Бесколлекторный двигатель постоянного тока: принцип работы, варианты конструкций
Аналоги мировых брендов. Подробнее>>
Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).
Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.
Принцип работы и устройство бесколлекторного двигателя
Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть). На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора.
Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.Варианты конструкции двигателя
Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.
Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.
Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер.
Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.
Преимущества и недостатки
Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.
Отсутствие необходимости обслуживания коллекторного узла. Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.
Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.
Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.
Большая удельная мощность. Возможность достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.
Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.
Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.
Уменьшение электромагнитных помех, исходящих от двигателя. Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.
Присутствие сложных электронных компонентов
Где применяются бесколлекторные двигатели
К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.
Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.
Поделиться:
Нельзя добавить товар к сравнению. Вы уже добавили к сравнению товар из категории « XXX». Очистите список сравнения и попробуйте ещё раз.
Товар успешно добавлен в корзину
Сайт использует cookies для вашего удобства. Политика конфидинциальности и Правила использования. Принять
Устройство лодочных электромоторов Об электролодках
Лодочный электромотор – это практичное устройство, придающее маломерному судну тяговое усилие и позволяющее развивать скорость до 5–8 км/ч. Эти моторы экологичные и бесшумные, что позволяет использовать их для тихих прогулок на воде, отдыха в заповедных зонах и заказниках. При наличии электрического мотора лодка становится более мобильной и маневренной.
Такие двигатели прекрасно подходят для перемещения по небольшим водоемам, мелководью, береговым зонам и в местах с обилием водорослей. Рыбаки особенно ценят их за тихую работу, тонкую настройку скорости, возможность ловко добраться до укромных мест лова, удобство использования при троллинге и рыбалке на спиннинг.
С одной стороны, электромотор на надувной или ПВХ лодке освобождает от необходимости работать веслами, а с другой – становится прекрасной альтернативой или дополнением бензиновому двигателю. На топливном моторе удобно преодолевать большие расстояния, в т. ч. перемещаться против ветра и при сильном течении. Электрический мотор решает не менее важные задачи – позволяет тихо прогуливаться по водоемам, наслаждаться окружающей красотой и удить рыбу в движении.
Как устроен электромотор для лодки?
В устройстве лодочного электромотора ключевую роль играют следующие узлы и детали:
- Рабочая голова – электродвигатель с установленным на его роторе гребным винтом (пропеллером) – при его вращении судно приводится в движение. Двигательная система находится в нижней части электромотора, под водой. Гребной винт бывает разных размеров и чаще всего имеет 2 или 3 лопасти.
- Вал (он же – штанга, опора, дейдвуд или нога) – удерживает электродвигатель и соединяет все части устройства в единый комплекс. Создается из прочного композитного материала, выдерживающего значительные механические нагрузки при контакте с подводными препятствиями.
- Винт регулировки глубины – позволяет перемещать двигательную систему вверх или вниз, меняя глубину погружения гребного винта. Расширяет возможности использования электромотора на мелководье, в камышовых зарослях, при обилии водорослей или в прибрежной области. Чем глубже находится гребной винт, тем выше эффективность работы двигателя, а на мелководье и при других рисках повреждения его легко поднять.
- Система управления – обеспечивает легкий старт, плавное переключение передач и равномерное движение без рывков. Содержит электронный блок управления и панель с необходимыми переключателями и индикаторами уровня заряда АКБ. Панель управления позволяет с легкостью включать нужную скорость и менять направление движения. Обычно лодочные электромоторы имеют 4–5 передних передачи и 2–3 задних.
- Румпель – элемент ручного управления. Находится в верхней части электромотора. Для более удобного использования имеет телескопическую рукоятку с поворотным механизмом.
- Сцепная струбцина – приспособление для крепления вала электромотора к транцу лодки. Позволяет настраивать уровень погружения электромотора и угол его наклона с учетом текущих условий его использования. Резьбовые элементы обеспечивают надежное крепление мотора и его быстрый демонтаж.
- Соединительные провода для подключения питания.
Особенности конструкции
Лодочные электрические моторы имеют относительно простую конструкцию без множества передаточных элементов, которые были бы подвержены естественному износу. При корректной эксплуатации такие устройства служат долго и редко требуют ремонта. И даже со временем, при износе токосъемных щеток, ремонт сводится к их замене.
Принципиально конструкция троллингового электромотора состоит из несущей и функциональной части. Несущую часть составляют струбцина, вал, крепящийся к нему румпель и гребной винт. Кроме устанавливаемых на транце лодки подвесных аппаратов, производятся также навесные и носовые электромоторы. Они крепятся, соответственно, на кавитационной платформе базового двигателя или на носу лодки с жестким корпусом, на монтажной платформе бака.
Функциональную часть троллинговых моторов составляют силовые компоненты двигателя и система управления. В классическом исполнении электромотор имеет блок управления, дискретный переключатель передач для регулировки скорости и проводку для подключения аккумуляторной батареи. Вместо дискретного переключателя иногда используется цифровой вариатор, обеспечивающий еще более плавную настройку скорости.
Принцип работы
Электрические моторы на маломерных судах работают автономно, получая энергию от тяговых аккумуляторов. Поступающая от них электроэнергия обеспечивает вращение гребного винта. Электрический ток подается на обмотки статора и создает магнитное поле, которое в свою очередь инициирует движение ротора. Вместе с ним вращается и гребной винт, обеспечивая движение лодки по воде.
Для запуска мотора достаточно нажать тумблер. Переключение передач может выполняться с помощью румпеля, ножной педали или пульта ДУ. Чаще всего встречается ручное румпельное управление. Для управления с помощью ножной педали применяется реечный механизм и кабель для его подсоединения. Большинство лодочных моторов поддерживают несколько рабочих режимов: 4–5 передних и 2–3 реверсивных передачи.
Лодочные аккумуляторы
Автономное питание троллинговых электромоторов обеспечивают переносные АКБ тягового типа в герметичном влагозащищенном исполнении. Находясь в защитном корпусе, аккумуляторная батарея не боится попадания воды и атмосферных воздействий. Она отдает накопленную энергию мотору и обеспечивает его стабильную работу в течение нескольких часов. Стартерные аккумуляторы для этих целей не годятся. Нужны именно тяговые АКБ, рассчитанные на продолжительную токоотдачу и устойчивые к глубоким разрядам.
При выборе аккумуляторной батареи на лодку ключевую роль играют 4 параметра – тип химии, запас емкости, рабочее напряжение и масса. Они взаимосвязаны: с увеличением энергоемкости растет и вес батареи, если ее химический состав не изменился. Но достаточно выбрать вместо свинцово-кислотного аккумулятора литиевую батарею, и весовая нагрузка на лодку снизится примерно втрое при тех же рабочих характеристиках.
Для питания электромоторов на лодках и катерах мы рекомендуем литий-железо-фосфатные АКБ – тяговые батареи с отличным соотношением всех параметров. Они эффективно работают в жестких условиях, не боятся глубокого разряда, сохраняют исходные характеристики даже после 2000 циклов заряд-разряд. К тому же, батареи категории LiFePO4 быстро заряжаются, не склонны к просадкам напряжения и другим проблемам при эксплуатации, максимально безопасны в использовании и надежны.
Выбор характеристик АКБ для лодки
Батарея должна подходить мотору – иметь идентичное напряжение и достаточную емкость, чтобы обеспечивать его стабильную работу в течение необходимого времени. Подходящая емкость АКБ рассчитывается с учетом мощности питаемого ею электрооборудования, нужного времени автономной работы на 1 заряде и коэффициента эффективности батареи.
Запас мощности АКБ рассчитывается умножением ее вольтажа на емкость. Например, батарея с параметрами 12 В и 100 Ач имеет энергоемкость 1200 Вт·ч. Эффективная мощность составляет 80% от расчетного значения – в нашем примере 960 Вт·ч. Чтобы рассчитать время работы электромотора и/или других устройств от конкретной аккумуляторной батареи, достаточно разделить ее эффективную мощность на потребляемую мощность приборов.
Например, мотор мощностью 295 Вт при использовании рассматриваемой батареи сможет работать на полной мощности 3 часа 15 минут (960 Вт·ч : 295 Вт = 3,25 ч). При снижении электропотребления (работе мотора на неполной мощности) время автономной работы на 1 заряде батареи возрастает.
Где купить лодочные моторы и АКБ?
Хорошая подборка троллинговых электромоторов и подходящих им аккумуляторных батарей представлена в интернет-магазине Voltbikes.ru. Это модели с оптимальным сочетанием цены и технических параметров. Они помогут вам освободить руки от весел и наслаждаться прогулками по водной глади, расширят возможности для релакса, рыбалки и других видов активного отдыха.
В предыдущей статье мы рассказали о типах и нюансах выбора съемных АКБ для электровелосипедов.
Как работают электродвигатели?
Криса Вудфорда. Последнее обновление: 25 октября 2021 г.
Щелкни выключателем и получи мгновенное питание — как бы это понравилось нашим предкам электродвигатели! Вы можете найти их во всем, от электропоезда на дистанционном управлении автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас с тобой в комнате? Есть, наверное, два в компе для начала крутится один твой хард ездить и еще один питание вентилятора охлаждения. Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — в вытяжках и электробритвах; на кухне моторы есть практически в каждом приборе, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя как одни из лучших изобретения всех времен. Давайте разберем некоторые и узнаем, как они работай!
Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты плотно намотанной медью и тяжелыми магнитами. Это двигатель от старой электрической газонокосилки. Медно-красная штука в сторону Перед осью с прорезями в ней находится коллектор, удерживающий двигатель. вращение в том же направлении (как описано ниже).
Содержание
- Как электромагнетизм заставляет двигатель двигаться?
- Правило левой руки Флеминга
- Как работает электродвигатель — теория
- Как работает электродвигатель на практике
- Универсальные двигатели
- Электродвигатели прочие
- Узнать больше
Как электромагнетизм заставляет двигатель двигаться?
Основная идея электродвигателя очень проста: вы подаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая-то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы вернуться в прошлое почти на 200 лет.
Предположим, вы берете отрезок обычной проволоки, делаете из нее большую петлю, и положить его между полюсами мощной, постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда ты видишь это впервые. Это прямо как по волшебству! Но есть совершенно научная объяснение. Когда электрический ток начинает ползти по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы узнаете, что два магнита, расположенные рядом друг с другом либо притягивать, либо отталкивать. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет провод прыгать.
Правило левой руки Флеминга
Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (помощь памяти), называемая правилом левой руки Флеминга (иногда называется моторным правилом).
Вытяните большой, указательный и указательный пальцы левой
стороны, так что все три находятся под прямым углом. Если ты укажешь вторым пальцем
в направлении Течения
(который течет от положительного к
отрицательный полюс аккумулятора), и первый
палец в
направление поля (которое
течет от северного к южному полюсу
магнит), ваш большой палец будет
показать направление, в котором провод
Движения.
Это…
- Первый палец = Поле
- Второй палец = Текущий
- ThuMb = Движение
Несколько слов о токе
Если вас смущает то, что я говорю, что ток течет от плюса к минусу, это просто историческая условность. Такие люди, как Бенджамин Франклин, который помог выяснить тайну электричества еще в 18 веке считали потоком положительных зарядов, так что это перетекло от положительного к отрицательному. Мы называем эту идею обычным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов, от отрицательного к положительному, в противоположное направление условного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.
Принцип работы электродвигателя — теория
Связь между электричеством, магнетизмом и движением была первоначально открыт в 1820 году французским физиком Андре-Мари. Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое немного технологии для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, сделавшими это, были англичане Майкл Фарадей (179 г.1–1867) и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.
Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, чтобы эффективно два параллельных провода, проходящих через магнитное поле. Один из них отводит от нас электрический ток по проводу и другому один возвращает ток обратно. Поскольку ток течет в противоположных направлениях в проводах, правило левой руки Флеминга говорит нам, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов поднимется вверх и другой будет двигаться вниз.
Если бы катушка проволоки могла двигаться вот так, она бы вращалась непрерывно — и мы были бы на пути к созданию электрического мотор. Но этого не может случиться с нашей нынешней установкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-то еще случилось бы. Как только катушка достигла вертикали положение, он перевернулся бы, поэтому электрический ток протекать через него в обратном направлении. Теперь силы на каждом сторона катушки перевернута. Вместо непрерывного вращения в в том же направлении, он будет двигаться в том же направлении, в котором только что пришел! Представьте электропоезд с таким двигателем: он будет держать шаркая взад и вперед на месте, даже не двигаясь в любом месте.
Фото: Электрик ремонтирует электродвигатель на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото. но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица предоставлено ВМС США.
Как работает электродвигатель на практике
Есть два способа решить эту проблему. Один из них заключается в использовании своего рода электрический ток, который периодически меняет направление, известное как переменный ток (АС). В виде небольшого, на батарейках двигатели, которые мы используем дома, лучшим решением будет добавить компонент называется коммутатором концы катушки. (Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «коммутировать». Это просто означает переход туда и обратно в одном и том же таким образом, что коммутировать означает путешествовать туда и обратно.) В своей простейшей форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его работа заключается в изменении направления электрического тока в катушке каждый раз, когда катушка поворачивается на пол-оборота. Один конец катушки присоединен к каждой половине коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые щетками, сделанный либо из кусочков графита (мягкий углерод, похожий на карандашный «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «кисть» против коммутатора. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.
Работа: Упрощенная схема частей электрического мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что заставляет катушку вращаться по часовой стрелке.
Такой простой экспериментальный двигатель не способен много силы. Мы можем увеличить вращающую силу (или крутящий момент) что двигатель можно создать тремя способами: либо мы можем иметь более мощный постоянный магнит, или мы можем увеличить электрический ток течет по проводу, или мы можем сделать катушку, чтобы у нее было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в виде дуги. круглой формы, так что он почти касается катушки проволоки, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.
Несмотря на то, что мы описали ряд различных деталей, двигатель можно представить как состоящий из двух основных компонентов:
- На краю корпуса двигателя имеется постоянный магнит (или магниты), который остается неподвижным, поэтому он называется статором двигателя.
- Внутри статора есть катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коллектор.
Универсальные двигатели
9Такие двигатели постоянного тока 0002 отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемых автомобилей или электробритв), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры) обычно используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает питание от постоянного или переменного тока, который вы подаете:- При подаче постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, направленное всегда в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном направлении.
- Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба меняются местами, точно в шаге, поэтому сила на катушке всегда в одном направлении, и двигатель всегда вращается по часовой стрелке. или против часовой стрелки. Что с коммутатором? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.
Анимация: Как работает универсальный двигатель: Электропитание питает как магнитное поле, так и вращающуюся катушку. С питанием постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании переменным током как магнитное поле, так и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное. Это означает, что сила на катушке всегда направлена в одну сторону.
Фото: Внутри типичного универсального двигателя: Основные детали внутри среднего двигателя от кофемолки, который может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), питающийся от катушек оранжевого цвета. Обратите также внимание на прорези в коллекторе и упирающиеся в него угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электропоезда, во много раз больше и мощнее, чем этот, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который питает универсальные двигатели.
Другие виды электродвигателей
Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть заменили старый грязный дизельный двигатель на большой электродвигатель (белая рамка) для уменьшения загрязнения воздуха. Фото Денниса Шредера предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).
В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как фабричные машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов для создания вращающегося магнитного поля, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться вокруг. Подробнее об этом можно прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его, так что статор будет эффективно выложен в длинную непрерывную дорожку, ротор сможет катиться по ней по прямой линии. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).
Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, с несколькими статичными железными катушками в центре и постоянным магнитом, вращающимся вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о ступичных двигателях. Шаговые двигатели, которые поворачиваются на точно контролируемые углы, являются разновидностью бесщеточных двигателей постоянного тока.
Узнайте больше
Похожие статьи на нашем сайте
- Батарейки
- Электроника
- История электричества
- Двигатели
- Ступичные двигатели
- Асинхронные двигатели
- Линейные двигатели
- Шаговые двигатели
Книги
Для младших читателей
- Электричество для юных мастеров: веселые и легкие проекты «Сделай сам» Марка де Винка. Maker Media, 2017. Увлекательное практическое введение в базовые проекты в области электричества, в том числе три из них связаны со сборкой электродвигателей.
- Electric Mischief: гаджеты на батарейках, которые могут собрать дети, Алан Бартоломью. Отпечатки лап, 2008.
Для читателей старшего возраста
- Электродвигатели и приводы: основы, типы и применение Остина Хьюза и Билла Друри, Newnes (Elsevier), 2019.
- Управление электродвигателем, Санг-Хун Ким, Elsevier, 2017.
- Практическое руководство по электродвигателям Ирвинга Готтлиба, Newnes (Elsevier), 1997.
Артикул
- 200 лет назад Фарадей изобрел электродвигатель: после того, как Фарадей опубликовал свои результаты, его наставник Эллисон Марш обвинила его в плагиате. IEEE Spectrum, 27 августа 2021 г. Увлекательная история изобретения Фарадея и последствий, которые оно вызвало.
- Новый электродвигатель может повысить эффективность электромобилей, скутеров и ветряных турбин Лоуренс Ульрих. IEEE Spectrum, 19 августа 2019 г. Двигатели с высоким крутящим моментом — ключ к нашему быстрому электрическому будущему.
- Как напечатать электродвигатель, Карл Бугея. IEEE Spectrum, 24 августа 2018 г. Можно ли «напечатать» двигатель так же, как вы делаете печатную плату?
- Заткнись о батареях: ключ к лучшему электромобилю — более легкий двигатель Мартин Доппельбауэр и Патрик Винцер. IEEE Spectrum, 22 июня 2017 г. Немецкие инженеры считают, что лучшие двигатели, а не лучшие аккумуляторы, являются ключом к завтрашнему всепобеждающему электромобилю.
- Power and Electric Motors Ретта Аллена. Wired, ноябрь 2011 г. Почему электродвигатели потребляют гораздо больше энергии, когда они только запускаются?
Занятия
Вот несколько простых и безопасных занятий по сборке моторов, которые вы можете попробовать сами. В порядке сложности первый — это простой винтовой двигатель; последний представляет собой полноценный коллекторный двигатель постоянного тока.
- Как сделать простейший электродвигатель от Windell Oskay. Evil Mad Scientist, 7 августа 2006 г. Можно ли сделать мотор из батарейки, винта, магнита и полоски проволоки?
- Очень простой винтовой «двигатель» доктора Джонатана Хэйра, Creative Science Center. Еще одно описание винтового двигателя.
- Собери простой электродвигатель!: Science Buddies, 16 октября 2017 г. Более сложный двигатель с вращающейся катушкой.
- Соберите простой двигатель постоянного тока со щетками и коллектором. (короткая версия) и «Создание двигателя постоянного тока шаг за шагом» (пошаговая версия) Тима Каллинана. Как сделать дешевый и простой коллекторный двигатель постоянного тока из бытовых материалов примерно за 5 долларов.
Патенты
Патенты являются отличным источником подробной технической информации и чертежей. Вот некоторые из них, которые я откопал из базы данных USPTO:
- Электродвигатель Ганса Э. Ницше, 13 апреля 1925 г. Типичный ранний двигатель постоянного тока, предназначенный для питания от низковольтных батарей. Электродвигатель постоянного тока
- Масаюки Ёкояма и др., Mitsubishi Electric Corporation, 1 июня 2010 г. Двигатель с увеличенным сроком службы и улучшенной конструкцией коллектора.
- Электродвигатель постоянного тока с высоким крутящим моментом и системой одновременной зарядки аккумулятора, автор Wilson A. Burtis, 26, 19 августа.97. Мощный двигатель, который может эффективно заряжать батареи электромобиля во время движения.
Как работают электродвигатели?
Криса Вудфорда. Последнее обновление: 25 октября 2021 г.
Щелкни выключателем и получи мгновенное питание — как бы это понравилось нашим предкам электродвигатели! Вы можете найти их во всем, от электропоезда на дистанционном управлении автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас с тобой в комнате? Есть, наверное, два в компе для начала крутится один твой хард ездить и еще один питание вентилятора охлаждения. Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — в вытяжках и электробритвах; на кухне моторы есть практически в каждом приборе, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя как одни из лучших изобретения всех времен. Давайте разберем некоторые и узнаем, как они работай!
Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты плотно намотанной медью и тяжелыми магнитами. Это двигатель от старой электрической газонокосилки. Медно-красная штука в сторону Перед осью с прорезями в ней находится коллектор, удерживающий двигатель. вращение в том же направлении (как описано ниже).
Содержание
- Как электромагнетизм заставляет двигатель двигаться?
- Правило левой руки Флеминга
- Как работает электродвигатель — теория
- Как работает электродвигатель на практике
- Универсальные двигатели
- Электродвигатели прочие
- Узнать больше
Как электромагнетизм заставляет двигатель двигаться?
Основная идея электродвигателя очень проста: вы подаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая-то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы вернуться в прошлое почти на 200 лет.
Предположим, вы берете отрезок обычной проволоки, делаете из нее большую петлю, и положить его между полюсами мощной, постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда ты видишь это впервые. Это прямо как по волшебству! Но есть совершенно научная объяснение. Когда электрический ток начинает ползти по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы узнаете, что два магнита, расположенные рядом друг с другом либо притягивать, либо отталкивать. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет провод прыгать.
Правило левой руки Флеминга
Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (помощь памяти), называемая правилом левой руки Флеминга (иногда называется моторным правилом).
Вытяните большой, указательный и указательный пальцы левой
стороны, так что все три находятся под прямым углом. Если ты укажешь вторым пальцем
в направлении Течения
(который течет от положительного к
отрицательный полюс аккумулятора), и первый
палец в
направление поля (которое
течет от северного к южному полюсу
магнит), ваш большой палец будет
показать направление, в котором провод
Движения.
Это…
- Первый палец = Поле
- Второй палец = Текущий
- ThuMb = Движение
Несколько слов о токе
Если вас смущает то, что я говорю, что ток течет от плюса к минусу, это просто историческая условность. Такие люди, как Бенджамин Франклин, который помог выяснить тайну электричества еще в 18 веке считали потоком положительных зарядов, так что это перетекло от положительного к отрицательному. Мы называем эту идею обычным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов, от отрицательного к положительному, в противоположное направление условного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.
Принцип работы электродвигателя — теория
Связь между электричеством, магнетизмом и движением была первоначально открыт в 1820 году французским физиком Андре-Мари. Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое немного технологии для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, сделавшими это, были англичане Майкл Фарадей (179 г.1–1867) и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.
Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, чтобы эффективно два параллельных провода, проходящих через магнитное поле. Один из них отводит от нас электрический ток по проводу и другому один возвращает ток обратно. Поскольку ток течет в противоположных направлениях в проводах, правило левой руки Флеминга говорит нам, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов поднимется вверх и другой будет двигаться вниз.
Если бы катушка проволоки могла двигаться вот так, она бы вращалась непрерывно — и мы были бы на пути к созданию электрического мотор. Но этого не может случиться с нашей нынешней установкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-то еще случилось бы. Как только катушка достигла вертикали положение, он перевернулся бы, поэтому электрический ток протекать через него в обратном направлении. Теперь силы на каждом сторона катушки перевернута. Вместо непрерывного вращения в в том же направлении, он будет двигаться в том же направлении, в котором только что пришел! Представьте электропоезд с таким двигателем: он будет держать шаркая взад и вперед на месте, даже не двигаясь в любом месте.
Фото: Электрик ремонтирует электродвигатель на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото. но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица предоставлено ВМС США.
Как работает электродвигатель на практике
Есть два способа решить эту проблему. Один из них заключается в использовании своего рода электрический ток, который периодически меняет направление, известное как переменный ток (АС). В виде небольшого, на батарейках двигатели, которые мы используем дома, лучшим решением будет добавить компонент называется коммутатором концы катушки. (Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «коммутировать». Это просто означает переход туда и обратно в одном и том же таким образом, что коммутировать означает путешествовать туда и обратно.) В своей простейшей форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его работа заключается в изменении направления электрического тока в катушке каждый раз, когда катушка поворачивается на пол-оборота. Один конец катушки присоединен к каждой половине коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые щетками, сделанный либо из кусочков графита (мягкий углерод, похожий на карандашный «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «кисть» против коммутатора. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.
Работа: Упрощенная схема частей электрического мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что заставляет катушку вращаться по часовой стрелке.
Такой простой экспериментальный двигатель не способен много силы. Мы можем увеличить вращающую силу (или крутящий момент) что двигатель можно создать тремя способами: либо мы можем иметь более мощный постоянный магнит, или мы можем увеличить электрический ток течет по проводу, или мы можем сделать катушку, чтобы у нее было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в виде дуги. круглой формы, так что он почти касается катушки проволоки, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.
Несмотря на то, что мы описали ряд различных деталей, двигатель можно представить как состоящий из двух основных компонентов:
- На краю корпуса двигателя имеется постоянный магнит (или магниты), который остается неподвижным, поэтому он называется статором двигателя.
- Внутри статора есть катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коллектор.
Универсальные двигатели
9Такие двигатели постоянного тока 0002 отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемых автомобилей или электробритв), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры) обычно используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает питание от постоянного или переменного тока, который вы подаете:- При подаче постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, направленное всегда в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном направлении.
- Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба меняются местами, точно в шаге, поэтому сила на катушке всегда в одном направлении, и двигатель всегда вращается по часовой стрелке. или против часовой стрелки. Что с коммутатором? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.
Анимация: Как работает универсальный двигатель: Электропитание питает как магнитное поле, так и вращающуюся катушку. С питанием постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании переменным током как магнитное поле, так и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное. Это означает, что сила на катушке всегда направлена в одну сторону.
Фото: Внутри типичного универсального двигателя: Основные детали внутри среднего двигателя от кофемолки, который может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), питающийся от катушек оранжевого цвета. Обратите также внимание на прорези в коллекторе и упирающиеся в него угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электропоезда, во много раз больше и мощнее, чем этот, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который питает универсальные двигатели.
Другие виды электродвигателей
Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть заменили старый грязный дизельный двигатель на большой электродвигатель (белая рамка) для уменьшения загрязнения воздуха. Фото Денниса Шредера предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).
В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как фабричные машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов для создания вращающегося магнитного поля, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться вокруг. Подробнее об этом можно прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его, так что статор будет эффективно выложен в длинную непрерывную дорожку, ротор сможет катиться по ней по прямой линии. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).
Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, с несколькими статичными железными катушками в центре и постоянным магнитом, вращающимся вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о ступичных двигателях. Шаговые двигатели, которые поворачиваются на точно контролируемые углы, являются разновидностью бесщеточных двигателей постоянного тока.
Узнайте больше
Похожие статьи на нашем сайте
- Батарейки
- Электроника
- История электричества
- Двигатели
- Ступичные двигатели
- Асинхронные двигатели
- Линейные двигатели
- Шаговые двигатели
Книги
Для младших читателей
- Электричество для юных мастеров: веселые и легкие проекты «Сделай сам» Марка де Винка. Maker Media, 2017. Увлекательное практическое введение в базовые проекты в области электричества, в том числе три из них связаны со сборкой электродвигателей.
- Electric Mischief: гаджеты на батарейках, которые могут собрать дети, Алан Бартоломью. Отпечатки лап, 2008.
Для читателей старшего возраста
- Электродвигатели и приводы: основы, типы и применение Остина Хьюза и Билла Друри, Newnes (Elsevier), 2019.
- Управление электродвигателем, Санг-Хун Ким, Elsevier, 2017.
- Практическое руководство по электродвигателям Ирвинга Готтлиба, Newnes (Elsevier), 1997.
Артикул
- 200 лет назад Фарадей изобрел электродвигатель: после того, как Фарадей опубликовал свои результаты, его наставник Эллисон Марш обвинила его в плагиате. IEEE Spectrum, 27 августа 2021 г. Увлекательная история изобретения Фарадея и последствий, которые оно вызвало.
- Новый электродвигатель может повысить эффективность электромобилей, скутеров и ветряных турбин Лоуренс Ульрих. IEEE Spectrum, 19 августа 2019 г. Двигатели с высоким крутящим моментом — ключ к нашему быстрому электрическому будущему.
- Как напечатать электродвигатель, Карл Бугея. IEEE Spectrum, 24 августа 2018 г. Можно ли «напечатать» двигатель так же, как вы делаете печатную плату?
- Заткнись о батареях: ключ к лучшему электромобилю — более легкий двигатель Мартин Доппельбауэр и Патрик Винцер. IEEE Spectrum, 22 июня 2017 г. Немецкие инженеры считают, что лучшие двигатели, а не лучшие аккумуляторы, являются ключом к завтрашнему всепобеждающему электромобилю.
- Power and Electric Motors Ретта Аллена. Wired, ноябрь 2011 г. Почему электродвигатели потребляют гораздо больше энергии, когда они только запускаются?
Занятия
Вот несколько простых и безопасных занятий по сборке моторов, которые вы можете попробовать сами. В порядке сложности первый — это простой винтовой двигатель; последний представляет собой полноценный коллекторный двигатель постоянного тока.
- Как сделать простейший электродвигатель от Windell Oskay. Evil Mad Scientist, 7 августа 2006 г. Можно ли сделать мотор из батарейки, винта, магнита и полоски проволоки?
- Очень простой винтовой «двигатель» доктора Джонатана Хэйра, Creative Science Center. Еще одно описание винтового двигателя.
- Собери простой электродвигатель!: Science Buddies, 16 октября 2017 г. Более сложный двигатель с вращающейся катушкой.
- Соберите простой двигатель постоянного тока со щетками и коллектором. (короткая версия) и «Создание двигателя постоянного тока шаг за шагом» (пошаговая версия) Тима Каллинана. Как сделать дешевый и простой коллекторный двигатель постоянного тока из бытовых материалов примерно за 5 долларов.
Патенты
Патенты являются отличным источником подробной технической информации и чертежей. Вот некоторые из них, которые я откопал из базы данных USPTO:
- Электродвигатель Ганса Э. Ницше, 13 апреля 1925 г. Типичный ранний двигатель постоянного тока, предназначенный для питания от низковольтных батарей.