Есть ли теплопроводность у алюминия: Свойства алюминия: плотность, теплопроводность, теплоемкость Al

Содержание

меди, латуни и алюминия, теплопередача

Теплопроводность металловПеред тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Понятие теплопроводностьТеплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Теплопроводность сталиДля стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Влияние концентрации углерода на теплопроводность сталиНизкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1.  Значение коэффициента  теплопроводности сталиПри изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Теплопроводность металлов и сплавов таблица

Пояснения сравнительных величин приборов отопления

Из представленных выше данных, видно, что наиболее высоким показателем теплоотдачи обладает биметаллическое отопительное устройство. Конструктивно такой прибор представлен компанией RIFAR в ребристом алюминиевом корпусе. в котором располагаются металлические трубки, вся конструкция крепится сварным каркасом. Этот вид батарей ставится в домах с большой этажностью, а также в коттеджах и частных домах. К недостатку этого вида отопительного устройства относится его дороговизна.

Теплопроводность металловТеплопроводность металлов

Важно! Когда этот вид батарей ставится в домах с большим количеством этажей, рекомендуется иметь собственную котельную станцию, в которой есть узел водоподготовки. Это условие предварительной подготовки теплоносителя связано со свойствами алюминиевых батарей

они могут подвергаться электрохимической коррозии, когда он поступает в некачественном виде через центральную сеть отопления. По этой причине отопительные приборы из алюминия рекомендуется ставить в отдельных системах отопления.

Чугунные батареи в этой сравнительной системе параметров значительно проигрывают, у них низкая теплоотдача, большой вес отопительного прибора. Но, несмотря на эти показатели, радиаторы МС-140 пользуются спросом населения, причиной которого являются такие факторы:

Длительность безаварийной эксплуатации, что важно в отопительных системах.
Стойкость к негативному воздействию (коррозии) теплового носителя.
Тепловая инерционность чугуна.

Данный вид устройств отопления работает более 50 лет, для него нет разницы в качестве подготовки теплового носителя. Нельзя их ставить в домах, где, возможно, высокое рабочее давление сети отопления, чугун не относится к прочным материалам.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже было упомянуто выше. Но для того чтобы сравнение радиаторов отопления было корректным, его надо производить не только по теплоотдаче, но и по другим важным параметрам:

  • рабочему и максимальному давлению;
  • количеству вмещаемой воды;
  • массе.

Ограничение по величине рабочего давления определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота столба воды может достичь сотни метров. Кстати сказать, это ограничение не касается частных домов, где давление в сети не бывает высоким по определению. Сравнение по вместительности радиаторов может дать представление об общем количестве воды в системе, которое придется нагревать. Ну а масса изделия важна при определении места и способа его крепления.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Теплопроводность металловТеплопроводность металлов

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

отсюда

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Теплопроводность металловТеплопроводность металлов

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Теплопроводность металловТеплопроводность металлов

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Как правильно сделать расчет тепловой мощности

Грамотное обустройство системы отопления в доме не может обойтись без теплового расчета мощности отопительных устройств необходимых для обогрева помещений. Существуют простые проверенные способы расчета тепловой отдачи отопительного прибора. необходимой для обогрева комнаты. Здесь также учитывается расположение помещения в доме по сторонам света.

Теплопроводность металловТеплопроводность металлов

  • Южная сторона дома обогревается на метр кубический помещения 35 Вт. тепловой мощности.
  • Северные комнаты дома на метр кубический обогреваются 40 Вт. тепловой мощности.

Для получения общей тепловой мощности необходимой для обогрева помещений дома надо реальный объем комнаты умножить на представленные величины и сложить их по количеству комнат.

Важно! Представленный вид расчета не может быть точным, это укрупненные величины, ими пользуются для общего представления необходимого количества отопительных приборов. Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия

По нормативам секция такой батареи равняется 70 единицам мощности (DT)

Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия. По нормативам секция такой батареи равняется 70 единицам мощности (DT).

Что это такое, как понимать? Паспортный тепловой поток секции батареи может быть получен при соблюдении условия подачи теплового носителя с температурой 105 градусов. Для получения в обратной системе отопления дома температуры 70 градусов. Начальная температура в комнате принимается за 18 градусов тепла.

Теплопроводность металловТеплопроводность металлов
теплоноситель нагрет до 105 градусов

DT= (температура носителя подачи + температура носителя обратки)/2, минус комнатная температура. Затем данные в паспорте изделия умножить на коэффициент поправочный, которые для разных значений DT приводятся в специальных справочниках. На практике это выглядит так:

  • Система отопительная работает в прямой подаче 90 градусов в обработке 70 градусов, комнатная температура 20 градусов.
  • По формуле получается (90+70)/2-20=60, DT= 60

По справочнику ищем коэффициент для этой величины, он равен 0,82. В нашем случае тепловой поток 204 умножаем на коэффициент 0,82, получаем реальный поток мощности = 167 Вт.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти характеристики мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, а тут конструкция и форма изделия играет большую роль. Поэтому идеально сравнить стальной панельный обогреватель с чугунным затруднительно, их поверхности слишком разные.

Теплопроводность металловТеплопроводность металлов

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдаст 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) такой же высоты и таким же числом секций сможет выдать только 530 Вт при тех же условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Характеристики алюминиевых и биметаллических продуктов с точки зрения тепловой мощности практически идентичны, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Упомянутые 5 алюминиевых секций GLOBAL высотой 600 мм имеют общую длину около 400 мм, что соответствует стальной панели KERMI 600х400. Выходит, что даже трехрядный стальной прибор (тип 30) выдаст лишь 572 Вт при Δt = 50 °С. Но надо учитывать, что глубина радиатора GLOBAL VOX составляет всего 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминия дает о себе знать, что отражается на габаритах.

В условиях индивидуальной системы отопления частного дома батареи одинаковой мощности, но из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они возвращают более холодную воду в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего появляется небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Из всего вышесказанного напрашивается простой вывод

Не суть важно, из какого материала изготовлен радиатор, главное, чтобы он был верно подобран по мощности и подходил пользователю во всех отношениях. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой можно устанавливать

Расчет тепловой мощности

Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира. Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя

В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС

Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

DT = (tпод + tобр) / 2 – tкомн, где:

  • tпод – температура воды в подающем трубопроводе;
  • tобр – то же, в обратке;
  • tкомн – температура внутри комнаты.

После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

Теплопроводность металловТеплопроводность металлов

Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

https://youtube.com/watch?v=nSewFwPhHhM

Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

ЧТО ЛУЧШЕ: АЛЮМИНИЙ ИЛИ ЧУГУН?

алюминий против чугуна


Немного о физических свойствах металлов:

1. Теплопроводность — это способность вещества передавать тепло (энергию движущихся молекул) от одной части тела к другой. Чем выше значение теплопроводности, тем быстрее происходит нагрев металла.
Коэффициент теплопроводности алюминия = 200-220 Вт/м/К
Коэффициент теплопроводности чугуна = 50-70 Вт/м/К

2. Теплоемкость вещества — это количество теплоты поглощаемое веществом при нагревании на 1 градус. Чем больше значение теплоемкости, тем больше тепла запасает в себе 1 кг вещества.
Теплоемкость алюминия = 920 Дж/кг/К
Теплоемкость чугуна = 540 Дж/кг/К

3. Плотность вещества — это масса вещества приходящаяся на единицу объема. Чем больше значение плотности, тем тяжелее тело при равных размерах.
Плотность алюминия

= 2700 кг/куб.м
Плотность чугуна = 7000 кг/куб.м

Судя по табличным данным чугун обладает значительно меньшей теплопроводностью, следовательно чугунная посуда нагревается медленнее алюминиевой. Сравнив остальные свойства металлов получим, что плотность чугуна больше в 2,5 раза, а теплоемкость меньше лишь в 1,7 раза. Таким образом, если взять два совершенно одинаковых (по форме и объему) казана из алюминия и чугуна и нагреть их до одинаковых температур, то чугунный казан будет остывать намного дольше (так как масса чугуна намного больше, теплопроводность намного меньше, а количество запасённого тепла чуть меньше, чем у алюминия).

Преимущества алюминия:

  • посуда имеет малый вес.
  • очень доступный и распространенный металл, поэтому цена на алюминиевую посуду ниже;
  • долговечна.


Преимущества чугуна:

  • чугунная посуда не тускнеет, не деформируется и не боится царапин;
  • при правильном обращении чугунная посуда практически вечна.

Недостатки алюминия:
  • из-за высокой теплопроводимости в ней легко пригорают продукты, а следы нагара трудно удаляются с ее поверхности;
  • тонкостенная алюминиевая посуда легко деформируется и теряет свой первоначальный привлекательный внешний вид;
  • посуда покрывается плёнкой оксида алюминия и начинает темнеть, но это не влияет на вкус пищи в процессе приготовления;
  • нельзя хранить пищу в алюминиевой посуде долгое время (> 3 часов), так как посуда окисляется и меняет вкус еды.

Недостатки чугуна:
  • склонность к ржавчине, поэтому после мойки ее следует тщательно вытирать или просушивать на плите, а затем смазывать маслом;
  • большой вес;
  • как и в алюминевой посуде нельзя хранить пищу долгое время (> 3 часов).
 

Достаточно физики! Пора готовить!

Чугунную посуду рекомендуют для приготовления птицы, тушеных овощей и мяса, а также для приготовления плова.
В алюминиевых кастрюлях хорошо варить макароны, каши и овощи, а вот тушить мясо, готовить борщ и кислые щи в них не следует.
Не следует использовать алюминиевую и чугунную посуду для хранения готовой пищи, для соления и квашения, поскольку в ней пища окисляется и теряет свои вкусовые качества.

Таким образом, чтобы ответить на вопрос: «Что лучше: чугунная или алюминиевая посуда?», нужно решить детскую задачку, про «Кто победит – кит или слон?». Алюминиевая и чугунная посуда отличаются по большому перечню характеристик и просто не смогут друг друга заменить. Сложно приготовить в алюминиевой посуде вкусный плов, а в чугунной посуде — макароны по-флотски.

Свойства алюминия

Свойства алюминия, одного металлов, принадлежащих к 13-й группе согласно периодической таблице химических элементов, достаточно обширны. Основные группы свойств: физические и химические. Этот легкий металл сочетает сразу множество физических характеристик относительно плотности, теплопроводности, коррозийной стойкости и пластичности. Физические свойства алюминия зависят, как и у множества металлов, от степени чистоты металла. Только особая чистота материала, наиболее приближенная к единице (99,996%), гарантирует самые высокие показатели относительно физических свойств. Именно благодаря высоким показателям металл отлично поддается ковке, штамповке и другим видам обработки.


Что примечательно, алюминий поддается практически любому виду сварки, будь то контактная, газовая или иная разновидность. Серебристо-белый легкий металл характеризуется высокой теплопроводностью, при этом обладает малой плотностью. Показатели электрической проводимости также достаточно велики, поэтому материал постоянно используется в сфере кабельной промышленности. Завершают перечень физических свойств легкого металла замечательная антикоррозийная стойкость и высокая пластичность.

 

Плотность материала

 

Плотность алюминия — это выражение массы материала в содержании единицы объема. Плотностью также называют предел массы вещества по отношению к занимаемому этим веществом объему. Именно по такой формуле вычисляется плотность легкого металла особой чистоты. Ее показатель равен 2,7*10 в кубе кг/м3. Плотность – это свойство, от которого зависит и другая характеристика материала, а именно – прочность. Так как плотность легкого металла довольно мала, то и прочность, соответственно, невелика. Потому алюминий не используется в качестве конструкторского материала.

 

Алюминий

 

Чтобы увеличить прочность металла, к нему добавляются другие элементы с более высокой плотностью. Под воздействием более плотных добавок, прочность алюминия резко возрастает. Также показатели прочности можно поднять с помощью применения механической или термической обработки. В результате удачного сочетания в сплавах, алюминий приобретает ценные конструкционные качества, выраженные в хорошей механической прочности при малой плотности материала. Сплавы на основе алюминия в некоторых отраслях промышленности с успехом заменяют такие металлы (сплавы), как медь или олово, цинк или свинец.

 

Теплопроводность

 

Теплопроводность алюминия — одно из его физических свойств. Оно, как и многие, зависит от чистоты структуры материала. То есть, чем ближе к единице чистота алюминия, тем выше и его свойства теплопроводности. Технический алюминий, процентность которого равна приблизительно 99,49, имеет теплопроводность (при 200 градусах Цельсия) 209 Вт/(м*К). Если же технический алюминий обладает процентностью 99,70, то значение его теплопроводности достигает 222 Вт/(м*К).

 

Изделия из алюминия

 

В то время, когда материал электролитически рафирован и его чистота 99,9% — значение теплопроводности уже при 190 градусах Цельсия повышается до 343 Вт/(м*К). В отличие от прочности, которая повышается при сплаве алюминия с другими металлами, свойства теплопроводности в этом случае уменьшаются. Примером можно привести добавку Mn. Всего два процента такой добавки способны уменьшить теплопроводность алюминия со значения 209 Вт/(м*К) до показателя, равного 126 Вт/(м*К). Стоит также отметить, что свойства теплопроводности алюминия настолько высоки, что преимущество относительно них есть лишь у меди и серебра.


Температура плавления алюминия — достаточно весомый показатель, который учитывается любой отраслью промышленности, работающей с данным материалом. Температура плавления – показатель нестабильный, во многом он зависит от того, какие материалы применены для примеси с алюминием. От температуры плавления зависит скорость обработки материала, то есть, можно сказать, производственные возможности. Наиболее часто алюминий обрабатывается в России, Австралии, Канаде и США. В этих странах крупная доля отрасли промышленности занимается плавкой алюминия.

 

Проволока из алюминия

 

У каждой страны имеются свои технологии плавки, со временем, благодаря экспериментам с добавлением различных материалов, позволившие минимально возможно снизить показатель температуры плавления алюминия. Наиболее точный, стандартный показатель температуры плавления алюминия составляет 660,32 градуса Цельсия. В связи с таким большим показателем, плавление материала можно организовать только в специальных условиях и специально оборудованных помещениях. Чтобы осуществить этот процесс в домашних условиях, первое, что необходимо – оборудование. Обычно для этого используется тигельная муфельная печь.

 

Теплоемкость

 

Теплоемкость алюминия, если взять показатель постоянного давления и температуру 291 составит 581 кал/град, моль. Но теплоемкость материала может значительно поменяться, если значение температуры будет низким. Высокий показатель теплоемкости диктует свои условия относительно использования достаточно мощных источников тепла. Иногда применяет даже метод подогрева. Высота уровня коэффициента линейного расширения, а также незначительный модуль упругости, могут создать значительные сварочные деформации. Такое обстоятельство диктует условия использования зажимных приспособлений с повышенным уровнем надежности.

 

Алюминиевый лист

 

Возникающие деформации в конструкциях, к которым следует подходить с ответственностью, устраняются уже после сварки. Стоит отметить, что высокие показатели таких свойств, как теплоемкость и теплопроводность, относительно самого алюминия, а также его сплавов, значительно влияют на то, какой именно метод сварки следует выбрать. Удельная теплоемкость алюминия, измеряемая в Дж/(кг*град. Цельсия), равна значению 920. Если брать показатели удельной теплоемкости, нужно отметить – они меняются зависимо от агрегатного состояния материала.

 

Удельное сопротивление

 

Удельное сопротивление алюминия выше по сравнению с аналогичной величиной меди. Но на показатель удельного сопротивления меди может существенно повлиять такой метод обработки, как отжиг. На алюминий этот метод практически не имеет влияния. При этом, температурные коэффициенты меди и алюминия идентичны. В кабельной промышленности довольно часто применяется оксидная изоляция.

 

 

 

Теплостойкость оксидированного алюминиевого провода составляет 400 градусов Цельсия. Вообще, удельное сопротивление рассматриваемого материала превышает аналогичный показатель меди в 1,65 раза. Алюминиевые провода достаточно часто подвергаются оксидной изоляции. В то время, чтобы данный метод применить по отношению к медному проводу, его необходимо покрыть хотя бы тонким слоем алюминия. Оксидированный алюминий служит материалом для изготовления катушек, способных работать при высоких температурах.

 

Химические свойства

 

Химические свойства алюминия выражают его валентность, свойства взаимодействия с окружающими сферами. Первое, что стоит отметить – алюминий обладает достаточно высокой химической активностью. Если рассматривать ряд напряжений металлов, то данный материал займет место между магнием и цинком. Алюминию свойственно быстрое окисление кислородом, взятым из воздуха, в результате чего получается прочная защитная оксидная пленка.

 

Алюминиевый провод

 

Именно эта пленка является препятствием на пути к дальнейшему окислению материала. Также оксидная пленка оберегает изделия из алюминия от взаимодействия с другими веществами, контакт с которыми может привести к разрушению структуры материала. Именно защитной пленке отводится роль фактора, повышающего антикоррозийную стойкость алюминия. Если нарушается данная оксидная защита, то материал легко вступает во взаимодействие с влагой даже при обычной температуре.

Удельная теплоемкость сплавов алюминия и сферы применения.

Алюминий- химический элемент

Мягкий металл Меркурия.

Удельная теплоемкость алюминия является одним из основных параметров, определяющих использование металла в технических целях для производства деталей, техники, конструкций.

Физические свойства металла


Алюминий — это химический элемент (атомный № 13) Он принадлежит к группе легких металлов и является распространенным элементом, находящимся в земной коре. Парамагнитный металл обладает серебристо-белым цветом, он очень легко поддается механической обработке, из него удобно отливать изделия.

Металл обладает высокой тепло- и электропроводностью. Он устойчив к воздействию воздуха за счет способности формирования пленок из оксида металла, защищающих поверхность от влияния внешней среды.

Разрушается пленка под воздействием щелочных растворов. Для предотвращения реакции металла с агрессивными жидкостями в сплав добавляют индий, олово или галлий.

Удельная теплота плавления составляет 390 кДж/кг, а испарения – 10,53 МДж/кг. Металл кипит при температуре 2500°C. Градиент плавления зависит от степени очистки материала и составляет соответственно:

  • для технического сырья +658°C;
  • для металла с очисткой высшего класса +660 °C.

Алюминий легко формирует сплавы, среди которых всем известны соединения с медью, магнием, кремнием. В ювелирной отрасли этот металл сочетают с золотом, что придает составу новые физические свойства.

Сплавы алюминия

Алюминий легко образует сплавы.

В природе химический элемент образует естественные соединения. Он находится в составе таких минералов, как:

  • нефелин;
  • боксит;
  • корунд;
  • полевой шпат;
  • каолинит;
  • берилл;
  • изумруд;
  • хризоберилл.

В некоторых местах (жерла вулканов) можно обнаружить в незначительных количествах самородный металл.

Сферы применения

Свойство химического элемента № 13 отлично накапливать тепло позволяет его широко использовать в промышленном производстве и теплотехнике.

Радиатор

Алюминиевый радиатор.

Алюминий применяется в качестве сырья для создания строительных конструкций. Он обладает легкостью, прочностью, устойчивость и является привлекательным сырьем для производства оконных конструкций.

Химический элемент образует неядовитые оксиды, что разрешает использование в производстве фольги для нужд пищевой промышленности. Алюминий является сырьем для создания космических ракет и самолетов. Высокий коэффициент отражения определяет его использование в изготовлении зеркал.

Теплопроводность металла и сплавов

Известен факт, что при средних и высоких температурных градиентах теплопроводность алюминия меньше, чем у железа или меди. Показатель теплопроводности алюминия определяет его использование для производства радиаторов.

Теплоемкость алюминия.

Алюминий – теплоемкий металл.

При охлаждении металла теплопроводность значительно возрастает по сравнению с медью, для которой при низкой температуре показатель становится ниже.

В процессе переплавки материал изменяет свойства: уменьшается его плотность и теплопроводность. Например, при температурном градиенте +27°C плотность равна 2697 кг/м³, при нагревании до температуры перехода в жидкое состояние она становится равной 2368 кг/м³. Этот факт обусловлен расширением массы при подогреве. Вследствие влияния температуры снижается плотность.

Удельная теплоемкость алюминия равна 904 Дж/кг при комнатной температуре. Этот показатель значительно зависит от температурного градиента, и в сравнении с медью и железом для этого материала он значительно выше.

Теплопроводность сплавов, содержащих химический элемент № 13, увеличивается с ростом температуры. Более низким температурным градиентом обладают литейные составы. Наиболее плотными являются соединения, в составе которых находятся кремний и цинк.

Сплавы, содержащие магний, отличаются легкостью. Соединения, в составе которых находится медь, обладают устойчивостью к коррозии и особой прочностью.

Чем больше весовое количество алюминия в составе соединения, тем выше показатель теплопроводности. Удельная теплоемкость сплавов увеличивается при нагревании.

Шаг пятый. Медь vs алюминий

Шаг пятый.
Предыдущие шажки можно увидеть здесь.
Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
Решено было – отполировать и поставить.
Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
Как это возможно? Алюминий эффективней меди?

В теории:

Теплопроводность:
Алюминий 180-200 Вт/м*К
Медь обычная 300-320 Вт/м*К

Плотность:
Рал=2700 кг/м3
Рмед=8940 кг/м3, где Р-плотность

Удельная теплоёмкость:
Алюминий — 880 Дж / кг*К
Медь — 385 Дж / кг*К

видим, что:
· плотность меди выше, чем у алюминия примерно в 3,31 раза
· теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
· теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.

Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше.
Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему?
В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна. А во-вторых, сам радиатор нагревается медленнее вследствие большей теплоемкости, поэтому для достижения равной с медным радиатором температуры алюминиевому требуется больше времени, что усугубляет первое положение. Кроме того, возможно в радиаторе от Thermaltake Volcano 10 образовывались не продуваемые зоны, в которых застаивался теплый воздух.
Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.
Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.

Конструктивная критика принимается здесь.

Чем отличается теплый алюминий от холодного

Алюминий активно применяют в строительстве по многим причинам. Этот материал крепкий, лёгкий, при этом гибкий. Конструкции из него могут использоваться в разных температурных режимах, они пожаробезопасны, экологичны, не деформируются с годами, неприхотливы в уходе и почти не ломаются. Алюминий — отличный проводник тепла (не зря из него делают радиаторы). Это свойство когда-то считалось недостатком для жилищного строительства, ведь строения из него промерзали буквально насквозь. Позже высокая теплопроводность металла была учтена при разработке профилей. Сегодня на разных инженерных объектах используют два типа профиля — тёплый и холодный.

Особенности тёплого алюминия

профиль тёплого алюминияпрофиль тёплого алюминия

На производстве тёплого профиля алюминиевые и полиамидные части соединяются по системе «паз-гребень», а затем «закатываются» на специальном оборудовании

У тёплого профиля между двумя алюминиевыми деталями есть специальная пластмассовая вставка, которая тепло не проводит. Специалисты называют её терморазрывом, или термомостом. Её задача — прервать тепловой поток, идущий из помещения на улицу. Наличие термоизолирующей вставки — это то, чем отличается такой профиль от холодного.

Для изготовления терморазрыва используют специальный стеклонасыщенный полиамид, показатель теплопроводности которого в 150 раз ниже, чем у металла. Толщина полиамидной вставки варьируется от 1,8 до 3,5 см, и это позволяет алюминиевым конструкциям сохранять тепло так же хорошо, как это делают изделия из дерева и ПВХ.

Каждую часть профиля (две алюминиевые и термовставку) изготавливают отдельно, затем объединяют, получая многокамерную конструкцию. Чем больше камер, тем «теплее» профиль. Стенки, образованные термомостом, являются дополнительными рёбрами жёсткости.

Характерные черты холодного алюминия

холодный алюминиевый профильхолодный алюминиевый профиль

Алюминий привлекателен ещё и тем, что может быть окрашен в любой цвет из палитры RAL

Холодный алюминиевый профиль не имеет пластмассового термомоста, его структура неразрывна и неспособна полноценно защищать от тепловых потерь. Тем не менее, конструкции уберегают от ветра, осадков и других погодных ненастий. Такие профили активно используются в строительстве по причине дешевизны, простоты сборки и эксплуатации.

Где применяют профили

входная группа из алюминиевого профилявходная группа из алюминиевого профиля

Тёплый алюминий применяют там, где нужно сохранить тепло

Холодный алюминий обеспечивает разницу температур между улицей и помещением примерно от 5 до 10°С, поэтому его применяют там, где большого тепла не требуется:

  • строительство неотапливаемых технических помещений;
  • остекление неутепленных балконов, веранд, беседок;
  • создание офисных перегородок;
  • установка межкомнатных дверей;
  • заполнение дверных проёмов в помещениях, оборудованных тамбуром.

Усовершенствованный профиль ставят там, где нужно поддерживать тепло, поэтому он незаменим для регионов с продолжительным холодным периодом. Из него делают:

  • входные группы и окна в жилых и офисных помещениях;
  • зимние сады;
  • теплицы;
  • зенитные фонари и т.д.

Таким образом, оба вида алюминиевых профилей прочно закрепились на строительном рынке, а выбор между ними определяется назначением объекта. Доступная стоимость, лёгкость обработки и высокие эксплуатационные качества позволяют металлу решать широкий спектр задач — от простого монтажа дверей до возведения сложных архитектурных сооружений.

Оцените статью: Поделитесь с друзьями!

Теплопроводность — Energy Education

Теплопроводность , часто обозначаемая как [math] \ kappa [/ math], — это свойство, которое связывает скорость потери тепла на единицу площади материала со скоростью его изменения температуры. [1] По сути, это значение, которое учитывает любое свойство материала, которое может изменить способ его теплопроводности. В единицах СИ теплопроводность выражается в ваттах на метр кельвин [математика] \ left (\ frac {W} {m K} \ right) [/ math] [2] , тогда как в имперских единицах это может быть выражено в БТЕ. в час на фут по Фаренгейту [математика] \ left (\ frac {BTU} {h ft ^ {\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопередача за счет теплопроводности включает в себя передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для обычных материалов

Теплопроводность, [math] \ kappa [/ math] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Бриллиант 1000
Войлок 0,04
Стекло 1.05
Утюг 80
Кислород 0,024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью.В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах. Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя легко. Таким образом, низкая теплопроводность указывает на хороший изоляционный материал.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и R-значениями / U-значениями. Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics.(12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Matter & Interactions , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Справочник инженеров-химиков Perry , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн].Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
.

Есть ли связь между электропроводностью и теплопроводностью?


На вопрос: Дарелл Хейс

Ответ

Для металлов существует взаимосвязь, известная как закон Видемана-Франца. Металлы бывают хорошие электрические проводники, потому что в них много бесплатных зарядов. Свобода заряды обычно представляют собой отрицательные электроны, но в некоторых металлах, например, в вольфраме, они положительные дыры.«В целях обсуждения предположим, что у нас есть заряды свободных электронов.

Когда существует разница напряжений между двумя точками в металле, возникает электрический разряд. поле, которое заставляет электроны двигаться, то есть вызывает ток. Конечно, электроны сталкиваются с некоторыми из неподвижных атомов (фактически, «ионными ядрами») металла и это фрикционное «сопротивление» их замедляет. Сопротивление зависит от конкретный тип металла, с которым мы имеем дело. Например, трение в серебре намного меньше, чем это в железе.Чем большее расстояние может пройти электрон, не наткнувшись на ионного сердечника, тем меньше сопротивление, т. е. больше электрическая проводимость. Среднее расстояние, которое электрон может пройти без столкновения, называется ‘длина свободного пробега.’ Но есть еще один фактор. Электроны, которые свободны для реакции на электрическое поле иметь тепловую скорость, составляющую значительный процент от скорости легкий, но поскольку они движутся беспорядочно с такой высокой скоростью, в среднем они никуда не движутся, я.е., эта тепловая скорость сама по себе не создает тока.

Теплопроводность этого металла, как и электрическая проводимость, определяется в основном за счет свободных электронов. Предположим теперь, что металл имеет разные температуры при его концы. Электроны движутся немного быстрее на горячем конце и медленнее на холоде. конец. Более быстрые электроны передают энергию более холодным, более медленные, сталкиваясь с их, и, как и в случае с электропроводностью, чем больше длина свободного пробега, тем быстрее энергия может передаваться, т.е.е., тем больше теплопроводность. Но скорость также определяется очень высокой тепловой скоростью — чем выше скорость, тем быстрее течет ли тепловая энергия (т. е. тем быстрее происходят столкновения). Фактически, тепловая проводимость прямо пропорциональна произведению длины свободного пробега и теплового скорость.

Тепловая и электрическая проводимость одинаковым образом зависят не только от среднего свободного пути, но также и от других свойств, таких как масса электрона и даже количество свободных электронов в единице объема.Но, как мы видели, они по-разному зависят от теплового скорость электропроводности электронов обратно пропорциональна ей, а тепловая электропроводность прямо пропорциональна ему. В итоге соотношение теплового к электропроводность зависит в первую очередь от квадрата тепловой скорости. Но это квадрат пропорционален температуре, поэтому соотношение зависит от температура, T, и две физические константы: постоянная Больцмана, k, и электронная заряд, эл.В этом контексте постоянная Больцмана является мерой того, сколько кинетической энергии электрон имеет на градус температуры.

В совокупности отношение теплопроводности к электрической проводимости составляет:

(pi 2 /3) * ((к / э) 2 ) * Т

значение постоянной T умножения составляет: 2,45×10 -8 Вт-ом-К-квадрат.
Ответил: Фрэнк Манли, доктор философии, доцент физики, Роанок-колледж

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *