Электродуговая сварка под флюсом – .

Электродуговая сварка под флюсом


Сварка под флюсом

Сварочные работы под слоем флюса – качественный метод соединения двух металлов посредством электродуговой сварки, когда ванна расплава – сварочная ванна защищена от атмосферного воздуха слоем порошкообразного флюса.

Защита от воздуха требуется по ряду причин:

  • воздух может содержать ионизирующие примеси, которые изменят структуру металла случайным образом;
  • молекулы воздуха, так же при проникновении в слой расплава ведут к изменению ледобуритной структуры соединенных металлов;
  • при взаимодействии холодного воздуха и сварочной ванны начинается искрение, которое может навредить сварщику при несоблюдении мер безопасности;
  • при ведении флюса формируется более ровный шов;
  • наблюдается более устойчивое горение дуги, к тому же существенно снижаются энергозатраты, так как нагретый раскаленный флюс способствует более эффективному оплавлению сварных кромок.

Контактная сварка – это метод часто используемый в промышленности для соединения однотипных деталей. Подробнее о контактной сварке.

Холодная сварка – это способ соединения металлических деталей без применения температурного воздействия. Подробнее здесь.

Технология сварочных работ под слоем флюса

Прежде всего необходимо разобраться из чего состоит стандартный сварочный аппарат и его возможности к механизации.

Сварочный инвертор состоит из баласного реостата с возможностью повышения и понижения силы тока и вольтажа, сварочных кабелей – питающего и заземляющего, держака из трех электродов-штекеров.

Среди множества технологий по обработке металла лазерная резка выделяется своей экономичностью и эффективностью Читайте на страницах нашего сайте об этом типе резки металла.

Среди достаточно большой разновидности аппаратов для сварки, недешевыми, но весьма практичными, удобными и многофункциональными являются сварочные полуавтоматы. Подробнее здесь.

Сварку под флюсом производят в ручном, автоматическом и полуавтоматическом режиме следующим образом:

Читайте также:  Сварка алюминия различными видами сварочных аппаратов

  • ручная сварка электродами, которые при сгорании образуют флюс.Флюс образуется при сгорании электродной обсыпки, которая состоит из металлических оксидов и кремниатов, при этом порошковый флюс ровным слоем ложится на сварочную ванну в виде шлака, надежно защищая поверхность от проникновения воздуха и примесей.Специальные электроды упрощают работу сварщика, так как не требуется дополнительной подачи присадочного прутка и ввода флюса;
  • полуавтоматическая сварка под слоем флюса. В этом случае к сварочной ванне подается флюсовая проволока, которая представляет собой полую трубку из легкоплавкого металлического сплава.Полость трубки заполнена флюсовым порошком, который просыпается на расплав при оплавлении присадочной трубки.Флюс не смешивается с расплавом благодаря специфическим свойствам, которые отторгают флюс от металла. После флюс в виде шлака отбивается секачом или оставляется;
  • сварка в автоматическом режиме не требует от сварщика самостоятельной подачи флюсовой проволоки, флюс просыпается из специального шланга, который дозировано подает флюс. Также могут использоваться специальные электроды, но для прокладки шва большой толщины требуется дополнительное введение флюса.

Сварочные работы нужно проводить исключительно в специальной защите. Читайте об использовании сварочных масок со стеклами хамелеон.

Для облегчения сварочного процесса и повышения эффективности его результата, при сварке тугоплавких металлов используются различные присадки, в том числе и сварочная проволока. О проволоке читайте здесь.

Газовая сварка так же подразумевает использование флюса. В данном случае используются флюсовые присадочные прутки, которые подаются в ядро пламени, возникающего при горении ацетилена или другого горючего газа.

Каждый метод качественно и технологически пригоден для определенного вида работ, имеет различную производительность и КПД.

Область применения флюса

Флюс применяется для сварки следующих металлов:

  • легированные стали;
  • углеродистые стали;
  • сплавы металлов и цветные металлы.

Плотность алюминия 2,7 г/см3, что ставит в его ряд самых легких металлов, но при этом он еще имеет и достаточно высокую теплопроводность. Нагреваясь, этот металл быстро окисляется, при этом он чрезвычайно хрупок и не прочен. Читайте подробнее о сварке алюминия.

Сварочные трансформаторы незаменимы для ручной дуговой и некоторых видов промышленной сварки. Подробнее здесь.

По виду металлов, которые требуется варить выделяют следующие виды флюсов:

Читайте также:  4 особенности сварочного производства

  • плавленый флюсовый шлак образуется при оплавлении электрода и гранулировании состава, которым покрыт электрод. В этом случает расплавленный флюс струйно ложится на раскаленный шов, защищая его. После остывания флюс отходит от сварочной ванны;
  • керамический флюс дополнительно легирует сварочный шов, так как флюс состоит из измельченных металлических компонентов, которые смешиваются с жидким стеклом.

Кроме того необходимо учитывать следующие нюансы, которые качественно влияют на сварочные работы:

  • при использовании присадочной проволоки необходимо подобрать сообразную длину флюсового стержня; диаметр флюсовой проволоки и ее заполнение;
  • сила тока в баласном реостате и напряжение. Губина провара шва зависит от скорости, с которой подается стержень и движется электрод относительно сварочной поверхности;

Особенности сварки под флюсом

Метод является отработанным и универсальным, к его основным положительным характеристикам можно отнести следующие:

  • флюс намного дешевле инертного газа, который употребляется при газовой сварке. Газ защищает сварную ванну, так же как и флюс, но цена газа в десятки раз дороже;
  • простая и надежная технология, оборудование легко транспортируется.

В сравнении с газовой сваркой имеются некоторые недостатки:

  • низкая квалификация сварщика может привести к тому, что флюс будет уложен неравномерно, а значит испортится сварочный шов, будет неровным и непрочным;
  • сварка под слоем флюса редко используется для прокладки деликатных тонких швов в технологических трубопроводах.

Сварка под слоем флюса – метод, которые используется в технологических процессах уже многие десятки лет. Однако, метод прекрасно обосновал себя с экономической и функциональной точки зрения в тяжелой металлургии и промышленности.

Высокая производительность и КПД, надежность и высокие экономические показатели делают метод востребованным и в наши дни.

Читайте также:
  • Метод точечной сварки для кузовов и мелких деталей Самый популярный метод сварки металлов, контактный, имеет некоторые разновидности. Одна из них – точечная сварка. Принцип действия здесь несколько […]
  • Лазерная сварка При сваривании металлической поверхности с помощью лазерной сварки весь процесс осуществляется лазерным лучом, который генерируется квантовым […]

metallmaster.org

ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ СВАРКИ ПЛАВЛЕНИЕМ

Широкое применение этого способа в промышленности при про­изводстве конструкций из сталей, цветных металлов и сплавов объясняется высокой производительностью процесса и высоким качеством и стабильностью свойств сварного соединения, улучшен­ными условиями работы, более низким, чем при ручной сварке, расходом сварочных материалов и электроэнергии. К недостаткам способа относится возможность сварки только в нижнем положе­нии ввиду возможного стекания расплавленных флюса и металла при отклонении плоскости шва от горизонтали более чем на 10— 15°.

/Сущность способа. Наиболее широко распространен процесс при использовании одного электрода — однодуговая сварка. Сва­рочная дуга горит между голой электродной проволокой 1 и изде­лием, находящимся иод слоем флюса 3 (рис. 25). В расплавленном флюсе 5 газами и

www.samsvar.ru

ДУГОВАЯ СВАРКА ПОД ФЛЮСОМ

сварщик

Сущность и технологические особенности способа. Подготовка заготовок под сварку

Рис. 10.1. Схема дуговой сварки под флюсом:

Высокая производительность сварки под флюсом и стабиль­ное качество сварных соединений способствовали ее широкому применению в промышленности при соединении заготовок боль­ших толщин (до 200 мм) из сталей различных классов, титана, сплавов на основе алюминия и меди и других конструкционных металлов. Наиболее часто этот вид сварки используют при из­готовлении станин металлообрабатывающего оборудования, мос­товых кранов, доменных печей, паровых котлов и др. К недо­статкам способа отно­сится невозможность сварки швов, располо­женных в плоскости, отклоненной от горизон­тальной плоскости на угол, превышающий 15°.

Сущность спо­соба заключается в образовании соединения при кристаллизации сва­рочной ванны под сло­ем флюса, который за­щищает расплавленный металл от кислорода и азота воздуха.

1— сварной шов, 2 — расплавленный флюс, 3 —ванна, 4 — газовый пузырь, 5 —заготовка, 6 — флюс, 7 — электродная проволока, 8 — токоподводящнй наконеч­ник; Н DP — глубина провара; стрелкой указано направление движения дуги

Расплавление основ­ного и электродного ме­таллов происходит под действием теплоты дуги, горящей между непокры­той электродной проволокой и свариваемыми заготовками (рис. Ю.1). В расплавленном флюсе образуется газовый пузырь, в ко­тором газообразные продукты, выделяющиеся при плавлении металла и флюса, находятся под небольшим избыточным давле­нием Давление столба дуги, газов и паров металла, находящихся в пузыре, способствует оттеснению жидкого металла из-под ду­ги, что улучшает проплавление кромок заготовок и уменьшает потери металла на угар и разбрызгивание. Металлургические взаимодействия между расплавленным металлом и жидки* шла­ком способствуют получению металла шва с заданным химичес­ким составом.

Сварку под флюсом можно осуществлять на переменном й постоянном токах. В свою очередь, в зависимости от полярности постоянного тока дуга может быть прямой и обратной полярно - стн. По способу перемещения дуги относительно заготовок свар - ка под флюсом подразделяется на механизированную и автома. тическую. При механизированной сварке автоматизирован только процесс подачи электродной проволоки в зону сварки, а дер. жатель с установленной на нем воронкой с флюсом перемещают вручную. При автоматической сварке перемещение держателя и поддержание дуги осуществляются специальными механизмами.

Технологические особенности: расстояние от токопроводяшего мундштука до сварочной ванны постоянно; вылет электрода не превышает 40..,70 мм, что позволяет без перегрева последнего использовать сварочные токи силой до 2000 А; плотность сварочного тока достигает 200...250 А мм' (при ручной дуговой сварке она не превышает 15 А/мм2), в ре - аультате чего в 2...2,5 раза повышается коэффициент наплавки и одновременно уменьшается доля наплавленного металла в дзарном шве благодаря большой глубине проплавлення; элек­тродный металл переносится в ванну мелкими каплями, которые не замыкают дугового промежутка и не гасят дугу; наличие расплавленного шлака над сварочной ванной улучшает условия кристаллизации шва.

, Преимущества перед ручной дуговой сваркой покрыты­ми электродами: более высокая (в 5...20 раз) производитель­ность; более высокие физико-механические свойства металла шва; возможность сварки заготовок толщиной до 20 мм односторон­нем швом без разделки кромок и до 50 мм — двусторонним швом; значительно меньшая стоимость за счет снижения расходов на электроэнергию и присадочный материал.

Подготовку заготовок под сварку с исполь­зованием флюса осуществляют более тщательно, чем под ру7 ую дуго-вую сварку. Резку и скос кромок выполняют механичс чой обработкой или механизированной кислородной резкой. П іед сборкой под сварку края заготовок нужно очистить от ржавчи­ны, масла и других загрязнений на ширине 25...30 мм от м :та сварки. Сборку осуществляют или в специальных приспосс ле - ннях, или с использованием универсальной оснастки. При необходимо обеспечить требуемый и постоянный зазор п длине шва. При стыковых соединениях заготовок толщин 15 мм зазор должен составлять 1...3 мм, а толщиной 16...20 2...4 мм. Для угловых соединений зазор не должен превы: 1 мм, для тавровых—2 мм. Угол разделки кромок загої толщиной свыше 20 мм должен составлять (50+5)

Для обеспечения хорошего качества начала и конца шва ус­танавливают начальные и выводные планки (рис. 10.2, а), ма­териал и разделка кромок которых такие же, как у свариваемых заготовок. Длина планок составляет 100...120 мм, ширина —60... __1000 мм. После сварки планки удаляют. Способы предотвраще­ния вытекания расплавленного металла из сварочной ванны по­казаны на рис. 10.2, б...е.

Рис. 10.2 Подготовка заготовок к сварке под флюсом с ис­пользованием начальных и выводных планок (с), асбесто­вой набивки (б), остающейся стальной подкладки (в), предварительной ручной подварки (г), флюсомедной под­кладки (д), флюсовой подушки (е)

10.2. Технология и режимы сварки

Технология сварки. Перед началом сварки в воронку держа­теля насыпают флюс и устанавливают держатель на место свар­ки. Затем открывают заслонку и место сварки покрывают сло­ем флюса, Нажав кнопку на держателе, включают сварочный ток и после возбуждения дуги перемещают держатель вдоль ли­нии соединения заготовок с требуемой скоростью. Расход флю­са, определяемый опытным путем, регулируют заслонкой. В слу­чае прорыва газов через слой флюса количество последнего увеличивают.

Режимы сварки. Параметрами режима механизированной сварки под флюсом являются сила сварочного тока, диаметр электродной проволоки, род и полярность тока, :корости пода­чи электродной проволоки и сварки. Ориентировочные режимы механизированной сварки под флюсом при выполнении стыковых, угловых и тавровых соединений приведены в табл. 10.1...10.7.

Стыковых и тавровых соединений

10 б Ориентировочные режимы сварки под флюсом при выполнении тавровых и нахлесточных соединений «в лодочку»

Катет шва,

Мм

Диаметр электродной проволоки, мм

Сила свароч­ного тока, А

Напряжение дуги, В

Скорость сваркн, м/ч

6

2

450...475

34...36

40

475...525

48

3

550...600

30

8

4

575...625

5

675...725

32...34

32

2

475...525

34...36

20

3

600...650

23

10

4

650...700

5

725...775

32...34

25

3

600...650

34...36

15

12

4

725...775

36.. 38

20

5

775...825

18

Примечание Сварку проволокой 0 2 мм выполняют под мелким флюсом.

15—807

Тип трансформатора /Характеристика ТСД-500-1 ТСД-1000-4 ТСД-2000-2 Напряжение холосто­го хода Ux.X, В 80 71 79 Продолжительность работы ПР, % 60 Номинальная сила сварочного тока /н, А 500 1000 2000 Номинальная мощ­ность …

Классификация сварки. Согласно ГОСТ 19521—74, сварку ме­таллов классифицируют по физическим, техническим и техноло­гическим признакам. По физическим признакам (форме вводимой энер­гии, наличию давления и виду инструмента — носителя энергии) все виды …

Сварка является основным технологическим процессом из-, готовления всех видов металлических конструкций. Применение сварных соединений вместо клепаных или болтовых позволяет уменьшить массу (на 20...30 %), трудоемкость изготовления (на 20.. .30 %) …

msd.com.ua

Автоматическая дуговая сварка под флюсом Википедия

Схема автоматической дуговой сварки под флюсом. 1 – токопровод, 2 – механизм перемещения проволоки, 3 – проволока, 4 – жидкий шлак, 5 – флюс, 6 – шлаковая корка, 7 – сварной шов, 8 – основной металл заготовки, 9 – жидкий металл, 10 – электрическая дуга

Автоматическая дуговая сварка под флюсом — сварка электрической дугой, горящей между концом сварочной проволоки и свариваемым металлом под слоем флюса.

Сварка под флюсом применяется в стационарных цеховых условиях для всех металлов и сплавов, включая разнородные металлы толщинами от 1,5 до 150 мм.

История[ | ]

Придумал способ сварки под флюсом Н. Г. Славянов. В качестве флюса он применял дробленое стекло.

Промышленный способ автоматической сварки под флюсом был разработан в Институте сварки академиком Е. О. Патоном. Коллективом его института была создана технология сварки под флюсом, разработаны составы флюсов, созданы сварочные автоматы.

Сущность[ | ]

При автоматической дуговой сварке под флюсом электрическая дуга горит под слоем флюса между концом сварочной проволоки и свариваемым металлом. Ролики механизма автоматически вытягивают электродную проволоку в дугу. Сварочный ток, переменный или постоянный, прямой или обратной полярности подводится к электродной проволоке, а другим контактом к изделию.

Сварочная дуга горит в газовом облаке, образованном в результате плавления и испарения флюса и металла. При гашении электрической дуги расплавленный флюс, остывая, образует шлаковую корку, которая отделяется от поверхности шва. Флюс засыпается перед дугой из бункера слоем толщиной 40—80 и шириной 40—100 мм. Количество флюса, идущего в шлаковую корку, равно массе расплавленной сварочной проволоки. Нерасплавившаяся часть флюса отсасывается пневмоотсосом в бункер и используется вновь.

Потери металла на угар и разбрызгивание при горении дуги под флюсом меньше, чем при ручной дуговой и сварке в защитных газах. Расплавленные электродный и основной металлы перемешиваются в сварочной ванне. Кристаллизуясь, они образуют сварной шов.

В промышленности используется сварка проволочными электродами - сварочной проволокой. Иногда сварку проводят ленточными, толщиной до 2 мм и шириной до 40 мм, или комбинированными электродами. Дуга, перемещаясь от одного края ленты к другому, равномерно оплавляет её торец и расплавляет основной металл. Изменяя форму ленты, можно изменить и форму поперечного сечения шва, достигая необходимого проплавления металла или получая равномерную глубину проплавления по всему сечению шва.

При сварке флюс насыпается слоем толщиной 50-60 мм; дуга утапливается в массе флюса и горит в жидкой среде расплавленного флюса, в газовом пузыре, образуемом газами и парами, непрерывно создаваемыми дугой. При среднем насыпном весе флюса около 1,5 г/см3 давление слоя флюса на жидкий металл составляет 7-9 г/см2. Этого давления достаточно для устранения механических воздействий дуги на ванну жидкого металла, приводящего к разбрызгиванию жидкого металла, нарушению формирования шва даже при очень больших токах.

Для электрической дуги, горящей без флюса нельзя проводить сварку при силе тока выше 500-600 А из-за разбрызгивания металла и нарушения формирования шва. Дуга же во флюсе позволяет увеличить токи в до 3000-4000 ампер с сохранением качества сварки и правильным формированием шва.

В качестве флюсов при сварке применяют искусственные силикаты, имеющие слабо кислый характер. Основой флюса являются двойной или тройной силикат закиси марганца, окиси кальция, окиси магния, алюминия и т. д. В качестве добавки, снижающей температуру плавления и вязкость, применяется плавиковый шпат.

Широко применяемых в промышленности высокомарганцовистый флюс ОСЦ-45[1]. Он представляет собой силикат марганца MnOSiO2 с добавкой фтористого кальция. Флюс АН-348 обеспечивает большую устойчивость горения дуги по сравнению с флюсом ОСЦ-45. Большая устойчивость горения дуги обеспечивается при использовании флюса АН-348-А, выделяющем меньше вредных газов.

Недостатки[ | ]

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *