 13) Он принадлежит к группе легких металлов и является распространенным элементом, находящимся в земной коре. Парамагнитный металл обладает серебристо-белым цветом, он очень легко поддается механической обработке, из него удобно отливать изделия.

Металл обладает высокой тепло- и электропроводностью. Он устойчив к воздействию воздуха за счет способности формирования пленок из оксида металла, защищающих поверхность от влияния внешней среды.

Разрушается пленка под воздействием щелочных растворов. Для предотвращения реакции металла с агрессивными жидкостями в сплав добавляют индий, олово или галлий.

Удельная теплота плавления составляет 390 кДж/кг, а испарения — 10,53 МДж/кг. Металл кипит при температуре 2500°C. Градиент плавления зависит от степени очистки материала и составляет соответственно:

  • для технического сырья +658°C;
  • для металла с очисткой высшего класса +660 °C.

Алюминий легко формирует сплавы, среди которых всем известны соединения с медью, магнием, кремнием. В ювелирной отрасли этот металл сочетают с золотом, что придает составу новые физические свойства.

Алюминий легко образует сплавы.

В природе химический элемент образует естественные соединения. Он находится в составе таких минералов, как:

  • нефелин;
  • боксит;
  • корунд;
  • полевой шпат;
  • каолинит;
  • берилл;
  • изумруд;
  • хризоберилл.

В некоторых местах (жерла вулканов) можно обнаружить в незначительных количествах самородный металл.

Сферы применения

Свойство химического элемента № 13 отлично накапливать тепло позволяет его широко использовать в промышленном производстве и теплотехнике.

 

Алюминиевый радиатор.

Алюминий применяется в качестве сырья для создания строительных конструкций. Он обладает легкостью, прочностью, устойчивость и является привлекательным сырьем для производства оконных конструкций.

Химический элемент образует неядовитые оксиды, что разрешает использование в производстве фольги для нужд пищевой промышленности. Алюминий является сырьем для создания космических ракет и самолетов. Высокий коэффициент отражения определяет его использование в изготовлении зеркал.

Теплопроводность металла и сплавов

Известен факт, что при средних и высоких температурных градиентах теплопроводность алюминия меньше, чем у железа или меди. Показатель теплопроводности алюминия определяет его использование для производства радиаторов.

Алюминий — теплоемкий металл.

При охлаждении металла теплопроводность значительно возрастает по сравнению с медью, для которой при низкой температуре показатель становится ниже.

В процессе переплавки материал изменяет свойства: уменьшается его плотность и теплопроводность. Например, при температурном градиенте +27°C плотность равна 2697 кг/м³, при нагревании до температуры перехода в жидкое состояние она становится равной 2368 кг/м³. Этот факт обусловлен расширением массы при подогреве. Вследствие влияния температуры снижается плотность.

Удельная теплоемкость алюминия равна 904 Дж/кг при комнатной температуре. Этот показатель значительно зависит от температурного градиента, и в сравнении с медью и железом для этого материала он значительно выше.

Теплопроводность сплавов, содержащих химический элемент № 13, увеличивается с ростом температуры. Более низким температурным градиентом обладают литейные составы. Наиболее плотными являются соединения, в составе которых находятся кремний и цинк.

Сплавы, содержащие магний, отличаются легкостью. Соединения, в составе которых находится медь, обладают устойчивостью к коррозии и особой прочностью.

Чем больше весовое количество алюминия в составе соединения, тем выше показатель теплопроводности. Удельная теплоемкость сплавов увеличивается при нагревании.

Похожие статьи

 

ometallah.com

Высокая теплопроводность — алюминий — Большая Энциклопедия Нефти и Газа, статья, страница 1

Высокая теплопроводность — алюминий

Cтраница 1

Высокая теплопроводность алюминия создает условия для получения широкой зоны нагрева при сварке. В соответствии с низкими механическими свойствами алюминия в нагретом состоянии и большой литейной усадкой ( до 7 % у чистого алюминия) в ряде случаев могут образоваться трещины. Кроме того, алюминий в расплавленном состоянии хорошо растворяет водород, который, выделяясь в момент кристаллизации сварочной ванны, может образовать поры.  [1]

Высокая теплопроводность алюминия при низкой температуре плавления требует внимательного подбора горелки в зависимости от толщины металла.  [2]

Вследствие высокой теплопроводности алюминия необходимо применение мощных источников теплоты. С этой точки зрения в ряде случаев желательны подогрев начальных участков шва до температуры 120 — 150 С или применение предварительного и сопутствующего подогрева.  [3]

ТепЛопереДающей поверхности и относительно высокой теплопроводности алюминия имеет меньшую поверхность охлаждения по сравнению с другими конденсаторами.  [4]

При этом следует отметить, что при нагреве алюминия избыток температуры нагревающего газа над конечной температурой садки может быть выше, чем при нагреве стали, ввиду низкой излучательной способности и высокой теплопроводности алюминия.  [5]

Более высокая теплопроводность алюминия значительно уменьшает высокотемпературную область, несмотря на меньшее значение объемной теплоемкости. Высокой теплопроводностью алюминия определяется и меньшая сгущенность изотерм перед подвижным источником тепла. Поэтому и расчеты по схемам с быстродви-жущимися источниками тепла применительно к сварке алюминия дают значительно большую погрешность, чем при сварке стали. Так, например, если при сварке сталей погрешность в расчетах полей незначительна при усв 25 л1 / ц ( — 0 7см / тс), то при сварке алюминия малая погрешность применения расчетных схем быстро-движущихся источников становится.  [6]

В третьем выступе полукруглого сечения, проходящем по всей высоте реторты, высверлено глубокое, но не сквозное вертикальное отверстие — карман для термометра или термопары. Толстые стенки реторты и высокая теплопроводность алюминия обеспечивают равномерное нагревание всей реторты а предохраняют навеску топлива от местного перегревания. Массивный выступ, в который вставлена отводящая из реторты пары и газы трубка, также предназначен для предохранения трубки от перегрева пламенем горелки. Алюминиев ые реторты изготовляются двух размеров для навесок в 20 и 50 г. Типовой общепринятой является 20-граммовая реторта.  [7]

При нагреве алюминий не меняет цвет, поэтому уловить момент начала его плавления может только опытный сварщик. Низкая температура плавления и высокая теплопроводность алюминия требуют правильного выбора мощности сварочного пламени.  [8]

Режим сварки выбирается таким образом, что внутренний грат при изготовлении кабелей имеет совершенно незначительную высоту. Вследствие малой зоны нагрева трубной заготовки и сравнительно низкой температуры сварки и высокой теплопроводности алюминия сварной шов быстро охлаждается и электрическая изоляция кабеля не подвергается вредному тепловому воздействию.  [9]

Основными способами дуговой сварки алюминия и сплавов на его основе являются аргонодуговая сварка, а также сварка под флюсом и покрытыми электродами. Основные трудности сварки связаны со следующим: на поверхности расплавленного металла постоянно появляется тугоплавкая пленка оксида алюминия А Оз, препятствующая образованию единой жидкой ванны; алюминий не изменяет своего цвета при нагревании, что крайне затрудняет контроль над температурным режимом сварки; высокая теплопроводность алюминия и сплавов на его основе требует применения источников питания с высокой концентрацией энергии.  [10]

Перед сваркой электроды зачищают до металлического блеска. Сварку производят на постоянном токе обратной полярности. Вследствие высокой теплопроводности алюминия перед прихваткой и сваркой необходим местный подогрев околошовной зоны. Контроль подогрева производят термокарандашами. С целью предохранения труб от брызг поверхность рядом со свариваемыми кромками перед сваркой обмазывают глиняным раствором.  [11]

Основными конструкционными материалами являются алюминий, углеродистая и нержавеющая стали. Выбор материала определяется расчетными предельными значениями давления и температуры, а также коррозионной стойкостью. В отсутствие коррозионных жидкостей высокая теплопроводность алюминия обеспечивает самую низкую стоимость теплообменника. Алюминий целесообразно применять в диапазоне температур от криогенных до 250 С, углеродистую сталь — от 250 до 480 С, нержавеющую сталь — в диапазоне 250 — 650 С. Для работы при высоких температурах в условиях коррозии предпочтительно использовать нержавеющие стали. Медь удобна для паяных конструкций и обеспечивает идеальные тепловые свойства. Тем не менее ее применяют только в коррозионной среде, где неприменим алюминий. В большинстве автомобильных радиаторов применяются медь или медные сплавы.  [13]

При температуре полукоксования ( не свыше 550) он не окисляется, легко отливается ( температура плавления 658), крышка легко притирается. Толстые стенки реторты и высокая теплопроводность алюминия обеспечивают равномерное нагревание всей реторты и предохраняют навеску угля от местного перегрева.  [14]

Страницы:      1    2

www.ngpedia.ru

А насколько сильна теплопроводность фольги?

Теплопроводность алюминия, действительно, очень высока. Еще больший эффект вносит малая толщина материала 🙂 (да еще в сочетании с низкой плотностью) (в принципе, любой металл при таких толщинах дал бы сходный эффект) . НО: это работает, если есть прямой контакт от нагретого тела к «холодному» через фольгу. Иначе: ощутимый эффект теплозащты может быть получен за счет отражения ИК излучения и препятствия конвективным потокам. Короче, посидеть на холодном камне, подложив фольгу — это мимо, можно ничего не класть. Зато от солнца шторку соорудить — самое оно. Заворачивать продукты при готовке — почти не препятствует обычному нагреву, но работает против микроволн.

Теплопроводность не может быть «Сильной» или «Слабой» , теплопроводность может быть большой или маленькой, у фольги она большая, так как это металл Олово, значение приведено в соответствующей таблице:)

Теплопроводность алюминия одна из самых высоких (ниже только чем у меди и серебра).

touch.otvet.mail.ru

Ответы@Mail.Ru: Применение алюминия

Алюми&#769;ний (лат. Aluminium) — химический элемент под номером 13 в таблице Менделеева. Наиболее распространённый металл и третий по распространённости химический элемент (после O, Si) в земной коре. Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, немагнитный серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой теплопроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению) , высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки. Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий) . Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ом) по сравнению с медью (63 1/ом) компенсируют увеличением сечения алюминиевых проводников. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять. * Благодаря комплексу свойств широко распространён в тепловом оборудовании. * Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике. * Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал. * В производстве строительных материалов как газообразующий агент. * Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование. * Сульфид алюминия используется для производства сероводорода. * Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала. В качестве восстановителя * Как компонент термита, смесей для алюмотермии * Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Википедию почитай

touch.otvet.mail.ru

Что хорошего в алюминиевых сплавах?

За какие свойства алюминия и алюминиевых сплавов их так охотно применяют во всех отраслях промышленности и строительстве? 

Коррозионная стойкость

Тонкая естественная оксидная пленка, которая прочно «сцеплена» с основным металлом, обеспечивает многим алюминиевым сплавам значительное сопротивление коррозии во многих атмосферных и химических средах. Особенно отличаются в этом сплавы серий 1ххх, 3ххх, 5ххх и 6ххх.

Теплопроводность алюминия

Алюминий и алюминиевые сплавы являются хорошими проводниками тепла. Теплопроводность алюминиевых сплавов более чем в четыре раза выше, чем у углеродистых сталей. Они начинают плавиться при значительно более низкой температуре, чем стали. Температура плавления чистого алюминия составляет около 660 °С, а алюминиевые сплавы в зависимости от степени легирования начинают плавиться при более низких температурах, например, при 515 °С для сплава 2017 (Д1).  

Электропроводность

Чистый алюминий и некоторые его сплавы имеют очень высокую электропроводность (низкое электрическое сопротивление), уступая только меди среди металлов, которые применяют в качестве проводников электричества. Вместе с тем, на высоковольтных линиях электропередач, если это позволяет степень загрязненности воздушной атмосферы, применяют именно алюминиевые провода. Они имеют большее поперечное сечение, чем эквивалентные медные провода, однако и  вдвое меньший вес, что позволяет, в частности,  реже ставить опоры и уменьшать их высоту. 

Отношение прочности алюминия к его весу

Высокое отношение прочность/вес – относительно высокая прочность при низкой плотности —  определяет высокую эффективность алюминиевых сплавов и открывает много возможностей для замены более тяжелых металлов без потери (а может быть и с увеличением) несущей способности изделия или детали. Эта особенность алюминиевых сплавов в сочетании с хорошей коррозионной стойкостью, а также возможности полной переработки после окончания срока службы, обеспечивает им широкое применение  производстве контейнеров и в транспортном машиностроении (самолеты, автомобили, пассажирские вагоны).

Алюминий при низких температурах

Алюминиевые сплавы, особенно сплавы серий 3ххх, 5ххх и 6ххх идеально подходят для работы при низких температурах. Многочисленные данные подтверждают, что их пластичность и вязкость,  также как и прочность, выше при отрицательных температурах, вплоть до абсолютного нуля, чем при «комнатной» температуре.    

Обработка алюминия

Алюминиевые сплавы легко обрабатываются большинством известных технологий обработки металлов и особенно легко поддаются прессованию. Прессованием называется процесс продавливания нагретого металла через матрицу, формирующую профили со сложным поперечным сечением. Иногда, это процесс называют более подходящим именем – экструзия. Это свойство алюминиевых сплавов дает возможность изготавливать из них профили с практически неограниченным разнообразием форм поперечного сечения. Это позволяет располагать металл в тех местах и таким образом, чтобы обеспечивать профилю максимальную несущую способность под воздействием заданных нагрузок.

Соединение алюминия

Детали из алюминиевых сплавов соединяют с помощью большого количества способов, включая, сварку, пайку, клепку, винтовые соединения, не говоря о большом разнообразии механических способов. Сварка алюминия может показаться трудной  для тех, кто имеет опыт работы только со сталями и попытается перенести его на алюминий. Сварку алюминиевых сплавов считают  довольно легкой, когда применяют такие проверенные методы, как дуговая сварка плавящимся электродом (MIG) и вольфрамовым неплавящимся электродом (TIG) в среде инертного газа.    

Переработка лома алюминия

Важной характеристикой алюминиевых сплавов является то, что их жизненный цикл  практически полностью замкнут — они легко поддаются повторному использованию — рециклингу — и, в отличие от других конструкционных материалов, они перерабатываются почти в такую же высококачественную продукцию.

aluminium-guide.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *