Чугун содержание углерода – Сопоставление содержания, %, углерода и примесей в передельном чугуне и низкоуглеродистой стали

Содержание углерода в чугуне | Справочник конструктора-машиностроителя

Чугун — сплав железа с углеродом ( содержанием более 2, 14% ).
Углерод в чугуне может содержаться в виде цементита и графита.
В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны.
Чугуны держат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ).

Чугу́н — сплав железа с углеродом с содержанием более 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ).
Углерод в чугуне может содержаться в виде цементита и графита.
В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны.
Чугуны держат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ).
Обыкновенно, чугун хрупок.

Ковкий чугун получают длительным отжигом белого

чугуна, в итоге которого образуется графит хлопьевидной формы.
Металлическая основа такого чугуна : феррит и реже перлит.
Ковкий чугун получил свое название из — за повышенной пластичности и вязкости ( при всем при том, что обработке давлением не подвергается ).
Ковкий чугун обладает повышенной крепостью при растяжении и рослым сопротивлением удару.
Из ковкого чугуна изготовляют детали непростой фигуры : картеры заднего моста машин, тормозные колодки, тройники, угольники и т. д.

Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам.
В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ;
в автостроении — блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления.
Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

Углерод в чугуне может находиться в виде цементита, графита или

в то же самое время в виде цементита и графита.
Возникновение постоянной фазы — графита в чугуне может происходить в итоге прямого выделения его из слабого ( твердого ) раствора или вследствие распада предварительно образовавшегося цементита ( при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению РезС — > Fe + ЗС с образованием феррита и графита ).
Процесс формирования в чугуне ( стали ) графита называют графитизацией.

По содержанию углерода чугуны подразделяются на доэвтектический — 2, 14 …
4, 3 % С, эвтектический — 4, 3 % С и заэвтектический — 4, 3 …
6, 67 % С углерода.
Доэвтектические чугуны, включающие 2, 14 …
4, 3 % С, после окончательного охлаждения имеют структуру перлита, ледебурита ( перлит + цементит ) и вторичного цементита.
Эвтектический чугун ( 4, 3% С ) при температуре ниже + 727 °С состоит только из ледебурита ( перлит + цементит ).
Заэвтектический, который нельзя отменить 4, 3 …
6, 67 % С, при температуре ниже + 727 °С состоят из первичного цементита и ледебурита ( перлит + цементит ).

На практике наибольшее распространение получили доэвтектические чугуны, включающие 2, 4 …
3, 8% С углерода.
Тельное значение содержания углерода в чугуне определяется его технологическими характеристиками при литье — обеспечение хорошей жидкотекучести.
Жидкотекучесть — это способность металлов и сплавов в расплавленном состоянии заполнять полость формы, точно воспроизводить очертания и размеры отливки.
Увеличенное содержание углерода в чугуне выше 3, 8% С приводит к резкому возрастанию твердости и хрупкости.
Жидкотекучесть определяется по спиральной пробе, а ее величина по длине заполнения части спирали.
Усадка — уменьшение линейных и обьемных размеров металла, затопленного в фигуру при его кристаллизации и охлаждении.

В промышленности разновидности чугуна маркируются следующим типом : передельный чугун — П1, П2 ;
передельный чугун для отливок ( передельно — литейный ) — ПЛ1, ПЛ2, передельный фосфористый чугун — ПФ1, ПФ2, ПФ3, передельный высококачественный чугун — ПВК1, ПВК2, ПВК3 ;

чугун с пластинчатым графитом — СЧ ( цифры после букв « СЧ », значат величину временного сопротивления разрыву в кгс/мм ) ;
антифрикционный чугун антифрикционный серый — АЧС, антифрикционный высокопрочный — АЧВ, антифрикционный ковкий — АЧК ;
чугун с шаровидным графитом для отливок — ВЧ ( цифры после букв « ВЧ » означают временное сопротивление разрыву в кгс/мм и относительное удлиненние ( % ) ;
чугун легированный со специальными свойствами — Ч.

spravconstr.ru

Углеродистый чугун | Учебные материалы

Чугун — это сплав железа с углеродом, в котором содержание углерода больше 2,14 %.

Кроме углерода и железа, в сплаве присутствуют примеси: кремний, марганец, фосфор, сера и др. Эти примеси оказывают существенное влияние на формирование структуры сплава, а следовательно, и на механические, физические и другие свойства чугуна.

В зависимости от того, в какой форме присутствует углерод в сплавах, различают белые, серые, ковкие и высокопрочные чугуны. По химическому составу чугун делится на углеродистый и легированный.

Белыми называют чугуны в которых углерод находится преимущественно в связанном состоянии в виде цементита Fe3С (очень небольшое количество углерода находится в составе твердого раствора). Эти чугуны, фазовые превращения которых протекают согласно диаграмме Fe-С, подразделяются на доэвтектические, эвтектический и заэвтектические. Из-за большого количества цементита белые чугуны имеют высокую твердость 450…550 НВ, хрупкие и практически не поддаются обработке резанием, поэтому в качестве конструкционных материалов практически не применяются. Их можно применять для деталей, от которых требуется высокая износостойкость поверхности. Например, изготавливают шары шаровой мельницы для размола руды и минералов.

Белые чугуны являются передельными и из них получают сталь и ковкий чугун.

Серыми называют чугуны, в которых углерод находится преимущественно в свободном состоянии в виде пластинок графита. Графит образуется при очень малой скорости охлаждения, когда степень переохлаждения жидкой фазы невелика. Он растет из одного центра и, разветвляясь в разные стороны, приобретает форму сильно искривленных лепестков. В плоскости шлифа графит имеет вид прямолинейных или завихренных пластинок, которые представляют собой сечения графитных лепестков. В изломе эти чугуны имеют серый цвет. Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей, его количеством, формой и размерами включений.

Графит имеет низкую прочность, и его можно рассматривать как внутренние надрезы, нарушения сплошности металлической основы. С увеличением содержания углерода больше выделений графита и меньше механическая прочность чугуна. Серый чугун плохо сопротивляется растяжению, хрупкий, но обладает хорошей жидкотекучестью, малой усадкой при кристаллизации, легко обрабатывается резанием, хорошими антифрикционными свойствами (графит выполняет роль смазки), поглощает вибрацию, малочувствителен к концентраторам напряжений (надрезам, выточкам).

Удельный вес серого чугуна колеблется в пределах 6,6…7,4 г/см3 и зависит от количества углерода, степени графитизации и количественного соотношения структурных составляющих.

Теплоемкость серого чугуна также зависит от вышеперечисленных факторов и в интервале температур 0…700 0С равна 16 кал/(г∙0С). Теплопроводность равна 0,16 кал/(см∙с∙

0С). Средний коэффициент линейного термического расширения в интервале температур 0…100 0С можно принять (10…11)∙106 см/(см∙0С), а в интервале температур 100…700 0С он равен 14∙106 см/(см∙0С).

Основными элементами в чугунах являются Fe-C-Si и постоянными примесями — Мn, Р, S. Кремний обладает сильным графитизирующим действием, марганец затрудняет графитизацию. Сера является вредной примесью, ухудшает литейные и механические свойства чугунов.

Фосфор является в чугунах полезной примесью, так как улучшает жидкотекучесть. Участки фосфидной эвтектики увеличивают твердость и износостойкость чугуна. Чаще всего содержание фосфора находится в пределах 0,2…0,5 %. Для отливок, от которых требуется высокая износостойкость, содержание фосфора допускается 0,7 %, а для художественного литья — до 1 %.

Наглядное представление о влиянии углерода и кремния на степень графитизации чугуна и его структуру дает структурная диаграмма (толщина стенки отливки 50 мм), приведенная на рисунок 37.

I- белый чугун; II- половинчатый чугун; III- серый чугун на перлитной основе; IV- серый чугун на ферритно-перлитной основе; V- серый чугун на ферритной основе

Рисунок 37 — Структурная диаграмма

Серый чугун маркируется буквами СЧ, после которых ставится число, показывающее гарантируемый предел прочности на растяжение в кгс/мм2

(10-1 МПа).

Ферритные чугуны марок СЧ10, СЧ15, СЧ18 применяются для малоответственных деталей, испытывающих небольшие нагрузки. Например, фундаментные плиты, крышки, фланцы, рамы двигателей, компрессоров, шиберы и заслонки печей, корпусы фильтров и масленок, маховики, корпуса редукторов, насосов, тормозные барабаны, диски сцепления и др. Структура серых чугунов приведена на рисунок 38.

Феррито-перлитные чугуны марок СЧ20, СЧ21, СЧ25 применяются для деталей, работающих при повышенных статических и динамических нагрузках. Например, головки цилиндров, поршни, втулки для поршневых колец паровых цилиндров, колеса центробежных насосов, станины станков, зубчатые колеса, диафрагмы, цилиндры низкого давления и выхлопные патрубки турбин.

а- на ферритной основе; б- на ферритно -перлитной основе;

в- на перлитной основе

Рисунок 38 — Структура серых чугунов

Перлитные чугуны марок СЧ30, СЧ35, СЧ40, СЧ45 применяют для деталей, работающих при высоких нагрузках или в тяжелых условиях износа: зубчатые колеса, гильзы блоков цилиндров, распределительные валы и др. Мелкие разобщенные графитовые включения меньше снижают прочность чугунов. Измельчение графитовых включений достигается путем модифицирования жидкого чугуна ферросилицием, алюминием или феррокальцием (0,3…0,6 % от массы шихты). Отливки из серого чугуна подвергают термической обработке: для снятия внутренних напряжений — отжиг I рода (560 0С), нормализацию или закалку с отпуском для повышения механических свойств и износостойкости. Для повышения износостойкости гильз цилиндров, распределительных валов и других изделий перлитные чугуны подвергают азотированию.

Ковкими называют чугуны, в которых углерод находится в свободном состоянии в форме хлопьев. Такая форма графита и является основной причиной высоких прочностных и пластических характеристик ковкого чугуна. Термин ”ковкий чугун” является условным, поскольку изделия из него, так же как и из любого другого чугуна, изготавливают не ковкой, а путем литья, и указывает на повышенную пластичность по сравнению с серым чугуном. Состав ковкого чугуна выдерживается в довольно узких пределах: 2,4…2,9 % С; 1,0…1,6 % Si; 0,2…1,0 % Мn; до 0,18 % Р и до 0,2 % S.

Невысокое содержание углерода в ковком чугуне необходимо по двум причинам. Во-первых, для получения высоких прочностных характеристик следует уменьшить количество графитовых включений. Во-вторых, необходимо избегать выделения пластинчатого графита при охлаждении отливок в форме (с этой же целью толщина стенки отливки не должна превышать 50 мм).

Ковкий чугун получают из белого путем отжига, который продолжается иногда до 5 суток. По структуре металлической основы (рисунок 39), которая определяется режимом отжига, ковкие чугуны бывают ферритными и перлитными.

Отжиг на ферритные чугуны проводится по режиму 1 (рисунок 40), обеспечивающему графитизацию всех видов цемента белого чугуна.

а – ферритного; б – перлитного

Рисунок 39 – Микроструктура ковких чугунов

Рисунок 40 – Схема отжига белого чугуна на ковкий

Отливки из белого чугуна загружают в металлические ящики и засыпают песком или стальными стружками для защиты от окисления и медленно нагревают до температуры 950…1000 0С. В процессе продолжительной (10…15 ч) выдержки при такой температуре происходит первая стадия графитизации. Она состоит в распаде эвтектического и избыточного вторичного цементита.

К концу первой стадии чугун состоит из аустенита и включений углерода отжига (А + Г). Затем температуру медленно снижают до 720…740 0С. При этом происходит вторая стадия графитизации.

В процессе выдержки (25…30 ч) распадается цементит перлита:

П(Ф + Ц) -> Ф + Г

и образуется ковкий чугун на ферритной основе.

Перлитный чугун получают отжигом, который проводят в окислительной среде по режиму 2 (см. рис. 40). В этом случае увеличивают продолжительность первой стадии графитизации, после которой проводят непрерывное охлаждение отливок до 20 0С. Аустенит превращается в перлит (А -> П), а графит сохраняется в структуре. Получается ковкий чугун на перлитной основе.

Ковкие чугуны маркируются буквами КЧ, после которых ставятся числа, показывающие гарантируемые предел прочности на растяжение в кгс/мм2

(10-1 МПа) и относительное удлинение в процентах. Марки ковкого чугуна:

  • КЧ-30-6; КЧ 35-10; КЧ 37-12 — ферритные;
  • КЧ 45-7; КЧ 60-3; КЧ 80-1,5 — перлитные.

Из этих чугунов изготавливают детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки. Большая плотность отливок ковкого чугуна позволяет изготовлять детали водо- и газопроводных установок, корпуса вентилей, кранов, задвижек.

Высокопрочными называют чугуны, в которых углерод находится в свободном состоянии в виде шаровидного графита. Их получают модифицированием магнием, который вводят в жидкий чугун в количестве 0,02…0,08 %. Ввиду того, что модифицирование чистым магнием сопровождается значительным пироэффектом, применяют сплав магния с никелем.

Чугун после модифицирования имеет следующий химический состав: 3,0…3,6 % С; 1,1…1,9 % Si;. 0,3…0,7 % Мn;. до 0,02 % S и до 0,1 % P. По структуре металлической основы чугун может быть ферритным или перлитным (рисунок 41).

а- ферритного; б- перлитного

Рисунок 41 — Микроструктура высокопрочных чугунов

Шаровидный графит — менее сильный концентратор напряжений, чем пластинчатый или хлопьевидный графит, и поэтому меньше снижает механические свойства металлической основы. Чугуны обладают высокой прочностью и некоторой пластичностью, сохраняют свою прочность до 500 0С (обычный чугун до 400 0С). Они маркируются буквами ВЧ, после которых ставится число, показывающее гарантируемый предел прочности на растяжение в кгс/мм2 (10-1 МПа). Марки высокопрочного чугуна:

  • ВЧ 38; ВЧ 42; ВЧ 50 — ферритные;
  • ВЧ 60, ВЧ 80; ВЧ 120 — перлитные.

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя сталь во многих изделиях и конструкциях. Например, корпуса паровых турбин, насосов, вентилей, лопатки направляющего аппарата, коленчатые валы, поршни и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.

В некоторых случаях для улучшения механических свойств применяют термическую обработку отливок; для повышения прочности — закалку и отпуск при 500…600 0С; для увеличения пластичности — отжиг.

Недостатком высокопрочного чугуна является значительная объемная усадка, что приводит к появлению в отливках усадочной пористости, газовых раковин.

dprm.ru

Как получают чугун | Справочник конструктора-машиностроителя

Чугу́н — сплав железа с углеродом с содержанием более 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ).
Углерод в чугуне может содержаться в виде цементита и графита.
В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны.
Чугуны держат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ).
Обыкновенно, чугун хрупок.


Ковкий чугун получают длительным отжигом белого чугуна, в итоге которого образуется графит хлопьевидной формы.
Металлическая основа такого чугуна : феррит и реже перлит.
Ковкий чугун получил свое название из — за повышенной пластичности и вязкости ( при всем при том, что обработке давлением не подвергается ).
Ковкий чугун обладает повышенной крепостью при растяжении и рослым сопротивлением удару.
Из ковкого чугуна изготовляют детали непростой фигуры : картеры заднего моста машин, тормозные колодки, тройники, угольники и т. д.

Включенная в действие доменная печь функционирует непрерыв­но в течение нескольких лет.
Руду, кокс и флюсы периодически до­бавляют через верхнее отверстие ( колошник ) печи.
Также периоди­чески производится выпуск из нее чугуна и шлака — через любые 4 — 6 ч.
При этом 99 — 99, 8% железа переходит в чугун и только 0, 2 — 1, 0% — в шлак.
Кроме углерода в составе чугуна присутствуют элементы кремния, марганца, серы, фосфора и пр.
По назначению доменные чугуны разделяют на литейный и передельный.
Литейный чугун переплавляют, и из него отливают чугунные изделия.
Из пере­дельного чугуна получают сталь.
Он составляет около 90% всей вы­плавки чугуна.
В нем содержится повышенное количество углерода, 0, 3 — 1, 2% Si, 0, 2 — 1, 0% Mn, 0, 2 — 1, 0% Р, 0, 02 — 0, 07% 5.

Белый Ч. представляет собой сплав, в котором избыточный углерод, не присутствующий в твёрдом растворе железа, присутствует в объединенном состоянии в виде карбидов железа Fe 3 C ( цементит ) или т. н. специальных карбидов ( в легированном Ч.
Кристаллизация белых Ч. происходит по метастабильной системе с образованием цементита и перлита.
Белый Ч. вследствие коротких механических характеристик и хрупкости располагает ограниченное применение для деталей простой конфигурации, действующих в обстановках повышенного абразивного износа.
Легирование белого Ч. карбидообразующими элементами ( Cr, W, Mo и др. ) повышает его износостойкость.

Белый чугун получают путем первичной кристаллизации из редкого сплава при быстрейшем охлаждении.
Представляет собой сплав, в котором избыточный углерод, не присутствующий в твёрдом растворе железа, присутствует в объединенном состоянии в виде карбидов железа Fe3C ( цементит ), который придает чугуну бело — неяркий тон.
Белый чугун обладает высокой твердостью, хрупкостью и дурно обрабатывается, поэтому для изготовления деталей он не используется и применяется как передельный, т.е. идет на производство стали и иных паспортов чугуна.
Половинчатый чугун держит часть углерода в пустом состоянии в виде графита, а часть — в объединенном в виде карбидов.
Применяется в качестве фрикционного материала, действующего в условиях сухого трения ( тормозные колодки ), а также для изготовления деталей повышенной износостойкости ( прокатные, бумагоделательные, мукомольные валки ).

Механические свойства и рекомендуемый химический состав ковкого чугуна регламентирует ГОСТ 1215 — 79.
Ковкие чугуны маркируют буквами « К » — — ковкий, « Ч » _ 效 угун и циферками.
Главная группа цифр показывает предел прочности чугуна при растяжении, другая — — сравнительное его удлинение при разрыве.
Например, КЧ 33 — 8 обозначает : ковкий чугун с лимитом крепости при растяжении 33 кг/мм 2 ( 330 МПа ) и относительным удлинением при разрыве 8 %.

В итоге длительной продувки воздухом из кусков руды получались почти без примесей кусочки настоящего железа, которые сваривались между собой кузнечным способом в зону, которые далее использовались для производства необходимых человеку изделий.
Это технически чистое железо держало весьма немного углерода и немного примесей ( настоящий древесный уголек и хорошая руда ), поэтому оно хорошо ковалось и сваривалось и практически не корродировало.
Процесс выступал при относительно низкой температуре ( до 1100…1350 ° С ), м еталл не плавился, т. е. восстановление металла выступало в решительной фазе.
В итоге получалось ковкое ( рев ) железо.
Просуществовал этот способ до XIV века, а в несколько усовершенствованном облике до начала XX века, но был помалу вытеснен кричным переделом.

Серый чугун — наиболее широко применяемый вид чугуна ( машиностроение, сантехника, строительные конструкции ) — имеет включения графита пластинчатой формы.
Для подробностей из серого чугуна характерны небольшая чувствительность к действию внешних концентраторов напряжений при циклических нагружениях и более высокий коэффициент поглощения колебаний при вибрациях подробностей ( в 2 — 4 раза выше, чем у стали ).
Важная конструкционная особенность серого чугуна — выше, чем у стали, отношение предела текучести к пределу прочности на растяжение.
Наличие графита улучшает условия смазки при трении, что повышает антифрикционные свойства чугуна.
Свойства серого чугуна зависят от структуры металлической основы, фигуры, величины, числа и характера распределения включений графита.
Перлитный серый чугун имеет высокие прочностные свойства и применяется для цилиндров, втулок и др. нагруженных деталей двигателей, лафетов и т.д.
Для менее ответственных деталей используют серый чугун с ферритно — перлитной металлической основой.

Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки.
Механические свойства серого чугуна зависят от свойств металлической матрицы, фигуры и размеров графитовых включений.
Свойства металлической матрицы чугунов близки к свойствам стали.
, который нельзя отменить невысокую прочность, снижает прочность чугуна.
Чем меньше графитовых включений и выше их дисперсность, тем больше прочность чугуна.
Графитовые включения вызывают сокращение предела прочности чугуна при растяжении.
На крепость при сжатии и твердость чугуна частицы графита почти не оказывают воздействия.
Свойство графита образовывать смазочные пленки обусловливает падение коэффициента трения и увеличение износостойкости изделий из серого чугуна.
Графит улучшает обрабатываемость резанием.

Великое значение для практики имеет свойство модификации γ — Fе растворять до 2, 14% углерода при температуре 1147°С с образо­ванием твердого раствора и с внедрением атомов углерода в крис­таллическую решетку.
При повышении и снижении температуры растворимость углерода в модификации γ — Fе уменьшается.
Крепкий раствор углерода и прочих элементов ( азот, водород ) в модифика­ции γ — Fе называется аустенитом ( по имени ученого Р. Аустена ), почти в 100 раз меньше углерода может открыться в модифика­ции α — Fе, причем крепкие растворы углерода и прочих элементов в модификации α — Fе называют ферритом.

Химический состав и свойства высокопрочных чугунов регламентируются ГОСТ 7293 — 85 и маркируются буквами « В » — — высокопрочный, « Ч » — — чугун и количеством, означающим обыкновенное значение предела прочности чугуна при растяжении.
Например, ВЧ 100 — — высокопрочный чугун, лимит крепости при растяжении 1000 МПа ( или 100 кг/мм 2 ).

spravconstr.ru

Чугуны: роль углерода и кремния

Чугуны являются тройными сплавами железо-углерод-кремний. Основными видами чугунов являются:
серые чугуны;
белые чугуны;
высокопрочные чугуны с шаровидным графитом;
ковкие чугуны.

 

Углерод и кремний в чугунах

Углерод находится в основном в виде графита в серых и ковких чугунах, а также в высокопрочных чугунах с шаровидным графитом. В белых чугунах углерод присутствует в виде цементита Fe3C.

На тип и форму углеродной фазы в чугунах влияет содержание кремния. Увеличение содержания кремния делает более трудным образование цементита и, тем самым, способствует формированию графита в серых, ковких и  высокопрочных чугунах.

Углеродный эквивалент для чугунов

При работе с чугунами часто применяют понятие углеродного эквивалента. Для чугунов углеродный эквивалент СЕ имеет следующий вид:

Рисунок ниже дает графическое представление о соотношении содержания углерода и кремния в различных типах чугунов.

Рисунок 1 – Интервалы содержания углерода и кремния
для различных типов чугунов и кремнийсодержащих сталей

Заметим, что пунктирная линия вверху рисунка показывает состав любого вида чугуна, для которого СЕ = 4,3 %. Пунктирная линия внизу рисунка отражает соотношение СЕ = 2,0 % — она отделяет кремнийсодержащие стали от чугунов.

Для ясности рассмотрим железоуглеродистый сплав – чугун, в котором вообще отсутствует кремний. Тогда этот сплав содержит только железо+углерод и его расположение на графике будет ограничено содержанием углерода 4,3 %. По фазовой диаграмме на рисунке 2 видно, что этот состав является в точности эвтектическим составом для сплавов железо-цементит и очень близок к эвтектическому составу сплавов железо-графит.

Рисунок  – Комбинированная фазовая диаграмма железо-графит и железо-цементит

Верхняя пунктирная линия на рисунке 1 является хорошей интерпретацией изменения эвтектического состава с увеличением содержания кремния железоуглеродистых сплавах. Вообще, если чугун имеет состав, который близок к эвтектическому, доля в них аустенитных дендридов будет очень небольшой. Это значит, что когда углеродный эквивалент СЕ в чугунах падает намного ниже 4,3 %, то объемная доля твердой фазы в виде дендридов возрастает. Аналогично, когда углеродный эквивалент СЕ приближается к 4,3 %, то возрастает доля эвтектической смеси – или аустенит + графит в серых чугунах, или аустенит + цементит в белых чугунах.

Таблица – Четыре основных типа чугунов

Свойства различных чугунов

 

Источник: John D. Verhoeven, Steel Metallurgy for Non-Metallurgists, 2007

steel-guide.ru

Чугун содержит углерода | Справочник конструктора-машиностроителя

Чугу́н — сплав железа с углеродом ( и прочими элементами ).
Содержание углерода в чугуне не менее 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ) : меньше — сталь.
Углерод придаёт сплавам железа крепость и твёрдость, снижая пластичность и вязкость.
Углерод в чугуне может содержаться в виде цементита и графита.
В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны.
Чугуны содержат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ).
Обыкновенно, чугун хрупок.


Чугу́н — сплав железа с углеродом ( и прочими элементами ).
Содержание углерода в чугуне не менее 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ) : меньше — сталь.
Углерод придаёт сплавам железа крепость и твёрдость, снижая пластичность и вязкость.
Углерод в чугуне может содержаться в виде цементита и графита.
В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны.
Чугуны содержат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ).
Обыкновенно, чугун хрупок.

Ковкий чугун получают длительным отжигом белого чугуна, в итоге которого образуется графит хлопьевидной формы.
Металлическая основа такого чугуна : феррит и реже перлит.
Ковкий чугун получил свое название из — за повышенной пластичности и вязкости ( при всем при том, что обработке давлением не подвергается ).
Ковкий чугун обладает повышенной крепостью при растяжении и рослым сопротивлением удару.
Из ковкого чугуна изготовляют детали непростой фигуры : картеры заднего моста машин, тормозные колодки, тройники, угольники и т. д.

При нормальных температурах структура чугуна состоит из перлита, вторичного цементита и ледебурита.
Ледебурит после эвтектоидного превращения представляет собой механическую смесь перлита и цементита.
Чугуны с содержанием углерода до 4, 3 % называются доэвтектическими чугунами.
такие чугуны называются белыми чугунами , если углерод находится в чугунах в химически связанном состоянии с железом, т.е. в цементите .
Микроструктура сплава IV, воображающего собой доэвтектический белый чугун, изображена на рис.

По содержанию углерода чугуны подразделяются на доэвтектический — 2, 14 …
4, 3 % С, эвтектический — 4, 3 % С и заэвтектический — 4, 3 …
6, 67 % С углерода.
Доэвтектические чугуны, содержащие 2, 14 …
4, 3 % С, после окончательного охлаждения имеют структуру перлита, ледебурита ( перлит + цементит ) и вторичного цементита.
Эвтектический чугун ( 4, 3% С ) при температуре ниже + 727 °С состоит только из ледебурита ( перлит + цементит ).
Заэвтектический, который нельзя отменить 4, 3 …
6, 67 % С, при температуре ниже + 727 °С состоят из первичного цементита и ледебурита ( перлит + цементит ).
На практике наибольшее распространение получили доэвтектические чугуны, содержащие 2, 4 …
3, 8% С углерода.
Тельное значение содержания углерода в чугуне определяется его технологическими характеристиками при литье — обеспечение хорошей жидкотекучести.
Жидкотекучесть — это способность металлов и сплавов в расплавленном состоянии заполнять полость формы, точно воспроизводить очертания и размеры отливки.
Увеличенное содержание углерода в чугуне выше 3, 8% С приводит к резкому возрастанию твердости и хрупкости.
Жидкотекучесть определяется по спиральной пробе, а ее величина по длине заполнения части спирали.
Усадка — уменьшение линейных и обьемных размеров металла, затопленного в фигуру при его кристаллизации и охлаждении.

В стандарте Германии DIN 1693 — 506 — 50 в прозвании марки буквы обозначают : G — «gegosen» ( отлито ), G — «gubeisen» ( чугун ), G — «globular» ( шаровой ), 50 — наименьшее значение предела крепости в МПа 10 — 1 ( например, GGG — 50 ).
В В большинстве национальных образцов на высокопрочные нелегированные чугуны, регламентирующих механические свойства, химический состав чугунов не оговаривается.
Неизбежными для контроля являются предел крепости при растяжении, предел текучести, и относительное удлинение.
В образцах всех сторон, за исключением стандартов Германии и США, приводятся контролируемые пределы величин твердости.

Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам.
В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ;
в автостроении — блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления.
Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

Высокопрочные чугуны ( ГОСТ 7293 ) могут иметь ферритную ( ВЧ 35 ), феррито — перлитную ( ВЧ45 ) и перлитную ( ВЧ 80 ) металлическую основу.
Зарабатывают эти чугуны из бесцветных, в результате модифицирования магнием или церием ( добавляется 0, 03…0, 07% от массы отливки ).
По сравнению с серыми чугунами, механические свойства повышаются, это порождено отсутствием неравномерности в распределении усилий из — за шаровой формы графита.

spravconstr.ru

Содержание углерода в чугунах составляет

В технике под металлом понимают вещества, обла­дающие « металлическим блеском », в той или другой степени свойственным всем металлам, и пластичностью.
По этому знаку металлы можно легко отличить от неметаллов ( например, деревца, камешка, стекла или фарфора ).
« Ме­таллы суть ясные тела, которые ковать можно ».
Это определение металлов, данное М.
В. Ломоносовым, не утеряло собственного научного значения и сейчас, через 200 лет.
В. Ломоносов отметил и другой особенность сих тел — сходство их строения с солями, т. е. кристалличность.
В XIX в.
была сделана научная теория строения фигур, согласно которой все крепкие тела делятся на две группки : кристаллические и бесформенные.

Ковкий чугун получают длительным отжигом белого чугуна, в итоге которого образуется графит хлопьевидной формы.
Металлическая основа такого чугуна : феррит и реже перлит.
Ковкий чугун получил свое название из — за повышенной пластичности и вязкости ( при всем при том, что обработке давлением не подвергается ).
Ковкий чугун обладает повышенной крепостью при растяжении и рослым сопротивлением удару.
Из ковкого чугуна изготовляют детали непростой фигуры : картеры заднего моста машин, тормозные колодки, тройники, угольники и т. д.

Легирующие элементы изменяют как машинальные, так и материальные свойства стали.
Так, например, хром увеличивает крепость, твердость и износостойкость стали, но снижает ее пластичность 2 ;
никель повышает прочность, твердость и сопротивление коррозии ;
вольфрам повышает твердость.
Однако при выборе легированных сталей надо располагать в облику и экономические соображения.
Известно, что марганец, кремний и хром удорожают сталь незначительно, а никель повышает ее стоимость замет­но.
При добавлении кобальта, вольфрама и молибдена сталь становится дорогой.

Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам.
В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ;
в автостроении — блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления.
Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

В новые возрасты все большее распространение полу­чают безмуфельные печи с радиационными трубами, в которых происходит сжигание газа.
Стенки радиацион­ных труб нагреваются до высокой температуры и по­добно нагревателям в электрических печах являются источником излучения тепла.
Диаметр трубы – 80 – 90 мм, толщина стенок – 4–6 мм.
Трубы производят из жаропрочной стали.
Через край трубы дают газ и дух.
Продукты горения отводятся в вытяжные трубы.
Замена муфелей радиационными трубами позволяет сэкономить дорогостоящую жароупорную сталь.

Углерод в чугуне может находиться в виде цементита, графита или в то же самое время в виде цементита и графита.
Возникновение постоянной фазы — графита в чугуне может происходить в итоге прямого выделения его из слабого ( твердого ) раствора или вследствие распада предварительно образовавшегося цементита ( при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению РезС — > Fe + ЗС с образованием феррита и графита ).
Процесс формирования в чугуне ( стали ) графита называют графитизацией.

Сварка стальными электродами с применением особых покрытий.
В этом случае применяют электроды из проволоки Св — 08 или Св — 08А со специальными покрытиями.
Значительную роль в покрытии играет ферросилиций, который помогает обрести серый чугун.
Сей способ используется для сварки изделий легкой фигуры, служащих при ничтожных нагрузках.
При точном и скрупулезном выполнении сварки можно добиться получения плотного сварного соединения, поддающегося механической обработке.

2 ) Другой группу Б.
чугуна составляет : а ) чугун так именуемого мокрого прохода.
Обстоятельства его приобретения будут видимы при описании доменной плавки ( см.
Домна ) ;
тут же довольно упомянуть, что Б.
, который нельзя отменить углеродом, полученный из чистых руд, представляет самый удобный материал для пудлингового передела.
К этой же группе принадлежит также б ) Б.
чугун с небольшим содержанием углерода, извлеченный из настоящих, но нелегко восстановимых и трудноплавких руд при спелом ходе домны ;
такой чугун, особливо же ближайший к третному жесткому ( изгиб белый с темными крапинками ) есть наилучший материал для изготовления изделий так называемого ковкого чугуна ( см.
Чугун ).
Содержание углерода в чугунах этой группы не превосходит 3%, количество же кремния всегда ниже, чем у чугунов серых и не часто достигает до 0, 4%.

Также следует отметить электроды марки ЭМЧС, стержень которых заключается из низкоуглеродистой проволоки, а покрытие – из трёх слоёв : 1-й слой является легирующим, 2-й шлако — и газообразующим, 3-й – газозащитным.
Применение этих электродов при сварке чугунных изделий с относительно небольшой толщиной свариваемого металла ( 8 — 10мм ) позволяет обрести качественные сварные соединения без предварительного подогрева.
При сварке изделий большей толщины первые слои выполняют электродами ЦЧ — 4, а последующие – электродами УОНИ — 13/45.

Высокопрочные чугуны ( ГОСТ 7293 ) могут иметь ферритную ( ВЧ 35 ), феррито — перлитную ( ВЧ45 ) и перлитную ( ВЧ 80 ) металлическую основу.
Зарабатывают эти чугуны из бесцветных, в результате модифицирования магнием или церием ( добавляется 0, 03…0, 07% от массы отливки ).
По сравнению с серыми чугунами, механические свойства повышаются, это порождено отсутствием неравномерности в распределении усилий из — за шаровой формы графита.

spravconstr.ru

Чугун

Чугунами называются железоуглеродистые сплавы с содержанием углерода свыше 1,7%.

В обычных марках чугуна содержится 2,5 — 4% углерода, 1 — 5% кремния.

Чугун является дешевым, обладающим хорошими литейными свойствами сплавом, который благодаря еще целому ряду особых свойств нашел широкое применение в народном хозяйстве, особенно в машиностроении.

В зависимости от состояния углерода в сплаве различают два основных вида чугуна:

1) белые чугуны, в которых углерод находится в химически связанном состоянии в виде цементита — карбида железа (Fe3C), и только небольшая часть связанного углерода входит в сплав в виде перлита; они очень хрупки и тверды, применяются редко, сварке обычно не подлежат;

2) серые чугуны, в которых ббльшая часть углерода находится в виде структурно свободного графита, а основная металлическая масса чугуна представляет собой феррит и перлит. Эти чугуны хорошо поддаются механической обработке.

Серые чугуны получили большое распространение, со сваркой их приходится встречаться главным образом при исправлении брака чугунного литья и при ремонте.

Основное затруднение при сварке заключается в склонности к трещинообразованию, а также к резкому снижению механических свойств в зоне термического влияния.

Механические свойства чугуна обусловлены формой содержащегося в нем графита, прочностью его металлической массы.

В зависимости от формы свободного углерода различают 4 вида чугунов рис. 1.

Серый чугун с пластинчатым графитом характеризуется низкой пластичностью и прочностью, так как пластинки графита действуют как внутренние надрезы.

Серый чугун с графитом завихренной или глобулярной формы (модифицированный чугун) имеет лучшие механические свойства.

Ковкий чугун — чугун, в котором графит имеет форму хлопьев или глобулей; его механические свойства еще выше.

Чугуны с вермикулярным графитом получают, как и высокопрочные чугуны, модифицированием, только в расплав при этом вводится комплексный модификатор, содержащий магний и редкоземельные металлы. Вермикулярный графит подобно пластинчатому графиту виден на металлографическом шлифе в форме прожилок, но они меньшего размера, утолщенные, с округлыми краями (рис. 1,г). Микроструктура металлической основы также как у других графитизированных чугунов может быть ферритной, перлитной и феррито-перлитной.

Характерно, что даже чугун с пластинчатой формой графита имеет ряд положительных качеств: хорошую механическую обрабатываемость, малую чувствительность к внешним надрезам, высокие антифрикционные свойства и другие.

Структура чугуна, его физические и механические свойства зависят от скорости охлаждения и его состава.

Рис. 1. Схема микроструктур графитизированных чугунов: а) серые; б) высокопрочные; в) ковкие; г) с вермикулярным графитом

При одинаковом химическом составе и прочих равных условиях высокая скорость охлаждения способствует образованию в чугуне цементита, т. е. получению белого чугуна. Замедленное охлаждение, напротив, вызывает выделение углерода в состоянии графита с получением серого чугуна. Промежуточные скорости охлаждения дают различные переходные структуры металлической части: цементитно-перлитную, перлитную, перлитно-ферритную, ферритную.

Влияние скорости охлаждения (определяемой толщиной стенки отливки) на структуру чугуна в зависимости от суммарного содержания в нем углерода и кремния представлено на рис. 2, а.

Все примеси чугуна по своему влиянию на цементит делят на две группы: графитообразующие, способствующие образованию графита, и карбидообразующие, задерживающие выделение графита. Рассмотрим влияние некоторых примесей.

Кремний является после углерода наиболее важной примесью чугуна и относится к графитизирующим примесям. При содержании кремния выше 4,5% практически весь углерод выпадает в виде графита. Совместное влияние на структуру чугунов углерода и кремния представлено на графике рис. 2, б.

Рис. 2. Зависимость структуры чугуна: а — от содержания углерода и кремния; б — от скорости охлаждения и суммарного содержания в нем углерода и кремния.

Сера ухудшает свойства чугуна, ее вредное влияние проявляется (так же, как в стали) в том, что образуются легкоплавкие эвтектики, располагающиеся по границам зерен, что способствует образованию трещин. Кроме этого, сера является активным карбидообразователем, что увеличивает хрупкость чугуна. Поэтому содержание серы в чугуне строго ограничивается (не более 0,15%).

Марганец, как и в стали, обессеривает чугун, при содержании в чугуне до 0,8% действует как графитизатор, выше 1% как слабый карбидообразователь; дальнейшее увеличение содержания марганца усиливает его карбидообразующее действие.

Фосфор придает расплавленному чугуну жидкотекучесть и образует сложную фосфидную эвтектику, повышающую твердость и хрупкость чугуна.

Кроме указанных постоянных примесей, в чугун часто вводят специальные легирующие примеси: хром, никель, медь и др. Такие чугуны называются легированными. Никель значительно улучшает свойства металлической основы чугуна и способствует выделению графита. Хром, напротив, является сильной карбидообразующей примесью.

Твердость является важной характеристикой чугуна и она зависит от структуры, легирующих примесей и размера графитных включений.

Наименьшую твердость имеют ферритные чугуны, в которых почти весь углерод находится в свободном состоянии, перлитный чугун с пластинчатым графитом имеет твердость 220 — 240 HB, чугун с мартенситной металлической основой имеет твердость 400 — 500 НB, а структура цементита имеет твердость 750 НB.

Чем больше размеры графитных включений, тем меньше твердость чугуна.

 

ЛИТЕРАТУРА

В.П. Демянцевич, С.И. Думов Технология электрической дуговой сварки., МАШГИЗ,1959.

oitsp.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о