Электрическая проводимость меди и железа: Электропроводность железа

Содержание

Электрическое сопротивление и проводимость металлов

К важнейшим характеристикам металлов относится их электрическая проводимость. Способность металлопроката проводить ток обуславливается электронным строением атомов элементов и температурными условиями эксплуатации. В зависимости от показателей проводимости тока различается и сфера применения конкретного вида металла.

Характеристики электрического сопротивления и проводимости металлов

Свойство материала противостоять прохождению сквозь него тока выражается в величине электрического сопротивления. Зависит оно от показателя удельного сопротивления металла. Параметр возрастает по мере увеличения температуры, что обуславливает интенсивное колебание атомов внутри кристаллической решетки и затрудняет тем самым движение заряда тока.

Обратной сопротивлению выступает величина удельной проводимости, характеризующая способность атомов пропускать заряженные частицы тока. Проводимость тока металлов обуславливается наличием в их атомах валентных электронов – свободных и подвижных частиц, расположенных на внешнем слое оболочки. Чем больше свободных электронов у металла, тем лучше его проводимость.

По характеристикам электропроводности металлы разделены на группы:

  • проводники – обладают высоким числом хаотично движущихся свободных электронов;
  • полупроводники – отличаются наличием пустых пространств в местах валентных электронов;
  • диэлектрики – характеризуются низким количеством свободных частиц и минимальной электропроводностью.

В применении металлопроката учитывается зависимость проводимости металлов от температуры. При нагревании проводника колебания атомов возрастают, что снижает электропроводность вещества. В полупроводниках и диэлектриках рост температуры приводит к увеличению числа заряженных частиц и пустых пространств, что отражается на повышении показателя проводимости. Изменение свойств металлов в зависимости от температуры отражает температурный коэффициент электросопротивления.

Таблица удельных сопротивлений и проводимости металлов и сплавов

Разновидность металла

Показатель удельного сопротивления, (Ом*мм2/2), t=20 С

Показатель удельной электропроводности, (См*м), t=20 С

Температурный коэффициент сопротивления α, (1/°С)*10-3

Железо

0,098

9,93*106

6

Сталь

0,103-0,137

1,36*106

1-4

Медь

0,016

58*106

4,3

Алюминий

0,028

37,7*106

4,2

Никель

0,087

1,43*107

6,5

Олово

0,121

9,11*106

4,4

Цинк

0,059

1,69*107

4,2

Молибден

0,054

18,7*106

4,5

Титан

0,417

2,38*106

3,5

Литий

0,928

1,08*107

4,5

Свинец

0,192

4,55*106

3,8

Вольфрам

0,053

19*106

5

Золото

0,023

45,2*106

4

Серебро

0,016

62*106

4,1

Платина

0,107

9,43*106

3,9

Висмут

1,2

0,77*106

4,5

Иридий

0,047

21,2*106

4,1

Латунь

0,029

15,5*106

0,2

Ртуть

0,940

1,03*106

1,0

Натрий

0,047

20,9*106

5,4

Магний

0,045

22,8*106

3,9

Чугун

0,5-1,0

1,5-4,0*107

0,001

Хромель (сплав хром и никеля)

1,01

3,2*108

0,0001

Нихром (сплав никеля, хрома, железа и марганца)

1,1

9,9*106

0,00016

Манганин (сплав меди марганца и никеля)

0,5

2,06*106

0,00005

Константин (сплав никеля, меди, марганца)

0,49

2,04*106

0,000005

Фехраль

1,2-1,3

0,83*106

0,0008

Свойства проводников обладают первостепенным значением в электронной технике. Металлы широко применяются в изготовлении деталей приборов, служат покрытиями для диэлектриков и присадками в припоях. Элементы с высокой электропроводностью используются в производстве контактного оборудования – рубильников, реле, электрических выключателей. Отдельные виды металлов выступают компонентами красок и клеевых составов, обеспечивая их проводимость тока.

Популярные материалы в электротехнике

К востребованным в производстве электрических кабелей металлам относятся медь и алюминий. Они характеризуются прочностью, малым весом, простотой литья и обработки. Но для длительной эксплуатации лучшим вариантом признаны медные провода.

Это обуславливается следующими факторами:

  • электропроводность меди выше, чем у алюминия;
  • электрическое сопротивление меди меньше.

Кабели, изготовленные из меди, лучше пропускают электричество. Особенностью выступает независимость характеристик металла от температуры. Но цена медных комплектующих выше, что объясняет распространенность алюминиевых аналогов.

Стандартные значения величин удельного сопротивления рассчитываются для средней комнатной температуры в 20 градусов Цельсия. Однако специфика приборостроения и точной электроники требует применения резистивных материалов, характеризующихся высоким стабильным сопротивлением вне зависимости от температурных изменений. К ним относятся твердые сплавы манганин, фехраль, нихром, константин, хромель. Свойства резистивных материалов позволяют использовать их в изготовлении проволочных резисторов и электронагревательных деталей.

Медь и ее сплавы — свойства и применение

Медь и ее сплавы — характеристики, свойства и применение

Медь (Cu) от латинского Cuprum — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой с желтовато-красным оттенком. Медь металл с повышенной тепло- и электропроводностью, второе место по электропроводности среди металлов после серебра. Удельная электропроводность при 20°C: 55,5-58 МСм/м. Металл с относительно большим температурным коэффициентом сопротивления: 0,4% / °С. Медь относится к металлам диамагнетикам. Получают из медных руд и минералов, методом пирометаллургии, гидрометаллургии и электролиза. Медь имеет низкий коэффициент трения и применяется в парах скольжения.

Химические свойства меди

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.

Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Химический состав катодной меди (ГОСТ 859-2014)

Химический элемент
Массовая доля элемента для марок
М00к М0к М1к
Медь, не менее 99,97 99,95
Примеси по группам, не более:
1 Висмут 0,00020 0,0005 0,001
Селен 0,00020
Теллур 0,00020
Сумма 1-й группы 0,00030
Хром
Марганец
Сурьма 0,0004 0,001 0,002
Кадмий
Мышьяк 0,0005 0,001 0,002
Фосфор 0,001 0,002
Сумма 2-й группы 0,0015
3 Свинец 0,0005 0,001 0,003
4 Сера 0,0015 0,002 0,004
5 Олово 0,001 0,002
Никель 0,001 0,002
Железо 0,0010 0,001 0,003
Кремний
Цинк 0,001 0,003
Кобальт
Сумма 5-й группы 0,0020
6 Серебро 0,0020 0,002 0,003
Сумма перечисленных примесей 0,0065
Кислород, не более 0,015 0,02

Физические свойства меди

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается, и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в лист и пруток, протягивается в проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

На нашем сайте, в каталоге медного проката, вы можете ознакомится и приобрести следующие виды продукции из меди:

  • Медный анод
  • Медный пруток
  • Медная лента
  • Медный лист
  • Медная проволока
  • Медная труба
  • Медные фитинги
  • Медная шина
  • Медно-никелевая труба
  • Медная труба для кондиционеров

Применение меди

Двухфазные сплавы с повышенной прочностью, однофазные пластичны. Медно-никелевые трубы используются в судостроении, трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой, и областях с воздействием морской воды. Медь компонент твёрдых припоев, сплавов с температурой плавления 590-880°С, с повышенной адгезией к большинству металлов.

Медный анод используются как сырье, необходимого для образования защитного слоя меди на металлических поверхностях. Аноды изготавливаются из меди марок М1 или АМФ в составе фосфор — легирующая добавка для растворения анодов при электролизе.  Если в конце обозначения марки стоит буква «у», то это значит, что изготовленные из нее аноды характеризуются очень высоким качеством. Медно-фосфористые аноды, в составе которых железо, свинец и сера. В электролите образуется меньшее количество шлама, а значит, покрытие изделия будет прочным, надежным и долговечным.

Имея повышенную проводимость электричества, медная проволока получила распространение в электроэнергетике. Популярностью пользуется диаметр до 8 мм, из нее изготавливают проводники, провода, шнуры и кабели. Медный сортовой прокат применяется в электротехнике, криогенном оборудовании, трансформаторных подстанциях, используют как обмотку двигателей.

Медные шины применяются для монтажных магистральных шинопроводов. В низковольтном оборудовании электротехнические медные шины применяют для состыковки с электрическими цепями. В высоковольтном оборудовании используются в областях, требующих наличие малого реактивного и активного цепного сопротивления. Шины из бескислородной меди используются для космического и вакуумного оборудования. В основе распределительных устройств, линейных ускорителей, сверхпроводников и электронных приборов. Популярны и незаменимы в области микроэлектроники, в атомной энергетике.

В архитектуре для кровли фасадов применяется медная лента, из-за авто затухания процесса коррозии срок службы составляет 100-150 лет. В России используют медный лист для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006.

Также медь используется для бытовых и промышленных систем кондиционирования. Трубки для кондиционеров способны выдерживать повышенное давление без деформации и при этом оставаться гибкими. Медные трубы отожженного типа выпускаются метражом 15-50 метров, и имеют прочностью 210-220 тыс. кПа, разрывное удлинение 50-60%. Не отожженные трубы поставляются прутками, прочность 280-300 тыс. кПа, разрывное удлинение 10-15%. Диаметр выбирается исходя из мощности устройства, чем больше — тем выше уровень хладагента.

Повышенная механическая прочность бесшовных медных труб круглого сечения применяется для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В таких странах как Франция, Великобритания и Австралия медные трубы используются для газоснабжения, а в Великобритании, США, Швеции и Гонконге для водоснабжения. В России производство водо-газопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005, а применение в этом качестве федеральным Сводом Правил СП 40-108-2004.

При установке водопроводных систем как крепеж используются медные фитинги. Они применяются на местах стыков труб, при разветвлениях или на поворотах. Фитинг часто исполняет роль переходника от одного материала к другому. Лучше использовать детали фитинга из аналогового материала. Если используется медный трубопровод, то фитинг нужен из такого же материала или латуни, который совместим с медью. Фитинг соединяет трубы без сварки или нарезания резьбы, что сокращает время на установки трубопровода, а также повышает качество, надёжность и сроки эксплуатации.

В производстве деталей для приборостроения, автомобильной и машиностроительной промышленности используются медные прутки. Также они применяются при изготовлении украшений, домашней утвари, предметов интерьера. В электротехнике используется для изготовления токопроводящих конструкций, проводников, деталей корпуса, заземляющих и токоотводящих конструкций. Из медного прутка изготовляют: втулки, гвозди, заклепки, гайки, болты, шайбы, клапаны, шестерни, валы и т.д.

Отожженный   40 58 0,0010–0,1285 дюйма
1/4 жесткий Н01 50 65
1/2 Жесткий Н02 60 75
Жесткий Х04 70 85
Сверхтвердый Х06 80 95
Пружина Х08 90  

Отожженный   40 58 0,0100–0,0808 дюйма
1/4 жесткий Н01 50 65
1/2 жесткий Н02 60 75
Жесткий Х04 70 85
Сверхтвердый Х06 80 95
Пружина Х08 90  

Отожженный   40 63

Толщина:
0,0100 — 0,0500 дюйма

Ширина:
0,0150 — 0,2500 дюймов

1/2 жесткий Н02 53 63
Жесткий Х04 60 70
Сверхтвердый Х06 67 73
Пружина Н08 70 76
Дополнительная пружина х20 73 80

Температура плавления (Liquidis) 1990°F
Точка плавления (Солидус) 1980°F
Плотность 0,322 фунта/куб.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *