Образовательный портал |Эпоксидные смолы общая формула
Эпоксидная группа
Чаще всего встречаются эпоксидные смолы с количеством эпоксидных групп меньше 10. Степень полимеризации n может достигать 25.
Например, ЭД-20 имеет только 2 эпоксидные группы, степень полимеризации n, равную 1 (по другим данным количество эпоксидных групп от 2 до 4 и степень полимеризации n от 1 до 4), и выглядит так:
Чем больше эпоксидных групп в молекуле смолы и выше степень полимеризации, тем гуще смола. Например, если n приблизительно равно 25, то смола при комнатной температуре будет твердым пластиком. Так для смолы ЭД-8, твердой при комнатной температуре, степень полимеризации по всей видимости может достигать 20, а количество эпоксидных групп – 8..10 (цифры приблизительные, поскольку точных данных найти не удалось).
Такую формулу смола имеет обычно в неотвержденном состоянии. Чтобы смола стала твердой, используют компоненты, которые называются отвердителями.
Отвердители бывают двух типов.
1. Холодного отверждения (ПЭПА, ТЭТА), т.е. отвердители, которые отверждают смолу при комнатной температуре. Приблизительный расход отвердителя ПЭПА и ТЭТА на смолу – 1:10 (отвердитель : смола – 1:10). Следует пояснить, что несмотря на разную отверждающую способность полиэтиленполиамина и триэтилентетрамина (у полиэтеленполиамина она выше) расход обоих отвердителей на смолу примерно одинаковый, т.к. согласно ТУ у полиэтиленполиамина массовая доля собственно ПЭПА составляет лишь 25–35% (остальное – кубовый остаток), а у триэтилентетрамина массовая доля ТЭТА составляет не менее 95%.
2. Горячего отверждения (малеиновый ангидрид, ДЭТА и др.), т.е. отвердители, которые отверждают смолу при температуре 50-60°С.
Для отверждения смол с меньшим содержанием n в их состав нужно вводить отвердители холодного отверждения.
Полиэтиленполиамин является самым распространенным отвердителем холодного отверждения и выглядит следующим образом:
Триэтилентетрамин:
Триэтилентетрамин в отличие от ПЭПА во влажных помещениях поглощает влагу.
Триэтиленпентамин – отвердитель горячего отверждения:
Диэтилентриамин– отвердитель горячего отверждения:
В реакцию со смолой для ее отверждения вступают третичные амидные группы, которые находятся на концах молекул. Эти группы наиболее подвижные, они более легко вступают в реакцию отверждения. Третичные амидные группы любого отвердителя вступают в реакцию с эпоксидными группами смолы. Образуется неподвижная сетчатая структура отвержденной смолы. Смола становится пластичной и твердой.
При взаимодействии эпоксидной смолы с отвердителем проходит следующая реакция:
Чем больше в смоле эпоксидных групп, тем больше будет появляться в процессе реакции «веточек», которые будут создавать пластичный полимер, взаимодействуя между собой с помощью различных химических связей.
Для того чтобы эпоксидная смола вместе с отвердителем в отвержденном состоянии была более пластична и не ломалась (не трескалась), нужно добавлять пластификаторы. Они, также как и отвердители, бывают разные, но все нацелены на то, чтобы придать смоле пластичные свойства. При добавлении пластификатора смола после отверждения не лопается и не трескается с течением времени. Наиболее распространенным пластификатором является дибутилфталат. Он выглядит так:
При помощи пластификаторов образуется так называемая сетчатая структура, в которой пластификатор образует «мостики» между молекулами смолы, что придает наибольшую прочность и пластичность затвердевшему изделию.
Бромированая эпоксидная смола обеспечивает превосходную огнестойкость по причине содержания в ней брома, при этом превосходные свойства в физике и электронике остаются такими же, как у обычных эпоксидных смол. Малобромированые смолы используются для пламени электрической горелки. Высокобромированые смолы используются для создания технических пластмасс, фенольной бумаги и др.
Новолачные (novolac) эпоксидные смолы:
Новолачные эпоксидные смолы – мультифункциональные смолы эпоксидной смолы, произведенные из окресола, называемого novolac. Они обеспечивают наивысшие тепловые свойства и сопротивление коррозии. Широко используются для герметизации, изготовления половых панелей, виниловых обоев, и др.
Еще почитать об эпоксидных смолах можно например здесь:
http://www.psrc.usm.edu/russian/epoxy.htm
http://www.psrc.usm.edu/russian/eposyn.htm
Файл переработан 14.05.2008г.
1piar.ru
Эпоксидная смола — Википедия
Материал из Википедии — свободной энциклопедии
Эпоксидная смола — олигомеры, содержащие эпоксидные группы и способные под действием отвердителей (полиаминов и др.) образовывать сшитые полимеры. Наиболее распространённые эпоксидные смолы — продукты поликонденсации эпихлоргидрина с фенолами, чаще всего — с бисфенолом А.
Свойства
Эпоксидные смолы стойки к действию галогенов, некоторых кислот (к сильным кислотам, особенно к кислотам-окислителям, имеют слабую устойчивость), щелочей, обладают высокой адгезией к металлам. Эпоксидная смола в зависимости от марки и производителя выглядит как прозрачная жидкость желто-оранжевого цвета, напоминающая мёд, или как коричневая твёрдая масса, напоминающая гудрон. Жидкая смола может иметь очень разный цвет — от белого и прозрачного до винно-красного (у эпоксидированного анилина).
Следующие свойства имеет чистая, не модифицированная смола без наполнителей:
- модуль упругости: <math>E\approx3000-4500 \frac{\rm{N}}{\rm{mm}^2}</math>;
- предел прочности: <math>R\approx 80 \frac{\rm{N}}{\rm{mm}^2}</math>;
- плотность: <math>\rho\approx1{,}2 \frac{\rm{g}}{\rm{cm}^3}</math>.
Хотя отверждённая по правильной технологии эпоксидная смола считается абсолютно безвредной при нормальных условиях, её применение сильно ограничено, так как при отверждении в промышленных условиях в ЭС остаётся некоторое количество золь-фракции — растворимого остатка. Он может нанести серьёзный урон здоровью, если будет вымыт растворителями и попадёт внутрь организма. В неотверждённом виде эпоксидные смолы являются достаточно ядовитыми веществами и могут также навредить здоровью.
Модификация
Эпоксидные смолы поддаются модификации. Различают химическую и физическую модификацию.
Первая заключается в изменении строения сетки полимера путём добавления соединений, встраивающихся в состав оной. Как пример — добавление лапроксидов (простых полиэфиров спиртов, содержащих глицидиловые группы, например, ангидрида глицерина) в зависимости от функциональности и молекулярной массы придаёт отверждё
ensiklopedya.ru
Эпоксидные смолы – общая формула
Эпоксидная группа
Чаще всего встречаются эпоксидные смолы с количеством эпоксидных групп меньше 10. Степень полимеризации n может достигать 25.
Например, ЭД-20 имеет только 2 эпоксидные группы, степень полимеризации n, равную 1 (по другим данным количество эпоксидных групп от 2 до 4 и степень полимеризации n от 1 до 4), и выглядит так: Чем больше эпоксидных групп в молекуле смолы и выше степень полимеризации, тем гуще смола.
Например, если n приблизительно равно 25, то смола при комнатной температуре будет твердым пластиком.
Так для смолы ЭД-8, твердой при комнатной температуре, степень полимеризации по всей видимости может достигать 20, а количество эпоксидных групп – 8..10 (цифры приблизительные, поскольку точных данных найти не удалось).
Такую формулу смола имеет обычно в неотвержденном состоянии.
Чтобы смола стала твердой, используют компоненты, которые называются отвердителями.
Отвердители бывают двух типов.
1. Холодного отверждения (ПЭПА, ТЭТА), т.е. отвердители, которые отверждают смолу при комнатной температуре.
Приблизительный расход отвердителя ПЭПА и ТЭТА на смолу – 1:
10 (отвердитель:смола–1:
10).
Следует пояснить, что несмотря на разную отверждающую способность полиэтиленполиамина и триэтилентетрамина (у полиэтеленполиамина она выше) расход обоих отвердителей на смолу примерно одинаковый, т.к. согласно ТУ у полиэтиленполиамина массовая доля собственно ПЭПА составляет лишь 25–35% (остальное – кубовый остаток), а у триэтилентетрамина массовая доля ТЭТА составляет не менее 95%.
2. Горячего отверждения (малеиновый ангидрид, ДЭТА и др.), т.е. отвердители, которые отверждают смолу при температуре 50-60 С.
Для отверждения смол с меньшим содержанием n в их состав нужно вводить отвердители холодного отверждения.
Полиэтиленполиамин является самым распространенным отвердителем холодного отверждения и выглядит следующим образом: Триэтилентетрамин:
Триэтилентетрамин в отличие от ПЭПА во влажных помещениях поглощает влагу.
Триэтиленпентамин – отвердитель горячего отверждения:
Диэтилентриамин– отвердитель горячего отверждения:
В реакцию со смолой для ее отверждения вступают третичные амидные группы, которые находятся на концах молекул.
Эти группы наиболее подвижные, они более легко вступают в реакцию отверждения.
Третичные амидные группы любого отвердителя вступают в реакцию с эпоксидными группами смолы.
Образуется неподвижная сетчатая структура отвержденной смолы.
Смола становится пластичной и твердой.
При взаимодействии эпоксидной смолы с отвердителем проходит следующая реакция: Чем больше в смоле эпоксидных групп, тем больше будет появляться в процессе реакции веточек, которые будут создавать пластичный полимер, взаимодействуя между собой с помощью различных химических связей.
Для того чтобы эпоксидная смола вместе с отвердителем в отвержденном состоянии была более пластична и не ломалась (не трескалась), нужно добавлять пластификаторы.
Они, также как и отвердители, бывают разные, но все нацелены на то, чтобы придать смоле пластичные свойства.
При добавлении пластификатора смола после отверждения не лопается и не трескается с течением времени.
Наиболее распространенным пластификатором является дибутилфталат.
Он выглядит так:
При помощи пластификаторов образуется так называемая сетчатая структура, в которой пластификатор образует мостики между молекулами смолы, что придает наибольшую прочность и пластичность затвердевшему изделию.
Эпоксидные смолы, в состав которых входит бром: Бромированая эпоксидная смола обеспечивает превосходную огнестойкость по причине содержания в ней брома, при этом превосходные свойства в физике и электронике остаются такими же, как у обычных эпоксидных смол.
Малобромированые смолы используются для пламени электрической горелки.
Высокобромированые смолы используются для создания технических пластмасс, фенольной бумаги и др.
Новолачные (novolac) эпоксидные смолы: Новолачные эпоксидные смолы – мультифункциональные смолы эпоксидной смолы, произведенные из окресола, называемого novolac.
Они обеспечивают наивысшие тепловые свойства и сопротивление коррозии.
Широко используются для герметизации, изготовления половых панелей, виниловых обоев, и др. Еще почитать об эпоксидных смолах можно например здесь:
http://www.psrc.usm.edu/russian/epoxy.htm
http://www.psrc.usm.edu/russian/eposyn.htm Файл переработан 14.05.2008г.
freedocs.xyz
Эпоксидная смола, как матричный материал
Тип работы:
Тема: Эпоксидная смола, как матричный материал
Министерство образования и науки Российской Федерации
Казанский Государственный Технологический Университет
Кафедра: Химии и технологии гетерогенных систем
Реферат на тему
: «Эпоксидная смола, как матричный материал.»
Выполнил студент гр. 1131-82: Егоров Р.
Проверил доцент: Микрюков К.В.
Казань,2006
Содержание
Введение
1.Химия эпоксидных смол.
2.Процесс отверждения.
3.Применение
4.Физико-химические показателям эпоксидно-диановых смол марок ЭД-16 и ЭД-20
5.Требования безопасности смол эпоксидно-диановых неотверждённых
Список использованных источников
Введение
Широкое применение эпоксидных материалов в промышленности обусловлено структурными особенностями эпоксидных полимеров: возможностью получения их в жидком и твёрдом состоянии,
отсутствием летучих веществ при отверждении, способностью отверждаться в широком температурном интервале, незначительной усадкой, нетоксичностью в отверждённом состоянии, высокими
значениями адгезионной и когезионной прочности, химической стойкостью. В связи с этим, эпоксидные смолы можно рекомендовать в качестве матричного компонента для получения материалов и
конструкций,
обладающих
высокими
физико-механическими
и вибропоглощающими свойствами.
1.Химия эпоксидных смол.
Эпоксидные смолы – общая формула:
Эпокс. группа
n может достигать 25, но чаще всего встречаются эпоксидные смолы с количеством эпоксидных групп меньше 10.
Например ЭД-20 имеет только 2 эпоксидные группы и выглядит так:
Чем больше степень полимеризации, тем гуще смола. Чем меньше номер, указанный на смоле, тем больше эпоксидных групп в составе смолы.
Например если
n приблизительно равно 25 то смола при комнатной температуре будет твердым пластиком.
Для смол с меньшим содержанием
n для ее отверждения нужно в ее состав вводить отвердители, которые выглядят следующим образом:
Триэтилентетрамин:
Полиэтиленполиамин выглядит также как триэтилентетрамин, но у полиэтиленполиамина третичных амидных групп больше:
В реакцию со смолой для ее отверждения вступают третичные амидные группы, которые находятся на концах молекул. Эти группы наиболее подвижные, они более легко вступают в реакцию
отверждения. Третичные амидные группы любого отвердителя вступают в реакцию с эпоксидными группами смолы. Образуется неподвижная сетчатая структура отвержденной смолы. Она становится
пластичной и твердой.
Отвердители бывают двух видов:
-холодного отверждения (ПЭПА, ТЭТА), т.е. отвердители, которые отверждают смолу при комнатной температуре. Приблизительный расход отвердителя ПЭПА и ТЭТА на смолу – 1:10 (смола:
отвердитель- 1:10).Следует пояснить, что несмотря на разную отверждающую способность полиэтиленполиамина и триэтилентетрамина (у полиэтеленполиамина она выше) расход обоих отвердителей
на смолу примерно одинаковый, т.к. согласно ТУ у полиэтиленполиамина массовая доля собственно ПЭПА составляет лишь 25–35% (остальное – кубовый остаток), а у триэтилентетрамина массовая
доля ТЭТА составляет не менее 95%.
-горячего отверждения (малеиновый ангидрид, ДЭТА и др.) т.е. отвердители, которые отверждают смолу при температуре 50-60°С.
При взаимодействии эпоксидной смолы с отвердителем проходит следующая реакция:
Чем больше в смоле эпоксидных групп, тем больше будет появляться в процессе реакции «веточек», которые будут создавать пластичный полимер, взаимодействуя между собой с помощью
различных химических связей.
Для того чтобы эпоксидная смола вместе с отвердителем в отвержденном состоянии была более пластична и не ломалась (не трескалась) нужно добавлять пластификаторы. Они также как и
отвердители бывают разные, но все нацелены на то, чтобы придать смоле пластичные свойства. При добавлении пластификатора смола после отверждения не лопается и не трескается с течением
времени. Наиболее часто используемым пластификатором является дибутилфталат. Он выглядит так:
2.Процесс отверждения.
Отвердители , применяемые с эпоксидной смолой при комнатной температуре , в большинстве своем полиамины . То есть органические молекулы , содержащие две и более аминогруппы .
Аминогруппы по структуре напоминают аммиак , только присоединены к органическим молекулам . И как и аммиак , амины являются сильными щелочами . Из-за этого сходства отвердители
эпоксидных смол зачастую обладают аммиачным запахом , который наиболее ощутим в замкнутом объеме сосуда хранения сразу после его открывания . На воздухе же этот запах мало ощутим из-за
высокого давления паров полиаминов.
Вступающие в реакцию аминогруппы представляют собой атомы азота с присоединенными к ним одним-двумя атомами водорода . Эти атомы водорода взаимодействуют с атомами кислорода из
глицидиловых групп эпоксидной смолы и получается отвержденная смола - термореактивная пластмасса с большим количеством пространственных связей . При нагревании она размягчается , но
не плавится . Трехмерная структура обеспечивает ей отличные физические свойства.
Соотношение атомов кислорода глицидола и атомов водорода аминов с учетом различных молекулярных масс и плотностей и определяет в конечном счете соотношение смолы и отвердителя .
Изменение указанного соотношения приведет к тому , что останутся вакантные атомы кислорода или водорода в зависимости от отклонения в ту или другую сторону . В итоге отвержденная
смола будет обладать меньшей прочностью из-за неполного образования пространственных связей.
Отвердители эпоксидных смол не являются катализаторами . Катализаторы способствуют реакции , но химически не являются частью конечного продукта . Отвердители же эпоксидных смол
образуют пары с молекулами смолы , что сказывается на конечных свойствах отвержденного продукта.
Время отверждения эпоксидной смолы зависит от реакционной активности атомов водорода аминов.И хотя присоединенная органическая молекула не принимает непосредственного участия в
химической реакции, она влияет на то ,как скоро атомы водорода аминов покидают азот и взаимодействуют с атомами кислорода глицидола. Таким образом ,время отверждения определяется
кинетикой данного амина ,используемого в качестве отвердителя. Это время можно изменить, применив другой отвердитель, добавив в смолу акселератор или изменив температуру или массу
смеси смолы с отвердителем.
Реакция отверждения ЭС - экзотермическая .Это означает , что при ее отверждении выделяется тепло . Скорость , с которой смола отверждается , зависит от температуры смеси . Чем
выше температура , тем быстрее реакция. Скорость ее удваивается при повышении температуры на 10° С и наоборот . К примеру , если при 20° С смола становится свободной на отлип за 3
часа , то при 30°С на это потребуется 1,5 часа и 6 часов при 10°С . Все возможности повлиять на скорость отверджения сводятся к этому основному правилу . Время жизнеспособности смеси
и время работы с ней в основном определяются изначальной температурой смеси смолы с отвердителем.
Временем желатинизации (гелеобразования) называется время , необходимое для данной массы , находящейся в компактном объеме для ее обращения в твердое состояние. Это время
зависит...
Забрать файлПохожие материалы:
www.refland.ru
Эпоксидная смола - Википедия
Материал из Википедии — свободной энциклопедии
Структура эпоксидной смолы — продукта конденсации эпихлоргидрина с бисфенолом А, n = 0-25Эпоксидная смола — олигомеры, содержащие эпоксидные группы и способные под действием отвердителей (полиаминов и др.) образовывать сшитые полимеры. Наиболее распространённые эпоксидные смолы — продукты поликонденсации эпихлоргидрина с фенолами, чаще всего — с бисфенолом А.
Свойства[ | ]
Эпоксидные смолы стойки к действию галогенов, некоторых кислот (к сильным кислотам, особенно к кислотам-окислителям, имеют слабую устойчивость), щелочей, обладают высокой адгезией к металлам. Эпоксидная смола в зависимости от марки и производителя выглядит как прозрачная жидкость желто-оранжевого цвета, напоминающая мёд, или как коричневая твёрдая масса, напоминающая гудрон. Жидкая смола может иметь очень разный цвет — от белого и прозрачного до винно-красного (у эпоксидированного анилина).
Следующие свойства имеет чистая, не модифицированная смола без наполнителей:
- модуль упругости: E≈3000−4500Nmm2{\displaystyle E\approx 3000-4500{\frac {\rm {N}}{\rm {{mm}^{2}}}}};
- предел прочности: R≈80Nmm2{\displaystyle R\approx 80{\frac {\rm {N}}{\rm {{mm}^{2}}}}};
- плотность: ρ≈1,2gcm3{\displaystyle \rho \approx 1{,}2{\frac {\rm {g}}{\rm {{cm}^{3}}}}}.
Хотя отверждённая по правильной технологии эпоксидная смола считается абсолютно безвредной при нормальных условиях, её применение сильно ограничено, так как при отверждении в промышленных условиях в ЭС остаётся некоторое количество золь-фракции — растворимого остатка. Он может нанести серьёзный урон здоровью, если будет вымыт растворителями и попадёт внутрь организма. В неотверждённом виде эпоксидные смолы являются достаточно ядовитыми веществами и могут также навредить здоровью.
Модификация[ | ]
Эпоксидные смолы поддаются модификации. Различают химическую и физическую модификацию.
Первая заключается в изменении строения сетки полимера путём добавления соединений, встраивающихся в состав оной. Как пример — добавление лапроксидов (простых полиэфиров спиртов, содержащих глицидиловые группы, например, ангидрида глицерина) в зависимости от функциональности и молекулярной массы придаёт отверждённой смоле эластичность, за счёт увеличения молекулярной массы межузлового фрагмента, но понижает её водостойкость. Добавление галоген- и фосфорорганических соединений придаёт смоле большую негорючесть. Добавление фенолформальдегидных смол позволяет отверждать эпоксидную смолу прямым нагревом без отвердителя, придаёт большую жёсткость, улучшает антифрикционные свойства, но понижает ударную вязкость[1].
Физическая модификация достигается добавлением в смолу веществ, не вступающих в химическую связь со связующим. Как пример — добавление каучука позволяет увеличить ударную вязкость отверждённой смолы. Добавление коллоидного диоксида титана увеличивает её коэффициент преломления и придаёт свойство непрозрачности к ультрафиолетовому излучению[источник не указан 679 дней].
Получение[ | ]
encyclopaedia.bid
Химическая стойкость полиэпоксидных и эпоксидных смол | |
---|---|
Химическое вещество | Химическая устойчивость |
Азотная кислота, Nitric Acid | Неустойчивое вещество |
Амилацетат, Amyl acetate | Отличная (при t < 72 °F, 22 °C) |
Амины, Amines | Отличная (при t < 72 °F, 22 °C) |
Аммоний 10 %, Ammonia 10 % | Отличная (при t < 72 °F, 22 °C) |
Аммоний жид, Ammonia — Liquid | Отличная (при t < 72 °F, 22 °C) |
Анилин, Aniline | Сносная (при t < 72 °F, 22 °C) |
Ацетат натрия, Sodium Acetate | Отличная |
Ацетилен, Acetylene | Отличная |
Ацетон, Acetone | Неустойчивое вещество |
Бензин, Gasoline | Отличная |
Бензол, Benzol | Отличная (при t < 72 °F, 22 °C) |
Бертолетова соль, Sodium Chlorate | Отличная |
Бикарбонат калия, Potassium Bicarbonate | Отличная |
Бикарбонат натрия, Sodium Bicarbonate | Отличная |
Бисульфат натрия, Sodium Bisulfate | Отличная |
Бисульфит кальция, Calcium Bisulfite | Отличная (при t < 72 °F, 22 °C) |
Борная кислота, Boric acid | Отличная (при t < 72 °F, 22 °C) |
Бром, Bromine | Неустойчивое вещество |
Бромид калия, Potassium Bromide | Отличная |
Бромистоводородная кислота 100 %, Hydrobromic Acid, 100 % | Неустойчивое вещество |
Бура (пироборнокислый натрий), Borax | Отличная (при t < 72 °F, 22 °C) |
Бутадиен (дивинил), Butadiene gas | Отличная (при t < 72 °F, 22 °C) |
Бутан газ, Butane gas | Отличная (при t < 72 °F, 22 °C) |
Бутилацетат, Butyl acetate | Хорошая (при t < 72 °F, 22 °C) |
Винная кислота, Tartaric Acid | Отличная |
Гексан, Hexane | Хорошая |
Гексан, Hydraulic Fluid | Отличная |
Гексафторкремнекислота. Fluosilicic acid | Сносная |
Гептан, Heptane | Отличная |
Гидроксид аммония, Ammonium Hydroxide | Отличная (при t < 72 °F, 22 °C) |
Гидроксид бария, Barium Hydroxide | Отличная (при t < 72 °F, 22 °C) |
Гидроксид калия, Potassium Hydroxide | Отличная |
Гидроксид кальция, Calcium Hydroxide | Отличная (при t < 72 °F, 22 °C) |
Гидроксид магния, Magnesium Hydroxide | Отличная |
Гидроксид натрия, Sodium Hydroxide, 50 % | Хорошая (при t < 120 °F, 50 °C) |
Гипохлорит кальция, Calcium HypoChlorite | Отличная (при t < 72 °F, 22 °C) |
Гипохлорит натрия 100 %, Sodium HypoChlorite, 100 % | Неустойчивое вещество |
Глицерин, Glycerine | Отличная |
Глюкоза, Glucose | Хорошая |
Дизельное топливо, Diesel Fuel | Отличная (при t < 72 °F, 22 °C) |
Диоксид серы, Sulfur Dioxide | Отличная (при t < 72 °F, 22 °C) |
Дистиллированная вода, Water — Distilled | Отличная |
Дихлорэтан, Dichloroethane | Хорошая (при t < 120 °F, 50 °C) |
Дихромат калия, Potassium Dichromate | Сносная |
Дубильная кислота, Tannic Acid | Отличная |
Железный купорос, Ferrous Sulfate | Отличная (при t < 72 °F, 22 °C) |
Жирная кислота, Fatty Acids | Отличная (при t < 72 °F, 22 °C) |
Гидроксид алюминия, Aluminum Hydroxide | Хорошая (при t < 72 °F, 22 °C) |
Изопропиловый спирт, Alcohol — Isopropyl | Отличная |
Карбонат аммония, Ammonium Carbonate | Отличная (при t < 72 °F, 22 °C) |
Карбонат бария, Barium Carbonate | Отличная (при t < 72 °F, 22 °C) |
Карбонат калия, Potassium Carbonate | Отличная |
Карбонат кальция, Calcium Carbonate | Отличная (при t < 72 °F, 22 °C) |
Карбонат натрия, Sodium Carbonate | Сносная (при t < 72 °F, 22 °C) |
Касторовое масло, Oil — Castor | Отличная |
Керосин, Kerosene | Отличная |
Ксилол, Xylene | Отличная |
Лигроин, Naphtha | Отличная |
Лимонная кислота, Citric Acid | Отличная (при t < 72 °F, 22 °C) |
Малеиновая кислота, Maleic Acid | Отличная |
Масляная кислота, Butyric Acid | Сносная (при t < 72 °F, 22 °C) |
Метиловый спирт, Alcohol — Methyl | Хорошая (при t < 72 °F, 22 °C) |
Метилэтилкетон, Methyl Ethyl Ketone | Сносная (при t < 72 °F, 22 °C) |
Молочная кислота, Lactic Acid | Хорошая (при t < 72 °F, 22 °C) |
Морская (солёная) вода, Water — Sea, Salt | Отличная |
Моча, Urine | Отличная |
Муравьиная кислота, Formic Acid | Сносная (при t < 72 °F, 22 °C) |
Мыло, Soaps | Отличная |
Нафталин, Naphthalene | Отличная |
Нитрат аммония, Ammonium Nitrate | Отличная (при t < 72 °F, 22 °C) |
Нитрат калия, Potassium Nitrate | Отличная |
Нитрат магния, Magnesium Nitrate | Отличная |
Нитрат меди, Copper Nitrate | Отличная (при t < 72 °F, 22 °C) |
Нитрат натрия, Sodium Nitrate | Отличная |
Нитрат серебра, Silver Nitrate | Отличная |
Олеиновая кислота, Oleic acid | Отличная |
Перекись водорода 10 %, Hydrogen Peroxide, 10 % | Сносная (при t < 72 °F, 22 °C) |
Пиво, Beer | Отличная (при t < 72 °F, 22 °C) |
Пикриновая кислота, Picric Acid | Отличная |
Плавиковая кислота 75 %, HydroFluoric Acid, 75 % | Хорошая (при t < 72 °F, 22 °C) |
Пропан жидк., Propane, liquid | Отличная |
Реактивное топливо, Jet Fuel | Отличная |
Ртуть, Mercury | Отличная |
Пресная вода, Water — Fresh | Отличная |
Серная кислота 75—100 %, Sulfuric Acid, 75—100 % | Сносная (при t < 72 °F, 22 °C) |
Сероводород, Hydrogen Sulfide | Отличная |
Силикат натрия, Sodium Silicate | Отличная |
Соляная кислота 20 %, HydroChloric acid, 20 % | Хорошая (при t < 72 °F, 22 °C) |
Стеариновая кислота, Stearic Acid | Хорошая |
Сульфат алюминия, Aluminum Sulfate | Отличная (при t < 72 °F, 22 °C) |
Сульфат аммония, Ammonium Sulfate | Отличная (при t < 72 °F, 22 °C) |
Сульфат бария, Barium Sulfate | Сносная (при t < 72 °F, 22 °C) |
Сульфат железа, Ferric Sulfate | Отличная (при t < 72 °F, 22 °C) |
Сульфат калия, Potassium Sulfate | Отличная |
Сульфат кальция, Calcium Sulfate | Отличная (при t < 72 °F, 22 °C) |
Сульфат магния, Magnesium Sulfate | Отличная |
Сульфат натрия, Sodium Sulfate | Отличная |
Сульфат никеля, Nickel Sulfate | Отличная |
Сульфид бария, Barium Sulfide | Хорошая (при t < 72 °F, 22 °C) |
Сульфит натрия, Sodium Sulfite | Отличная |
Терпентин, Turpentine | Хорошая |
Тетрахлорид углерода, Carbon Tetrachloride | Отличная (при t < 72 °F, 22 °C) |
Тиосульфит натрия, Sodium Thiosulfate | Отличная |
Толуол, Toluene | Хорошая (при t < 72 °F, 22 °C) |
Углекислота, Carbonic Acid | Хорошая (при t < 72 °F, 22 °C) |
Углекислый газ, Carbon dioxide gas | Отличная (при t < 72 °F, 22 °C) |
Углекислый магний, Magnesium Carbonate | Отличная |
Уксус, Vinegar | Отличная |
Уксусная кислота, Acetic Acid (20 %) | Отличная |
Уксуснокислый свинец, Lead acetate | Отличная |
Фенол (оксибензол), Phenol | Хорошая |
Формальдегид 40 %, Formaldehyde, 40 % | Отличная (при t < 72 °F, 22 °C) |
Фосфат аммония, Ammonium Phosphate | Отличная (при t < 72 °F, 22 °C) |
Фосфорная кислота, Phosphoric Acid | Хорошая |
Фреон, Freon | Отличная |
Фторид алюминия, Aluminum Fluoride | Хорошая (при t < 72 °F, 22 °C) |
Фтористые газы, Fluorine gas | Неустойчивое вещество |
Фтористый натрий, Sodium Fluoride | Отличная |
Хлорид алюминия, Aluminum Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлорид аммония, Ammonium Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлорид бария, Barium Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлорид железа, Ferric Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлорид калия, Potassium Chloride | Отличная |
Хлорид кальция, Calcium Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлорид магния, Magnesium Chloride | Отличная |
Хлорид меди, Copper Chloride | Отличная |
Хлорид натрия, Sodium Chloride | Отличная |
Хлорид никеля, Nickel Chloride | Отличная |
Хлорид цинка, Zinc Chloride | Отличная |
Хлористое железо, Ferrous Chloride | Отличная (при t < 72 °F, 22 °C) |
Хлористое олово, Stannic Chloride | Отличная |
Цианид натрия, Sodium Cyanide | Отличная |
Цианистый водород, HydroCyanic Acid | Отличная |
Щавелевая кислота, Oxalic Acid | Отличная |
Этилацетат, Ethyl acetate | Сносная (при t < 72 °F, 22 °C) |
Этиленгликоль, Ethylene glycol | Сносная (при t < 72 °F, 22 °C) |
Этиловый спирт, Alcohol — Ethyl | Отличная (при t < 120 °F, 50 °C) |
Этилхлорид, Ethyl chloride | Отличная (при t < 72 °F, 22 °C) |
org-wikipediya.ru