Для чего нужен алюминий – в строительстве, в промышленности, в быту

Зачем нам нужен алюминий и какие вещи из него изготавливают?

Если многие хорошо изучали химию в школе, то вы можете знать о том, что алюминий как таковой вид металла, появился не так давно, ему около двухсот лет и он считается одним из самых молодых металлов планеты, собственно зачем нужен алюминий? Все дело в том, что запасов алюминия на сегодняшний день осталось еще много, а вот других металлов почти и не осталось, по этому можно отметить, что появление алюминия на планете дало обществу дальше продвигаться вперед к науке и новшествам, вперед к современности.

Правда не смотря на то, что другого металла как такового осталось значительно мало, это не дает повода принижать алюминий, как метал, который просто есть в большом количестве, ведь такой материал намного легче и прочнее других металлов. За счет своих свой многие новинки появились на планете, можно при этом отметить, что именно из-за данного метала были сделаны многие открытия.

Алюминий-это универсальный металл, который помогает создавать различные вещи, например, квадратные или прямоугольные трубы, данные трубы являются отличными конструкторами, то есть по средством их можно строить разнообразные конструкции, которые в свою очередь смогу выдерживать большие нагрузки, так например, за счет них выстраиваются дома. Что касается круглых труб, то такие материалы идут на сантехнику, а также для изготовления внутренностей машин, самолетов, судов и прочего, при чем этот же материал необходим для изготовления различных бытовых приборов.  

Также рекомендуем прочитать:

Швеллер П – образный: главный инструмент в строительстве.

Потолочные карнизы и их разновидности

Алюминий в производстве: как алюминий влияет на производство машин?

aluminiypro.ru

Применение аллюминия в промышленности

В настоящее время алюминий и его сплавы применяют во многих областях промышленности и техники. Прежде всего алюминий и его сплавы используют авиационная и автомобильная отрасли промышленности. Широко применяется алюминий и в других отраслях промышленности: в машиностроении, электротехнической промышленности и приборостроении, промышленном и гражданском строительстве, химической промышленности, производстве предметов народного потребления.

В авиапромышленности алюминий стал главным металлом благодаря тому, что его использование позволило решить задачу уменьшения массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.


В электротехнической промышленности алюминий и его сплавы применяют для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении он используется при производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Алюминий начали широко применять при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов благодаря его высокой коррозионной стойкости и нетоксичности.

Алюминиевая фольга стала очень распространенным упаковочным материалом, так как она гораздо прочнее и дешевле оловянной. Также алюминий стал широко использоваться для изготовления тары для консервирования и храпения продуктов сельского хозяйства. Но хранение не ограничивается маленькими баночками, алюминий используется для строительства зернохранилищ и других быстровозводимых сооружений, востребованных в сельском хозяйстве.

Также широко алюминий применяется в военной промышленности при строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, и дл многих других целей в военной технике.

Широкое применение алюминий высокой чистоты находит в таких новых областях техники как ядерная энергетика, полупроводниковая электроника, радиолокация.

Большое распространение алюминий получил как антикоррозийное покрытие, он прекрасно защищает металлические поверхности от действия различных химических веществ и атмосферной коррозии, по этому широко используется в сфере производства различного металлопроката.

Широко используется еще одно полезное свойство алюминия — его высокая отражающая способность. Поэтому из него изготовливаются различные отражающие поверхностеи нагревательных и осветительных рефлекторов и зеркал.

Алюминий используют в металлургической промышленности в качестве восстановителя при получении ряда металлов, таких как хром, кальций, марганец. Он также используется для раскисления стали и сварки стальных деталей.

Не обойтись без алюминия и его сплавов сплавы в промышленном и гражданском строительстве. Он используется для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США- более 20 %.

Исходя из всех вышеперечисленных способов применения алюминия, можно сказать, что алюминий прочно занял первое место среди других цветных металлов по масштабам производства и значению в хозяйстве

metallsk.ru

Где используется алюминий?

«Крылатый металл» является одним из самых распространенных в быту и производстве. Алюминий используется при создании мостов, автомобилей, самолетов и лаже смартфонов.

О том, где еще может использоваться алюминий, рассказывает Life.ru.

В небе и в космосе

Впервые алюминий «полетел» в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина. Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха. По-настоящему «крылатый» алюминий  был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался… И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами. К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством «криогенного упрочнения»: в космическом холоде пластичность и прочность их только возрастают. Из тандема алюминия и скандия была выполнена обшивка космического челнока «Буран»: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий. Один из современных и перспективных авиакосмических материалов называется «бороалюминиевый композит», где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую «рубашку».

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году. Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan. Настоящее «алюминиевое вторжение» в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: «энергосберегающий» металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи «Витязь-М», чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод «Русала».

«Потолок, стены, стойки — всё алюминиевое. И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки,

— рассказывает Виталий Деньгаев, гендиректор компании «Красноярские машиностроительные компоненты», где были созданы алюминиевые салоны «Витязя». — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!»

С 17 марта этого года 13 трамваев «Витязь-М» начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 «Витязей», 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла. Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, «аддитивное производство»). Additive по-английски — «добавка», и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия. Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические «кружева» незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия. Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания. Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона «Зенит-Арена» в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только «крылатый» металл, но ещё и «металл света». Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира. Так называется искусственный кристалл из особо чистого оксида алюминия. Сейчас тонны сырья для кристаллов в основном завозятся из-за границы, однако недавно в Набережных Челнах при поддержке Ростеха запущена первая в стране линия по производству особо чистого оксида алюминия для выращивания монокристаллов лейкосапфиров. В Алюминиевой ассоциации убеждены, что в течение 2–3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

В нашей жизни — повсюду…

…Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса «пауэрбанков» и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен. Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в «голом виде», как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида. Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями «баттинг» и «гидроформинг» позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные… «Впрочем, в этой сфере наметилась небольшая революция: инженеры «Русала» разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране, — рассказывает заместитель редактора журнала «Металлоснабжение и сбыт» Леонид Хазанов. — Проект поддерживают «Русал», как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей «Татпроф», готовый делать трубы для рам, и отечественная компания — сборщик велосипедов «Веломоторс». Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству».

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в «алюминиевую эру» мы вступаем, как ни странно, только сейчас. Основной владелец «Русала» Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Фото из открытых источников

xakac.info

Свойства и назначение алюминия

  Алюминий — этот важнейший представитель легких метал­лов, нашел себе исключительно широкое применение в самых разнообразных отраслях современной техники благодаря тому что обладает такими свойствами, как малый удельный вес, вы­сокая электропроводность, достаточная механическая проч­ность и большая коррозионная стойкость по отношению к ря­ду химических веществ.

  Необходимо отметить, что алю­миний более теплопроводен, чем железо, а в отношении элек­тропроводности уступает только серебру и меди. Вместе с тем алюминий легко подвергается обработке давлением, т. е. про­катке, резанию, волочению, ковке.

  Из химических свойств алюминия характерно его большое сродство к кислороду. Благодаря этому на воздухе и в воде поверхность алюминия покрывается тончайшей (толщиной, примерно, 0,00002 см), но плотной прозрачной окисной пленкой (А120з + А120зН20). Эта пленка, мгновенно образующаяся вновь при ее разрушении (например царапины), идеально смачивает по­верхность металла и обусловливает его высокую коррозионную стойкость. Однако сила сцепления с металлом в местах нахож­дения примесей (в виде отдельных кристаллов и атомарных включений) сильно понижается, и эти места уязвимы для протыкания электролитов. Поэтому, чем выше чистота алюминия, тем больше его коррозионная стойкость/ Однако в присутствии даже следов ртути на поверхности алюминия оксидная пленка вообще не имеет сцепления с металлом, и в этом случае алю­миний быстро окисляется кислрродом и влагой воздуха, цели­ком превращаясь в окись. Алюминий достаточно легко разру­шается растворами едких щелочей, соляной и серной кислот. По отношению же к концентрированной азотной кислоте, так же как и неорганическим кислотам, алюминий обнаруживает высокую стойкость.

  Исключительно ценным является использование, алюминия в электротехнике для изготовления кабелей, шинопроводов, кон­денсаторов, выпрямителей. Малый вес алюминиевых проводов позволяет осуществлять их подвеску при значительном рассто­янии между опорами, не опасаясь обрыва проводов под вли­янием собственного веса,

  Высокая коррозионная стойкость алюминия делает его в ря­де случаев незаменимым материалом в химическом машино­строении (например, при изготовлении .аппаратуры для произ­водства транспорта и хранения азотной кислоты, а также пи­щевых продуктов).

  Большое значение имеет применение алюминия с целью пре­дохранения (плакирование, алюминиевая краска) металлических поверхностей, подверженных разрушающему действию различ­ных химических веществ и атмосферной коррозии.

  Химической активностью алюминия пользуются для получе­ния трудновосстановимыхо металлов (например хрома, марганца, вольфрама и др.), вытесняя последние (алюминием из их кисло­родных соединений. Такого рода! процессы носят название алюминотермических и составляют особую область ме­таллургии. Алюминотермический процесс применяется также при сваривании железных и стальных деталей, как например, рельсов (термитная сварка). Важное значение имеет применение алюминия в черной металлургии для раскисления стали.

  Разнообразное применение алюминий находит себе в пищевой промышленности (упаковка из фольги, консервные банки, укупорка бутылок и т. д.). Наконец, алюминий и его сплавы широко используются в быту (посуда, мебель т пр.) и для вся­кого рода художественных и декоративных целей.

  В заключение следует особо отметить значение алюминия как стратегического металла.

  Такие отрасли военной техники, как самолетостроение, авиа­строение, судостроение, танкостроение, артиллерия, производ­ство средств связи, а также взрывчатых веществ — требуют применения алюминия и его сплавов.

  Во всех случаях, связанных с передвижением, применение легких алюминиевых сплавов как конструкционного материала позволяет достигнуть значительного снижения собственного ве­са самолетов, кораблей следовательно, повысить их скорость и маневренность – качества, имеющие решающее военнотактическое значение. В первую очередь это очевидно, относится к авиации. Применение же легких алюминиевых сплавов в военно-морском судостроении вместе с тем дает возможность, не увеличивая тоннажа судна, повысить насы­щенность его боевыми средствами.

  В зажигательных (термитных) авиабомбах, снарядах и для осветительных целей (осветительные и сигнальные ракеты) ис­пользуется способность порошкообразного алюминия и его сплавов к быстрому воспламенению, что сопровождается ярким светом и выделением большого количества тепла.

  Существенное значение применение алюминия и его сплавов имеет в саперном деле (для изготовления деталей понтонов, переносных мостков),  а также в походном снаряжении армии (котелки, фляги, термосы).

  Интересно отметить, что первые попытки технического при­менения алюминия в самом начале зарождения алюминиевой промышленности (в середине прошлого столетия) были уже свя­заны со стремлением использовать этот металл для военных це­лей. Однако желание Наполеона III применить для изготовле­ния снаряжения и вооружения французской армии алюминий, стоимость которого тогда почти достигала стоимости драгоцен­ного металла, было в то время, конечно, неосуществимо.

  Только с созданием в конце прошлого столетия современного экономичного способа производства алюминия и изобретения его сплавов, обладающих высокими механическими ка­чествами, применение алюминия для военных нужд стало не только возможным, но и необходимым.

for-engineer.info

Использование алюминия

Алюминий активно используется в современном мире, и использование металла чрезвычайно разнообразно в связи с его многочисленными необычными свойствами. Никакие другие металлические элементы не могут быть использованы во многих сферах жизни, как и в доме, в транспорте, на суше, море и в воздухе, и в промышленности и торговле. Наличие алюминия в товарах не всегда очевидны. Иногда даже трудно догадаться, что товар изготовлен из алюминия или с помощью алюминия.

Один из наиболее распространенных видов конечного использования алюминия это упаковки, включая банки для напитков, консервные банки, обертки из фольги, крышки для бутылки и контейнеры из фольги.  Алюминий является важным в отрасли упаковки пищевых продуктов, несмотря на недавние исследования ученых, предположивших влияние алюминия на заболеваемость болезнью Альцгеймер. В отличие от железа, оксид алюминия образует защитный, а не разрушительную слоя. Алюминий также полностью непроницаемой, (даже если это прокат в чрезвычайно тонкую фольгу), он также не пропускает запахи и не теряет вкус пищевых продуктов, металл не токсичен, что делает его идеальным для упаковки.

Легкий вес алюминия дает ему множество применений в транспортной отрасли. Т.к. алюминий легкий ,требуется меньше энергии, которая нужна для перемещения автомобиля, чем для автомобиля изготовленного из стали. Хотя алюминий не самый сильный из металлов, в его   сплавы добавляют другие элементы,  что делает металл более крепким. Поезда, лодки и автомобили, самолеты это только часть транспорта изготовленного с помощью алюминия.   В современных самолетов алюминий составляет 80% от их веса, и нормальный Боинг-747 «содержит около 75 000 кг алюминия. Его  устойчивость к коррозии является преимуществом в производстве транспорта (как и упаковки).

Вес также имеет важное значение, в электрических кабелях используется алюминий, где оснащают ЛЭП.  1 кг алюминия проводит почти в два раза больше электроэнергии, чем 1 кг меди. С 1945 года алюминий используется в высоковольтных электрических передачах, вместо меди, как наиболее экономически эффективный материал линии электропередачи.  Алюминий используется и в других электрических приложениях, включая ТВ антенны, спутниковые антенны, лампы накаливания.

Здания из алюминия с практически не требуют ухода из- за прочности алюминия и коррозийной стойкости . В связи с этим и благодаря его легкому весу он используется в раме окна, световых люках, водостоках, дверных рамах, и кровле. Алюминий  чрезвычайно гибок и может быть изогнут к любой форме, необходимой для разных конструкций

Алюминий используется для производства кастрюль, кухонной утвари, в гольф-клубах, теннисных ракетках, открытой и закрытой мебель, холодильниках, тостерах и проч.

Резюме: Алюминий имеет огромное количество применений. Они варьируются от всех видов упаковки, вплоть до самолетов, автомобилей и поездов. Алюминий также жизненно важное значение для ЛЭП, строительства и строительной индустрии и обычных бытовых предметов. Основные характеристики, которые делают алюминий таким незаменимым — коррозионная стойкость, низкая плотность, пластичность, электропроводность и прочность в сплавах.

radiatori-kba.ru

Применение алюминия 🚩 Разное

Благодаря своей легкости, высокой стойкости к коррозии и отличной податливости штамповке этот металл применяется как основной конструкционный материал в авиации и авиакосмической промышленности. Из дюралюминия изготавливаются самые высоконагруженные детали самолетов: подкрепляющий набор, обшивка и др. Он использовался в конструкциях космических спутников «Луна», «Венера», «Марс», побывал на Луне и вернулся на землю. Кроме того он использовался в качестве основного материала для корпусов быстроходных судов на подводных крыльях «Ракета» и «Метеор». Как конструкционный материал алюминий имеет существенный недостаток – малую прочность, поэтому сейчас его постепенно начинают вытеснять композитные материалы.

В наземном транспорте алюминий также получил широкое применение. В автомобилестроении впервые его начали использовать в качестве декоративных деталей еще в 1914 году. Сейчас из этого металла изготавливается более 100 различных автомобильных деталей, и их количество растет с каждым годом. Об этом говорят и данные полученные в результате статистических исследований, согласно которым, в 1948 году на изготовление одного автомобиля использовалось 3,2 кг, сейчас крупные мировые компании используют в некоторых моделях от 100 до 150 кг. Не отстает от автомобилей и железнодорожный транспорт.

Все чаще «крылатый» металл применяется в строительстве. В новых современных зданиях сейчас можно встретить множество элементов изготовленных из сплавов алюминия. Легкие и прочные перекрытия и балки, перила, ограждения, колонны, элементы вентиляции и остекления из алюминия используются в строительстве многих общественных зданий и спорткомплексов.

В литейном производстве сплав из алюминия и кремния дающий малые усадку и ликвацию позволяет получать детали очень сложной конфигурации. Блоки и корпуса двигателей, различные виды крыльчаток, поршни, головки цилиндров и множество других элементов изготавливается из этого сплава методом литья.

В электротехнике алюминий используется в линиях электропередача, в силовых кабелях и в качестве оболочки токопроводящих элементов. Из него изготавливают токопроводящие шины, кабельные наконечники и гильзы, кабель-каналы, радиаторы-гребенки, распределительные траверсы, шкафы электроподстанций и опоры линий электропередач.

Фольга, используемая для упаковки различных промышленных и пищевых товаров, от шоколада конфет и алюминиевых банок, до косметики и лекарств изготавливается из чистого алюминия. На производство фольги различной толщины и назначения ежегодно расходуется более 1 миллиона тонн алюминия. В недавнем прошлом была также очень популярна посуда и столовые приборы из пищевого алюминия, которые и сейчас можно встретить в некоторых заведения общепита.

Кроме того алюминий применяется в химической, нефтяной и газовой промышленности в качестве трубопроводов, емкостей и сборочных элементов.

www.kakprosto.ru

Алюминий — Применение

Химия — Алюминий — Применение

01 марта 2011

Оглавление:
1. Алюминий
2. История
3. Нахождение в природе
4. Химические свойства
5. Производство
6. Применение
7. Алюминий в мировой культуре
8. Токсичность

Кусок алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость, высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния.

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия по сравнению с медью компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является наличие прочной оксидной плёнки, затрудняющей пайку.

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе. Нумерация серий сплавов в данной статье приведена для США

Алюминиевый прокат

  • Алюминиево-магниевые Al-Mg. Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости. Кроме того, эти сплавы отличаются высокой вибростойкостью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система соединения Al3Mg2 c твердым раствором на основе алюминия. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %. Рост содержания Mg в сплаве существенно увеличивает его прочность. Каждый процент магния повышает предел прочности сплава на 30 МПа, а предел текучести — на 20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30…35 %. Сплавы с содержанием магния до 3 % структурно стабильны при комнатной и повышенной температуре даже в значительно нагартованном состоянии. С ростом концентрации магния в нагартованном состоянии структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава. Для улучшения прочностных характеристик сплавы системы Al-Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Попадания в сплавы этой системы меди и железа стараются избегать, поскольку они снижают их коррозионную стойкость и свариваемость.

  • Алюминиево-марганцевые Al-Mn. Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al-Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном. Присутствие достаточного количества марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

  • Алюминиево-медные Al-Cu. Механические свойства сплавов этой системы в термоупрочненном состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы высокотехнологичны. Однако у них есть и существенный недостаток — низкое сопротивление коррозии, что приводит к необходимости использовать защитные покрытия.

В качестве легирующих добавок могут встречаться марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии. Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

  • Сплавы системы Al-Zn-Mg. Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Эффект столь высокого упрочнения достигается благодаря высокой растворимости цинка и магния при повышенных температурах, резко уменьшающейся при охлаждении.

Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением. Повысить сопротивление коррозии сплавов под напряжением можно легированием медью. Нельзя не отметить открытой в 60-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. В результате этого открытия были разработаны новые системы сплавов Al-Mg-Li, Al-Cu-Li и Al-Mg-Cu-Li.

  • Алюминиево-кремниевые сплавы лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.
  • Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют фехраль.

Ювелирные изделия

Алюминиевое украшение для японских причёсок

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

В Японии алюминий используется в производстве традиционных украшений, заменяя серебро.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Порошковый алюминий как горючее в твердых ракетных топливах. Применяется также в виде порошка и суспензий в углеводородах.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Триэтилалюминий используется также для химического зажигания в ракетных двигателях, так как самовоспламеняется в газообразном кислороде.

ОкислительУдельная тягаТемпература сгорания °СПлотность топлива, г/см³Прирост скорости, ΔVид, 25, м/сВесовое содерж. горючего, %
Фтор348,450091,504532825
Тетрафторгидразин327,447581,193443419
ClF3287,744021,764476220
ClF5303,746041,691492220
Перхлорилфторид293,737881,589461747
Фторид кислорода326,540671,511500438,5
Кислород310,840281,312442856
Перекись водорода318,435611,466480652
N2O4300,539061,467453747
Азотная кислота301,337201,496459549

Просмотров: 11933

Альтернативная периодическая таблицаАмериций >>>

4108.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *