Что такое катушка индуктивности и для чего она нужна: Индуктивная катушка и ее практическое применение электронщиками | Электронные компоненты. Дистрибьютор и магазин онлайн

Содержание

Практическое руководство по катушкам индуктивности

Большинство проводящих материалов (металлов) является парамагнитными или ферромагнитными, в то время как большинство непроводящих материалов (неметаллов) является диамагнитными. Любой проводник обладает некоторой индуктивностью в ответ на изменение величины или направления протекания тока. Даже обычный прямой провод имеет индуктивность, хотя она достаточно мала, чтобы пренебрегать ею. Если провод свернуть в петлю — его индуктивность увеличится. Чем больше сделать таких одинаковых витков, тем большая индуктивность будет присуща проводу. Индуктивность одиночной петли или катушки из провода может быть многократно увеличена с помощью подходящего ферромагнитного сердечника.

Простейшими катушками индуктивности являются катушки с воздушным сердечником (рисунок 1). Они сделаны путем намотки провода вокруг пластмассового, деревянного или любого не ферромагнитного сердечника. Индуктивность катушки зависит от числа витков, радиуса и общей формы, также она пропорциональна числу витков и диаметру катушки.

Индуктивность обратно пропорциональна длине провода для заданного диаметра катушки и числу витков. Итак, чем ближе будут витки, тем больше будет индуктивность. Электропроводность катушек индуктивности зависит от материала и толщины провода. Потери (в виде тепла) в значительной степени зависят от материала, используемого в качестве сердечника.

 

Рис. 1. Пример катушки индуктивности с воздушным сердечником 

Катушки с воздушным сердечником имеют небольшую индуктивность, которая может составлять максимум 1 мГн. Катушки с воздушным сердечником могут быть рассчитаны так, что будут пропускать через себя ток практически неограниченной величины при условии использования проводника большой длины, смотанного в катушку большого радиуса. Такие катушки индуктивности практически не вносят потерь, так как воздух не рассеивает много энергии в виде тепла. Чем выше частота переменного тока, тем меньше индуктивность, необходимая для получения значительных эффектов.

Таким образом, катушки индуктивности с воздушным сердечником вполне подходят для применения в высокочастотных цепях переменного тока благодаря отсутствию потерь, способности пропускать через себя большие токи и достаточным значениям индуктивности.

При использовании железных или ферритовых сердечников индуктивность может быть значительно увеличена. Однако порошкообразный, железный или ферритовый сердечник вносит значительные потери электрической энергии в виде тепла. Использование ферромагнитных сердечников также ограничивает максимальную величину рабочего тока катушек индуктивности. В ферромагнитных сердечниках насыщение происходит при протекании максимального рабочего тока. При увеличении тока сверх этого критического значения индуктивность может начать уменьшаться. При больших токах ферромагнитные сердечники могут достаточно сильно нагреваться, что может привести к их разрушению и необратимому существенному изменению номинальной индуктивности катушки.

Соленоид против катушек индуктивности

 

Соленоиды часто путают с катушками индуктивности. Соленоиды — это катушки проводов, которые предназначены для использования в качестве электромагнитов. Многие индукторы также являются катушками проводов, но они предназначены для обеспечения индуктивности в электрической цепи. Катушки индуктивности цилиндрической формы также называют соленоидными катушками, но только из-за их конструкции, схожей с конструкцией соленоида. Тем не менее, они не предназначены для использования в качестве электромагнита. Соленоиды специально используются в качестве электромагнитов и обычно имеют подвижный или статический сердечник. Обычно соленоиды используются в качестве электромагнитов в электрических звонках, электродвигателях, работающих на постоянном токе, и в реле.

Соленоидные катушки как индуктивности

 

Простейшими и наиболее распространенными индуктивностями являются соленоидные катушки. Эти индуктивности представляют собой цилиндрические катушки, намотанные вокруг диамагнитного или ферромагнитного сердечника. Они являются самыми простыми с точки зрения проектирования и изготовления.

Соленоидная, или цилиндрическая катушка может быть легко использована для подстройки величины индуктивности, если в конструкцию интегрировать механизм перемещения ферромагнитного сердечника катушки внутрь и наружу. Путем перемещения сердечника внутрь катушки и обратно можно изменять ее эффективную магнитную проницаемость и, следовательно, величину индуктивности. Это называется настройкой магнитной проницаемости и используется для подстройки частот в радиочастотных схемах.

Сердечник можно сделать подвижным, прикрепив его к винтовому валу и закрепив гайкой на другом конце катушки. Когда вал винта вращается по часовой стрелке — сердечник перемещается внутрь катушки, увеличивая эффективную магнитную проницаемость и, следовательно, величину индуктивности. Когда вал винта вращается против часовой стрелки — сердечник выдвигается, уменьшая эффективную магнитную проницаемость и, следовательно, величину индуктивности.

Тороиды как катушки индуктивности

Сегодня еще одной наиболее распространенной формой катушек индуктивности является тороид. Тороиды имеют кольцевой ферромагнитный сердечник, на который намотан провод. Тороиды нуждаются в меньшем числе витков и физически меньше при той же величине индуктивности и рабочей величине тока, по сравнению с соленоидными катушками (рисунок 2). Другим важным преимуществом тороидов является то, что магнитный поток находится внутри сердечника, что позволяет избежать нежелательной взаимной индуктивности.

Рис. 2. Сильноточные тороидальные катушки индуктивности 

Однако намотать провод на тороид сложно. Регулировать магнитную проницаемость тороида еще сложнее. Проектирование катушек с тороидальным сердечником и переменной величиной индуктивности требует реализации громоздкой и сложной конструкции. В цепях, где требуется взаимная индуктивность, катушки должны быть намотаны на один и тот же сердечник в случае, если тороид используется в качестве катушки индуктивности.

Индуктивности на основе чашеобразных Р-сердечников*

 

В типичных катушках индуктивности — соленоидных и тороидных — провод намотан вокруг ферромагнитного сердечника. Катушки индуктивности на основе чашеобразных сердечников – это другой тип индуктивностей, в котором обмотка катушки находится внутри ферромагнитного сердечника. Чашеобразный ферромагнитный сердечник имеет форму двух половин в виде чаш со специальным цилиндрическим выступом (керном) на дне одной из половин, на котором размещается обмотка. Обе половины имеют отверстия, из которых извлекается провод катушки. Вся сборка скрепляется болтом и гайкой.

Катушки данного типа, как и тороиды, обладают большой индуктивностью и электропроводностью при небольших габаритах и меньшем числе витков. Магнитный поток, как и в случае с тороидами, остается внутри. Таким образом, нет нежелательной взаимной индуктивности с сердечниками. Опять же, как и в случае с тороидами, очень трудно варьировать величину индуктивности катушек данного типа.

Изменять величину индуктивности в катушках индуктивности на основе Р-сердечников возможно только путем изменения числа витков и при использовании отводов в разных точках катушки.

*- В литературе также встречается термин “Р-сердечник закрытого типа”. В ГОСТ 19197-73 данному типу сердечников присвоено название – “броневой”.

Линия передачи как индуктивность

В цепях постоянного тока катушки индуктивности ведут себя почти так же, как и обычный провод, обладая незначительным сопротивлением, но не более того. Таким образом, они находят применение преимущественно в электрических цепях переменного тока. В аудиосхемах в качестве индуктивностей обычно используются тороиды, катушки на основе круглых чашеобразных сердечников или аудиотрансформаторы. Номинал индуктивности, применяемый в таких электрических цепях, варьируется от нескольких мГн до 1 Гн. Катушки индуктивности вместе с конденсаторами используются в аудиосхемах для подстройки. В настоящее время микросхемы практически полностью вытеснили катушки индуктивности и конденсаторы в аудиосистемах и других подобных областях применения.

При увеличении частоты должны использоваться индуктивности с сердечниками меньшей проницаемости. На нижнем конце радиочастотного спектра используются те же катушки индуктивности, что и в аудиоприложениях. На частотах до нескольких МГц весьма распространены катушки индуктивности с тороидальным сердечником. Для частот 30…100 МГц предпочтительны катушки с воздушным сердечником. Для частот более 100 МГц в линии передачи используются высокочастотные индуктивности и специальные трансформаторы. Линии передачи малой длины (четверть длины волны сигнала или меньше) сами могут быть использованы в качестве индуктивности для подстройки частоты радиосигналов. Линия передачи, используемая в качестве подобной индуктивности, обычно представляет собой коаксиальный кабель.

Индуктивности в цепях постоянного тока

Катушки индуктивности практически бесполезны в цепях постоянного тока. Однако можно предположить, что катушка индуктивности, подключенная к цепи постоянного тока, может быть полезна для понимания принципов ее работы и особенностей поведения пульсирующих напряжений постоянного тока. Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

VL = – L*(di/dt),   (1)

где:

  • VL – напряжение (обратная ЭДС), индуцированная на катушке;
  • L – индуктивность катушки;
  • di/dt – скорость изменения тока во времени.

Согласно приведенной формуле 1, внезапное изменение тока через катушку индуктивности дает бесконечное напряжение, что физически невозможно. Таким образом, ток через катушку индуктивности не может измениться мгновенно. Ток сталкивается с влиянием индуктивности при каждом небольшом изменении его величины и медленно возрастает до своего пикового постоянного значения. Итак, в начальный момент времени катушка индуктивности представляет собой разрыв цепи, когда переключатель замкнут. Обратная ЭДС наводится на катушку индуктивности до тех пор, пока изменяется значение протекающего через нее тока. Индуцированная обратная ЭДС всегда остается равной и противоположной возрастающему приложенному напряжению. Когда напряжение и ток от источника приближаются к постоянному значению, обратная ЭДС падает до нуля, а катушка индуктивности начинает вести себя как обычный провод. При подаче напряжения на катушку индуктивности мощность, запасенная ею, определяется по формуле 2:

P = V * I = L*i*di/dt,   (2)

где:

  • P – электрическая мощность, запасенная в катушке;
  • V – величина пикового напряжения на катушке индуктивности;
  • I – величина пикового тока, протекающего через катушку индуктивности.

Энергия, запасенная индуктивностью при подаче напряжения, определяется по формуле 3:

W = ?P.dt = ?L*i*(di/dt)dt = (1/2)LI2,   (3)

где:

  • W – электрическая энергия, запасенная в катушке индуктивности в виде магнитного поля;
  • I – максимальное значение тока, протекающего через катушку.

Когда происходит отключение источника напряжения (путем размыкания ключа), напряжение на индуктивности падает с постоянного пикового значения до нуля. В отличие от конденсаторов, при отключении источника напряжения напряжение на индуктивности не поддерживается. Фактически оно уже упало до нуля, тогда как ток, проходящий через него стал постоянным. Теперь, когда приложенное напряжение падает от пикового постоянного значения до нуля, ток, протекающий через катушку индуктивности, также падает с постоянного пикового значения до нуля. Катушка противодействует падению тока, вызывая прямую ЭДС в направлении приложенного напряжения. Из-за индуцированной прямой ЭДС ток, проходящий через катушку индуктивности, падает до нуля с более медленной скоростью. Как только ток уменьшается до нуля, прямая ЭДС также падает до нуля.

Таким образом, при подаче напряжения питания электрическая энергия преобразовывалась в магнитное поле в катушке индуктивности, что было очевидно по обратной ЭДС, индуцированной на ней. При отключении напряжения питания та же самая электрическая энергия возвращается индуктором в цепь в форме прямой ЭДС. Всякий раз, когда напряжение на катушке индуктивности увеличивается, возникает обратная ЭДС, а всякий раз, когда напряжение на катушке уменьшается, возникает прямая ЭДС.

На практике обратная или прямая ЭДС, которая наводится на катушке индуктивности, во много раз больше приложенного напряжения. Если источник индуктивности подключен к источнику напряжения или катушка индуктивности подключена к цепи постоянного тока без какой-либо защиты, электрическая энергия, возвращаемая при размыкании переключателя, выделяется в виде скачка напряжения или искры на контактах переключателя. Если индуктивность или ток в цепи достигают достаточно больших значений, то энергия выделяется в форме дуги или искры на контакте переключателя и может даже сжечь или расплавить его. Этого можно избежать, используя резистор и конденсатор, соединенные в RC-цепь и включенные последовательно с контактом переключателя. Такая RC-цепь называется снабберной и позволяет электрической энергии, выделяемой катушкой индуктивности, заряжать и разряжать конденсатор, поэтому она не повреждает другие компоненты. Во многих электрических цепях для сохранения компонентов схемы от обратной или прямой ЭДС катушек индуктивности или соленоидов используются защитные диоды.

Катушка индуктивности в цепи переменного тока

Катушка индуктивности противодействует любому изменению тока, который протекает через нее, а переменный ток, в свою очередь, отстает на 90° от напряжения. В начальный момент времени, когда напряжение источника подается на катушку, ток через нее протекает максимальный, но в противоположном направлении. При подаче напряжения ток протекает через катушку индуктивности из-за индуцированной обратной ЭДС, которая противоположна приложенному напряжению. Индуцированное на катушке напряжение всегда равно и противоположно по знаку приложенному напряжению в любой момент времени. Когда приложенное напряжение возрастает от нуля до пикового значения, ток через катушку падает от максимума до нуля.

Когда прикладываемое напряжение падает от максимального значения до нуля, то на катушке индуцируется прямая ЭДС, заставляя ток противоположного направления расти от нуля до пикового значения. Когда приложенное напряжение меняет полярность и возрастает до пикового значения, ЭДС снова индуцируется на катушке, вызывая падение обратного тока от пикового значения до нуля. Когда приложенное напряжение снова падает до нуля в обратном направлении, в катушке индуцируется прямая ЭДС, заставляющая ток снова расти от нуля до максимального значения в противоположном направлении. Это продолжается для каждого цикла протекания переменного тока.

Индуктивное сопротивление

Противодействие протекающему току из-за наличия индуктивности называется индуктивным сопротивлением. Амплитуда тока через катушку индуктивности обратно пропорциональна частоте приложенного напряжения. Поскольку напряжение на катушке (обратная или прямая ЭДС) пропорционально индуктивности, то амплитуда тока также обратно пропорциональна величине индуктивности. Итак, противодействие току из-за наличия индуктивности в виде индуктивного сопротивления определяется по формуле 4:

XL = 2?fL= ?L   (4)

Соответственно, пиковая амплитуда тока, проходящего через катушку индуктивности, определяется по формуле 5:

Ipeak = Vpeak/XL= Vpeak/ ?L,   (5)

где:

  • Ipeak – пиковое значение переменного тока, протекающего через катушку индуктивности;
  • Vpeak – пиковое значение переменного напряжения, приложенного к катушке;
  • XL – индуктивное сопротивление.

Как резистивное и емкостное сопротивление, так и единица индуктивного сопротивления измеряется в омах. Следует отметить, что в электрических цепях нет потерь энергии из-за наличия емкостного или индуктивного сопротивления, что нельзя сказать об обычном резистивном сопротивлении. Тем не менее, реактивное сопротивление может ограничивать уровни тока через конденсатор или катушку индуктивности.

Применение катушек индуктивности

Катушки индуктивности используются в электрических цепях переменного тока. Они обычно применяются в аналоговых схемах, схемах обработки сигналов и в системах телекоммуникаций, а также используются вместе с конденсаторами для создания фильтров различных топологий. В телекоммуникационных системах индуктивности применяются в составе специальных фильтров, которые нужны для подавления возможных бросков напряжения и предотвращения утечки информации через линии системы электропитания.

Трансформаторы, которые используются для повышения или понижения напряжения переменного тока, состоят из двух катушек индуктивности, объединенных в единую конструкцию определенным образом. Индуктивности также используются для временного хранения электрической энергии в цепях выборки-хранения и источниках бесперебойного питания. В цепях электропитания катушки индуктивности (где они называются фильтрующими дросселями) используются для сглаживания пульсирующих токов.

Поведение индуктивности при прохождении через нее сигнала можно определить следующим образом:

  • Всякий раз, когда приложенное к катушке индуктивности напряжение увеличивается, катушка генерирует обратную ЭДС, в результате чего ток через нее падает с максимального значения до нуля или даже ниже этого уровня. Всякий раз, когда прикладываемое напряжение уменьшается, катушка создает прямую ЭДС, в результате чего ток через нее повышается с нуля или текущего уровня до максимального значения или даже до более высокого.
  • Обратная или прямая ЭДС сохраняется на катушке индуктивности до тех пор, пока приложенное напряжение, а следовательно и ток через нее изменяются. Когда приложенное напряжение достигает определенного постоянного значения, обратная или прямая ЭДС падает до нуля, и постоянный ток протекает через катушку индуктивности без какого-либо противодействия, как в обычном соединительном проводе.
  • Из-за наличия индуктивности скорость изменения тока в цепи замедляется. Если сигнал переменный, то ток всегда будет отставать от напряжения на 90° из-за наличия индуктивности.
  • Благодаря индуктивному или емкостному сопротивлению потери энергии отсутствуют. Энергия, запасенная катушкой индуктивности в форме магнитного поля или конденсатором в форме электростатического поля, возвращается обратно в цепь, как только приложенное напряжение падает до нуля или меняет полярность. Однако из-за реактивного сопротивления пиковый уровень тока (амплитуда сигнала) ограничен.


Источник: https://www.engineersgarage.com

Автор: Нихил Агнихотри Переводчик: Алексей Катков (г. Санкт-Петербург)

Разделы: Дроссели

Опубликовано: 30.01.2020

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника.  Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна 

Где  ψ — потокосцепление, µ0 = 4π*10-7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки, l — длина средней линии потока.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах. Цели применения различны:

— подавление помех в электрической цепи;
— сглаживание уровня пульсаций;
— накопление энергетического потенциала;
— ограничение токов переменной частоты;
— построение резонансных колебательных контуров;
— фильтрация частот в цепях прохождения электрического сигнала;
— формирование области магнитного поля;
— построение линий задержек, датчиков и т. д.

Энергия магнитного поля катушки индуктивности

Электрический ток способствует накоплению энергии в магнитном поле катушки. Если отключить подачу электричества, накопленная энергия будет возвращена в электрическую цепь. Значение напряжения при этом в цепи катушки возрастает многократно. Величина запасаемой энергии в магнитном поле равна примерно тому значению работы, которое необходимо получить, чтобы обеспечить появление необходимой силы тока в цепи. Значение энергии, запасаемой катушкой индуктивности можно рассчитать с помощью формулы.

 

Реактивное сопротивление

При протекании переменного тока, катушка обладает кроме активного, еще и реактивным сопротивлением, которое находится по формуле 

По формуле видно, что в отличие от конденсатора, у катушки с увеличением частоты, реактивное сопротивление растет, это свойство применяется в фильтрах частот.

При построении векторных диаграмм важно помнить, что в катушке, напряжения опережает ток на 90 градусов.

Добротность катушки

Еще одним важным свойством катушки является добротность. Добротность показывает отношение реактивного сопротивления катушки к активному. 

Чем выше добротность катушки, тем она ближе к идеальной, то есть она обладает только главным своим свойством – индуктивностью.

Конструкции катушек индуктивности


Конструктивно катушки индуктивности могут быть представлены в разном исполнении. Например, в исполнении однослойной или многослойной намотки проводника. При этом намотка провода может выполняться на диэлектрических каркасах разных форм: круглых, квадратных, прямоугольных. Нередко практикуется изготовление бескаркасных катушек. Широко применяется методика изготовления катушек тороидального типа. 

Витки проводника, как правило, наматываются плотно один к одному. Однако в некоторых случаях намотка производится с шагом. Подобная методика отмечается, к примеру, когда изготавливаются высокочастотные дроссели. Намотка провода с шагом способствует снижению образования паразитной ёмкости, так же как и намотка, выполненная отдельными секциями. 

Индуктивность катушки можно изменять,  добавляя в конструкцию катушки ферромагнитный сердечник. Внедрение сердечников отражается на подавлении помех. Поэтому практически все дроссели, предназначенные для подавления высокочастотных помех, как правило, имеют ферродиэлектрические сердечники, изготовленные на основе феррита, флюкстрола, ферроксона, карбонильного железа. Низкочастотные помехи хорошо сглаживаются катушками на пермалоевых сердечниках или на сердечниках из электротехнической стали.

  • Просмотров:
  • Что такое индуктор и что он делает в цепи?

    Я получил несколько писем с вопросом «Что такое индуктор?». И я понял, что это действительно хороший вопрос. Потому что это довольно странный компонент.

    Катушка индуктивности  это просто катушка провода.

    Его невероятно легко сделать — просто сделайте несколько петель из проволоки. Но поскольку провода создают магнитные поля, вы скоро увидите, что они могут делать кое-что интересное.

    Индуктор в цепи

    Если вы изучаете электронику, первый важный вопрос: что делает катушка индуктивности в цепи?

    Катушка индуктивности будет сопротивляться изменениям тока.

    В схеме ниже у вас есть светодиод и резистор последовательно с катушкой индуктивности. И есть переключатель для включения и выключения питания.

    Без катушки индуктивности это была бы обычная схема светодиода, и светодиод включался бы сразу же, как только вы щелкаете выключателем.

    Но катушка индуктивности — это компонент, который сопротивляется изменениям тока.

    Когда переключатель выключен, ток не течет. Когда вы включаете выключатель, начинает течь ток. Это означает, что есть изменение тока, которому будет сопротивляться индуктор.

    Таким образом, вместо того, чтобы сразу увеличивать ток от нуля до максимума, он будет постепенно увеличиваться до максимального значения.

    (Максимальный ток для этой цепи устанавливается резистором и светодиодом.)

    Поскольку сила тока определяет интенсивность свечения светодиода, индуктор заставляет светодиод постепенно исчезать, а не включаться мгновенно.

    Примечание: Вам понадобится очень большая катушка индуктивности, чтобы увидеть затухание светодиода в приведенной выше схеме. Это не то, для чего вы бы использовали индуктор. Но используйте его как мысленный образ того, что индуктор делает в цепи.

    Что происходит при отключении катушки индуктивности?

    Индуктор также препятствует мгновенному отключению тока. Ток не перестанет течь в катушке индуктивности в одно мгновение.

    Итак, когда вы отключите питание, индуктор попытается продолжить ток.

    Он делает это, быстро повышая напряжение на своих клеммах.

    На самом деле она увеличивается настолько, что вы можете получить небольшую искру на контактах вашего выключателя!

    Эта искра позволяет току течь (по воздуху!) в течение доли секунды, пока магнитное поле вокруг индуктора не разрушится.

    Вот почему диод обычно размещают в обратном направлении через катушку реле или двигателя постоянного тока (называемый обратноходовым диодом 9).0006). Таким образом, катушка индуктивности может разряжаться через диод, а не создавать высокое напряжение и искры в цепи.

    БЕСПЛАТНЫЙ бонус: Скачать Basic Electronic Components [PDF] — мини-книгу с примерами, которые научат вас работать с основными компонентами электроники.

    Как работают катушки индуктивности

    Любой провод, по которому течет ток, окружен небольшим магнитным полем.

    Когда провод сматывается в катушку, поле становится сильнее.

    Если намотать проволоку на магнитный сердечник, например стальной или железный, получится еще более сильное магнитное поле.

    Вот как вы создаете электромагнит.

    Магнитное поле вокруг него зависит от силы тока. Таким образом, при изменении тока изменяется магнитное поле.

    При изменении магнитного поля на клеммах катушки индуктивности создается напряжение, противодействующее этому изменению.

    Для чего можно использовать катушки индуктивности?

    Нечасто можно увидеть дискретные катушки индуктивности в типичных примерах схем для начинающих. Так что, если вы только начинаете, вы, вероятно, еще не столкнетесь с ними.

    Но они очень распространены в блоках питания. Например, для создания понижающего или повышающего преобразователя. И они распространены в радиосхемах для создания генераторов и фильтров.

    Но гораздо чаще вы будете сталкиваться с электромагнитами. И они в основном катушки индуктивности. Вы найдете их почти во всем, что движется от электричества. Например, реле, двигатели, соленоиды, динамики и многое другое.

    Трансформатор — это две катушки индуктивности, намотанные на один и тот же сердечник.

    Если вы хотите узнать, как работают другие электронные компоненты, перейдите к основным компонентам электроники.

    Другие учебные пособия по электронным компонентам

    design — Катушки индуктивности — для чего они используются?

    Хороший вопрос. Одно из распространенных применений — фильтр. Конденсатор легко пропускает высокочастотный сигнал, но сопротивляется низкочастотным. В то время как индуктор наоборот: он легко пропускает низкие частоты и препятствует высоким частотам. На самом деле, внутри большинства корпусов динамиков вы найдете индуктор, используемый на низкочастотном динамике для передачи низкочастотной энергии на низкочастотный динамик, в то время как конденсатор используется с твитером для передачи высокочастотной энергии на твитер.

    Причина использования катушки индуктивности заключается в том, что она не «потребляет» и не «тратит» высокочастотную энергию, а просто блокирует ее прохождение, так что вместо этого энергия может проходить через конденсатор в твитер.

    В общем, индуктор ведет себя так же, как и конденсатор, поэтому большинство функций, требующих одного, можно реализовать с помощью другого, но в другом расположении. Но это не всегда так. Например, если вы хотите получать только низкочастотную энергию, вы можете поставить резистор, а затем конденсатор на землю. Высокочастотная энергия будет «закорочена» через конденсатор и снизит большую часть напряжения на резисторе (что превращает высокочастотный сигнал в тепло), оставив очень небольшую амплитуду на конденсаторе. Это прекрасно работает, если вам нужна только информация, поэтому можно тратить высокочастотную энергию впустую… но в случае с динамиками потребовалось много работы, чтобы передать эту высокую энергию в коробку динамика, поэтому вам нужен способ фильтрации без потери энергии!

    Отсюда видно фундаментальное отличие резисторов от конденсаторов и катушек индуктивности. Резисторы превращают напряжение на них, умноженное на ток через них, в тепло. А вот конденсаторы и катушки индуктивности — нет! Идеальные версии не преобразуют электрическую энергию в тепло. Хотя настоящие превращают некоторый процент напряжения на них, умноженного на ток через них, в тепло, этот процент зависит от частоты напряжения/тока.

    Катушки индуктивности также часто используются в генераторах. Представьте себе катушку индуктивности и конденсатор, соединенные вместе на обоих концах — существует некоторая частота, при которой оба сопротивления оказываются одинаковыми! Это называется резонансной частотой комбинации. Оказывается, как только вы его запустите, напряжение конденсатора заставляет ток течь в индукторе, пока напряжение не достигнет нуля, но теперь индуктор хочет, чтобы этот ток продолжал течь, поэтому он делает это и в конечном итоге заряжает конденсатор. , но к противоположному напряжению, которое было раньше. Когда ток достигает нуля, конденсатор снова начинает нагнетать ток, и он нарастает… но в обратном направлении, как раньше… и то же самое повторяется…

    Если бы катушка индуктивности и конденсатор были идеальными, то это продолжалось бы вечно.. но они оба теряют немного энергии, превращаясь в тепло.. поэтому напряжения и токи уменьшаются при каждом повторении.. все, что нужно для сделать осциллятор, то это способ восполнить потерянную энергию после каждого цикла.

    Третье распространенное применение – это устройство для накопления энергии, особенно в импульсных источниках питания. В этом случае функция источника питания постоянного тока заключается в подаче постоянного тока. Он также имеет функцию переключения между источником входного напряжения и источником выходного напряжения. Таким образом, то, что он блокирует высокую частоту, можно рассматривать так: когда напряжение на нем резко меняется, ток через него не меняется.. скорее, ток только начинает меняться. Итак, если вы очень быстро измените напряжение на очень высокое, затем на нулевое, затем на очень высокое, затем на ноль, ток начнет расти, затем начнет снижаться, но до тех пор, пока вы оставляете одно из двух напряжений только очень короткое время ток практически не изменится в любом направлении. Если вы оставите его высоким в тот же период, когда вы оставите его низким, то ток усреднится и останется стабильным. Если этот ток соответствует току, отбираемому от источника питания, то выходное напряжение источника питания останется постоянным. Теперь представьте, что высокое напряжение остается немного дольше, чем земля — ​​ток будет увеличиваться медленно, в течение многих повторений… и наоборот.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *