Бутан кислород – В каком объемном соотношении нужно смешать газы бутан (С4Н10) и кислород (О2), чтобы они прореагировали полностью? Ответ обоснуйте.

Окисление бутана кислородом — Справочник химика 21

    Каталитическое дегидрирование этилбеизола проводят в токе водяного пара при 500—630 °С на катализаторе. Стирол выделяют перегонкой под вакуумом Окисление бутана кислородом (145 С, 4,9 МПа) [c.222]

    Перспективным методом получения уксусной кислоты является жидкофазное окисление бутана кислородом воздуха при 165—170° С и давлении 50 ат  [c.149]


    Катализаторы, содержащие оксиды ванадия, которые находят применение, например, для производства малеинового ангидрида путем окисления бутана кислородом, в процессе работы теряют свою активность. Для регенерации катализатора проводят обработку его восстановителями. Однако активность и селективность регенерированного катализатора довольно быстро снижаются и восстановительную обработку приходится повторять через непродолжительное время. [c.381]

    Уксусную кислоту получают в промышленности каталитическим окислением бутана кислородом воздуха  

[c.344]

    В промышленности уксусную кислоту получают каталитическим окислением бутана кислородом воздуха при 200°С  [c.385]

    Вполне возможно осуществление процесса получения метилэтилкетона методом каталитического окисления бутана кислородом воздуха по реакции [c.213]

    Наряду с этим бутан может быть использован для других синтезов. Например, в СССР разработан процесс получения уксусной кислоты путем прямого окисления бутана кислородом. Одностадийный процесс прямого окисления бутана в уксусную кислоту более прогрессивен по сравнению с многостадийным способом производства уксусной кислоты из ацетилена через ацетальдегид [20]. [c.19]

    В промышленности же часто мирятся с тем, что в реакции получается смесь веществ, и, например, окислением бутана кислородом (в присутствии ацетата кобальта, при 165°, под давлением) получают метилэтилкетон, уксус- 

[c.333]

    Уксусная кислота (см. цветную табл. III) в производственных условиях получается из ацетилена каталитическим окислением уксусного альдегида (стр. 150), а также каталитическим окислением бутана кислородом воздуха  [c.166]

    В промышленности часто является допустимым образование смеси веществ так, например, при окислении бутана кислородом с ацетатом кобальта в качестве катализатора при 165 °С под давлением получают смесь продуктов с примерным соотношением метилэтилкетон уксусная кислота метил- и этилацетаты 1 16 3. Промышленное окисление циклогексана в присутствии ацетата кобальта приводит к смеси циклогексанола и циклогексанона (см. табл. 84). [c.10]

    При изучении кинети ки окисления бутана кислородом в газовой фазе под действием быстрых электронов с энергией 200 кэв С. А. Каменецкой, [c.301]

    Окисление углеводородов нефти. В СССР И. М. Эммануэлем предложен и разработан процесс прямого окисления бутана кислородом воздуха при 145°С и 5 МПа (50 атм) по схеме 

[c.181]

    На никелевом катализаторе температура начала реакции бутана с кислородом резко понижается лишь при 2 ат (с 500 до 380° С). При давлениях 10 и 21 ат,, когда скорость окисления бутана кислородом велика даже без катализатора, применение последнего приводит к понижению температуры начала реакции лишь на 20— 30° С. Скорость протекания реакции бутана с кислородом с увеличением давления резко возрастает [c.119]


chem21.info

Бутан • ru.knowledgr.com

Бутан является органическим соединением с формулой CH, который является алканом с четырьмя атомами углерода. Бутан — газ при комнатной температуре и атмосферном давлении. Термин может отнестись или к двух структурных изомеров, n-бутан‘ или к изобутана (или «methylpropane»), или к смеси этих изомеров. В номенклатуре IUPAC, однако, «бутан» относится только к изомеру

n-бутана (который является изомером со структурой без ветвей). Бутаны — очень легковоспламеняющиеся, бесцветные, легко сжиженные газы. Бутан имени прибывает из корней, но — (от масляной кислоты) и-ane.

Изомеры

Вращение вокруг центральной связи C-C производит два различных conformations (сделка и неловкий) для n-бутана.

Реакции

Когда кислород многочислен, ожоги бутана, чтобы сформировать углекислый газ и водный пар; когда кислород ограничен, углерод (сажа) или угарный газ может также быть сформирован.

Когда есть достаточный кислород:

: 2 ЦЕНТАЛА + 13 O → 8 CO + 10 HO

Когда кислород ограничен:

: 2 ЦЕНТАЛА + 9 O → 8 CO + 10 HO

Максимальная адиабатная температура пламени бутана с воздухом.

n-бутан — сырье для промышленности для каталитического процесса Дюпона для подготовки малеинового ангидрида:

:2 CHCHCHCH + 7 O → 2 ЦЕНТАЛА (CO) O + 8 HO

n-бутан, как все углеводороды, подвергается хлоризации свободного радикала, обеспечивающей и 1-hloro-и 2-chlorobutanes, а также более высоко хлорируемые производные. Относительные ставки хлоризации частично объяснены отличающимися энергиями разобщения связи, 425 и 411 кДж/молекулярные массы для двух типов связей C-H.

Использование

Нормальный бутан может использоваться для смешивания бензина, как топливный газ, или один или в смеси с пропаном, и как сырье для промышленности для изготовления этилена и бутадиена, ключевого компонента синтетической резины. Изобутан прежде всего используется очистительными заводами, чтобы увеличить (увеличивают) октановое число моторного бензина.

Когда смешано с пропаном и другими углеводородами, это может быть упомянуто коммерчески как LPG для сжиженного газа. Это используется в качестве бензинового компонента, в качестве сырья для промышленности для производства основных нефтехимических веществ в паровом взламывании, как топливо для зажигалок и как топливо в аэрозолях, таких как дезодоранты.

Очень чистые формы бутана, особенно изобутана, могут использоваться в качестве хладагентов и в основном заменили истощение озонового слоя halomethanes, например в домашних холодильниках и морозильниках. Системное рабочее давление для бутана ниже, чем для halomethanes, таково как R-12, таким образом, системы R-12 такой как в автомобильных системах кондиционирования воздуха, когда преобразовано в бутан не будут функционировать оптимально.

Бутан также используется так же более легкое топливо для общего легче или факела бутана и продан разлитый в бутылки как топливо для того, чтобы приготовить и расположиться лагерем. В этой форме это часто смешивается с небольшими количествами сероводорода и меркаптанов, которые дадут несожженному газу наступательный запах, легко обнаруженный человеческим носом. Таким образом утечки бутана могут легко быть определены. И сероводород и меркаптаны, в то время как продуманные яды, имеют низкие точки кипения и быстро испаряются если не под давлением. Наиболее коммерчески доступный бутан также содержит определенное количество нефти загрязнителя, которая может быть удалена через фильтрацию, но которая иначе оставит депозит при воспламенении и может в конечном счете заблокировать однородный поток газа.

Переносные утюги волос обычно приводятся в действие патронами бутана.

Эффекты и вопросы здравоохранения

Ингаляция бутана может вызвать эйфорию, сонливость, асфиксию, сердечную аритмию, колебания в кровяном давлении, временной потере памяти и обморожении, и может привести к смерти от удушья и желудочкового приобретения волокнистой структуры. Бутан — обычно неправильно используемое изменчивое вещество в Великобритании и был причиной 52% связанных смертельных случаев растворителя в 2000. Распыляя бутан непосредственно в горло, самолет жидкости может охладиться быстро к расширением, вызывать продлило laryngospasm. «Смерть внезапного наркомана» синдром, сначала описанный Бассом в 1970, является наиболее распространенной единственной причиной связанной смерти растворителя, приводящей к 55% известных фатальных случаев.

Небольшое количество диоксида азота, токсичного газа, следствия горящего газа бутана, наряду с любым сгоранием в атмосфере земли, и представляет опасность здоровья человека от домашних нагревателей и печей.

См. также

  • Изменчивая токсикомания
  • Бутан (страница данных)
  • Сжиженный газ
  • Промышленный газ

|File:The, Зеленый Легче 1 ies.jpg|Butane легче, показывая жидкое водохранилище бутана

|File:Aerosol.png|Butane, распыляемый от аэрозоля, может

Газовый баллон |File:ButaneGasCylinder WhiteBack.jpg|Butane, используемый для приготовления

Внешние ссылки

  • Международная химическая карта безопасности 0232
  • Карманное руководство NIOSH по химическим опасностям

ru.knowledgr.com

стехиометрическое соотношение окислителя к горючему

При проектировании и эксплуатации газопламенного оборудования часто возникает вопрос об определении оптимального соотношения количества горючего и окислителя, обеспечивающего их полное сгорание с выделением максимального количества тепловой энергии.

Рассмотрим методику определения оптимального соотношения количества горючего и окислителя на примере: горючий газ – метан (Ch5), окислитель – кислород (O2).

Реакция окисления (горения) метан/кислород:

CH4+2xO2→CO2+2xh3O (1)

Молярная масса одной молекулы: водорода (Н) – 1 г/моль, углерода (C) составляет 12 г/моль, кислород (O) – 16 г/моль. Тогда, молярная масса молекулы метана (CH4) составляет 16 г/моль, а молярная масса молекулы кислорода (O2) составляет 32 г/моль. Как следует из формулы (1), для полного окисления одной молекулы метана (CH4) требуется две молекулы кислорода (O2).

Введем понятие стехиометрического отношения [1] окислителя к горючему (по массе):

где m – масса газа;
ν — количество вещества, моль [2];
M – молярная масса газа;
индекс «ок» — окислитель;
индекс «гг» – горючий газ.

Количество вещества определяется в молях и характеризует число структурных единиц (ими могут быть атомы или молекулы) определяемого вещества, отнесенного к числу структурных единиц (атомов) в 0,012 кг (12 гр) изотопа углерода C

12. Из этого следует, что в 0,012 кг (12 гр) изотопа углерода C12 содержится один моль количества вещества. Само число структурных единиц, содержащихся в одном моле вещества, называется числом Авогадро и равно NA = 6,023×1023 моль-1 = 6,023×1026 кмоль-1 [2].

В таком случае количество вещества определяется соотношением:

где N — число структурных единиц (молекул) веществ, участвующих в реакции окисления.

Как указывалось выше, в одном моле любого вещества содержится NA число структурных единиц, при этом у каждого вещества структурная единица обладает своей массой (масса атома, масса молекулы). Следовательно, массой обладает и один моль вещества, эта масса называется молярной массой. В таком случае, если вещество (в частности газ) имеет массу

m, а число структурных единиц этого вещества таково, что количества вещества составляет ν, то:

Тогда, в частном случае, при сгорании метана в кислороде, можно записать:

индекс «O2» — кислород;
индекс «CH4» – метан.

На практике измерять массу газа неудобно и используется измерение объемов газа. Для того, что бы определить потребный объем кислорода для полного сгорания 1 м3 метана, запишем уравнение состояния [2] для каждого из газов:

где p – давление газа;
V – объем газа;
R – универсальная газовая постоянная;
T – температура газа.

Следует заметить, что в момент реакции давление и температура газов будут одинаковыми.

Решим соотношения (5а) и (5б) относительно объемов соответствующих газов и определим стехиометрическое отношение кислорода к метану (по объему):

Т.к. стехиометрическое соотношение кислорода к метану для полного сгорания определено в (4), то определим следующие значения для соотношения (6):

В таком случае отношение объема кислорода к объему метана равно 2, т.е. для сжигания 1 м3 метана потребуется 2 м3 кислорода.

Соотношение (6) можно записать более универсально:

Очень часто в газопламенном оборудовании в качестве окислителя используется воздух, а именно содержащийся в воздухе кислород. По данным, приведенным в [1], процентное содержание кислорода в воздухе (по массе) составляет 23,2%. Запишем соотношение:

где индекс «вз» — воздух;
Если в соотношение (8) числитель (масса кислорода) и знаменатель (масса воздуха) помножить на массу горючего газа, который необходимо сжечь (окислить), то можно перейти к стехиометрическим соотношениям (по массе):

Для исследования процесса горения метана в воздухе необходимо в соотношение (9б) подставить значение

тогда получим

т.е. для полного сжигания 1 кг метана требуется 17,24 кг воздуха.

Для определения объема воздуха, необходимого для сжигания 1м3 метана, воспользуемся соотношением (7):

где МВЗ = 29 г/моль [1].

В общем виде соотношение (10а) примет вид:

Подставив значения в соотношение (10б), получим, что для сжигания 1 м3 метана потребуется
9,512 м3 воздуха.

Так же в качестве горючих газов часто используются пропан (C3H8) и бутан (C4H10).

Реакция окисления (горения) пропан/кислород и бутан/кислород:

C3H8 + 5xO2 → 3xCO2 + 4xH2O (11)

2xC4H10 + 13xO2 → 8xCO2+10xH2O (12)

Молярные массы: пропана – MC3H8 = 44 г/моль; бутана – MC4H10 = 58 г/моль.
Используя выводы, сделанные для реакции окисления метана и кислорода, получаем, что требуемая масса кислорода (O2) для сжигания 1 кг пропана (C3H8) – 3,636 кг кислорода (O2), а для сжигания 1 кг бутана (C4H10) – 3,586 кг кислорода (O2).

Тогда можем записать:

Учитывая соотношение (9б), определяем, что

т.е. для сжигания 1 кг пропана необходимо 15,672 кг воздуха, а для сжигания 1 кг бутана – 15,457 кг воздуха.

Используя соотношение (7) или (10б), определяем объем кислорода (O2) и воздуха, которые соответственно необходимы для сжигания 1 м3 пропана и 1 м

3 бутана, что показано в таблице 1.

Таблица 1. Расход окислителя на 1 кг (1 м3) горючего газа

Окислитель | Горючий газ Метан (CH4) Пропан (C3H8) Бутан (C4H10)
Кислород (O2) 4 кг (2 м3) 3,636 кг (5 м3) 3,586 кг (6,5 м3)
Воздух 17,24 кг (9,512 м3) 15,672 кг (23,779 м3) 15,457 кг (30,914 м3)

Пропан (C3H8) и бутан (C4H10) чаще всего используются не по отдельности, а как смесь горючих газов. Поэтому требуемое количество окислителя для полного сгорания пропанобутановой смеси будет зависеть от процентного соотношения каждого из компонентов.

Пусть γ — доля (по массе) содержания пропана в смеси, а β — доля (по массе) содержания бутана в смеси. γ и β подчинены следующему соотношению:

γ + β=1 (13)

Т.к. пропан и бутан не вступают в химические реакции, то стехиометрическое отношение для каждого из газов не будет меняться, а стехиометрическое отношение для пропанобутановой смеси в зависимости от окислителя будет определяться соотношением:

индекс «C3H8 – C4H10» – пропанобутановая смесь.
Значения стехиометрических соотношений в зависимости от процентного содержания пропана и бутана в смеси представлены в таблице 2.

Таблица 2. Стехиометрические отношения (по массе) для пропанобутановых смесей

Окислитель | Пропанобутановая смесь γ = 0,7; β = 0,3 γ = 0,6; β = 0,4 γ = 0,5; β = 0,5
Кислород (O2) 3,621 3,616 3,611
Воздух 15,607 15,586 15,565

Для того, чтобы определить отношение объема окислителя к объему пропанобутановой смеси, обеспечивающее полное сгорание, согласно соотношению (7) необходимо определить молярную массу пропанобутановой смеси — MC3H8-C4H10.
Для этого воспользуемся законом Дальтона [1]:

Надо учитывать, что в законе Дальтона как температура каждого из газов и их смеси, так и объем, занимаемый как отдельным газом, так и их смесью, одинаковы.

Выразив давление для пропана, бутана, а так же их смеси через уравнение состояния, аналогично (5а) и (5б), можем перейти к следующему соотношению:

Учитывая, что

соотношение (16) можно переписать:

Значения молярных масс пропанобутановых смесей для наиболее используемых соотношений γ и β, приведены в таблице 3.

Таблица 3. Молярные массы пропанобутановых смесей

Молярная масса | Пропанобутановая смесь γ = 0,7; β = 0,3 γ = 0,6; β = 0,4 γ = 0,5; β = 0,5
MC3H8-C4H10 47,435 48,702 50,039

Тогда в соответствии с соотношением (7) или (10б) можно рассчитать стехиометрические соотношения (по объему) для различных пропанобутановых смесей, что и приведено в таблице 4.

Таблица 4. Стехиометрические отношения (по объему) для пропанобутановых смесей

Окислитель | Пропанобутановая смесь γ = 0,7; β = 0,3 γ = 0,6; β = 0,4 γ = 0,5; β = 0,5
Кислород (O2) 5,368 5,503 5,647
Воздух 25,529 26,175 26,857

Следует заметить, что полученные значения расхода окислителя (как по массе, так и по объему) на единицу горючего газа, следует увеличить на 2-5%, т.к. в воздухе и техническом кислороде присутствуют другие компоненты, которые под действием высоких температур горения сами вступают в реакцию окисления и тем самым снижают долю окислителя, приходящуюся на горючий газ.

Так же согласно [1] и [2] закон Дальтона и уравнение состояния соблюдаются в диапазоне низких давлений. Тем не менее, большинство газопламенного оборудования используется при давлениях
до 5 МПа, что позволяет применять как полученные соотношения, так и приведенные значения.

Газопламенное оборудование, спроектированное ООО «Машпроект» (сайт: машпроект.рф
E-mail:  Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ), обеспечивает оптимальное сгорание горючих газов, как в кислороде, так и в воздухе. Поэтому наша продукция обладает высокой топливной эффективностью и, как следствие, низкими эксплуатационными затратами.

СПИСОК ЛИТЕРАТУРЫ

1. Глинка Н.Л. Общая химия – Л.: Химия, 1979. – 720 с.

2. Савельев И.В. Общий курс физики. Т. 1 – М.: Наука, 1977 – 416 с.

xn--80akpflfht2c.xn--p1ai

Бутан горение — Справочник химика 21

    Газообразные пропан и бутан, бензины и керосины-все это алканы, ценность которых определяется их способностью к горению. [c.287]

    Примерами практического применения рассмотренных характеристик горения являются номограммы для определения потерь тепла с дымовыми газами котлов или печей и коэффициента полезного действия (эффективности сжигания топлива), построенные для пропана и бутана (рис. 9). Как пользоваться ими, рассмотрим на примере отапливаемой бутаном печи. Анализ и измерения показали, что содержание СО2 в сухих дымовых газах равно 11 %, а их температура на выходе — 400 °С. Проведем горизонтальную линию (рис. 9,6), начиная от точки на левой оси, соответствующей 11 % СО2, до пересечения с пунктирной кривой изменения СО2 в продуктах сгорания. Опустив из точки пересе- [c.58]


    Не менее сложная проблема — непостоянство состава СНГ. Содержание пропана и бутана меняется в широких пределах. Все это влияет на характеристики горения, размеры пламени и его стабильность, а также на тепловую мощность горелок, особенно при использовании широко распространенных в бытовых и коммунальных приборах и печах горелок типа Бунзена. При переводе горелок с чистого пропана на бутан для обеспечения количественного и качественного смешения с первичным воздухом необходимо повышение давления бутана. Если не требуется менять тепловую мощность, давление бутана надо снижать. [c.196]

    В работе [18] рассмотрено два способа нагрева кокса сжигание части нагреваемого кокса сжигание подаваемых извне водорода н углеводородных газов (метан, этан, пропан, бутан). В процессе обессеривания кокса при 1500°С, как нами ранее показано, будет происходить полное восстановление активных составляющих (Н2О, СО2) продуктов сгорания топлива по реакциям (2) и (3). На основе этих реакций, а также их тепловых эффектов рассчитаны удельная энтальпия продуктов сгорания, удельный теоретический угар кокса от вторичных реакций, удельная теплота сгорания и калориметрическая температура горения ( иап) рассматриваемых топлив. [c.234]

    По молекулярной массе и концентрационным пределам воспламенения пары стабилизированных нефтей имеют вполне устойчивые характеристики, занимая промежуточное положение между пропаном и бутаном. При выполнении расчетов, в которых необходимо знать стехиометрическую концентрацию нефтяных паров в воздухе по уравнению реакции горения, нефтяные пары можно приравнять к пропану, химическую формулу которого использовать для расчета характеристик стехиометрической горючей смеси. [c.19]

    Чтобы показать сходство между пламенами предварительно приготовленных смесей и диффузионными пламенами, следует обратиться сначала к рис. 35, где показаны пределы срыва для пламени смесей бутан — воздух с содержанием бутана от 2 до 28% (под отрывом пламени подразумевается отдаление его от сопла с установлением на некотором расстоянии по направлению потока). Смесь, содержащая 28% бутана, выходит далеко за пределы воспламеняемости, и поэтому ее горение можно рассматривать как диффузионное. В качестве характеристического параметра принят градиент скорости на границе пламени этот параметр позволяет установить достаточно четкую корреляцию данных для одного и того же топлива при неизменном давлении в камере сгорания (в данном случае давление окружающей среды). Если принять за основу градиент скорости, фактически существующий на выходе из сопла, вблизи которого находится пламя, то показатели для ламинарного и турбулентного режимов потока укладываются в данном случае на одной линии. Наряду со сходством пламени предварительно приготовленной смеси и диффузионного пламени между ними существуют и различия. Как видно из рис. 35, отрыв турбулентных диффузионных пламен может происходить на пределе стабильности пламени, после чего пламя стабилизируется в зоне сгорания на некотором расстоянии от сопла. Именно такого типа пламена обычно применяются в промышленной практике. Для срыва этого пламени требуется большое дополнительное увеличение скорости. [c.326]

    Сжигание-процесс горения исходных горючих материалов для получения новых продуктов или освобождения хим. энергии. В П. сжигают сероводород, серу, фосфор, ацетилен, уголь, мазут, пропан, бутан, прир. газ и др. [c.505]

    Горючим может служить любой газ с высокой температурой горения наиболее часто используются ацетилен, пропан, бутан, водород, природный или каменноугольный газ. Сжигая эти газы в воздухе или кислороде, получают пламя с температурой от 1700 до 3200 °С. Более высокие температуры достигаются при сжигании циана. Чем выше температура пламени, тем больше число возбужденных элементов. Кроме того, повышение температуры приводит к повышению чувствительности анализа. Вид используемого пламени в некоторой степени зависит от устройства горелки. [c.85]

    Сжатые, сжиженные и растворенные газы. Горючие и взрывоопасные газы—ацетилен, водород, пропан, бутан следует хранить отдельно от газов, поддерживающих горение — кислорода, воздуха, хлора. Допускается совместное хранение горючих газов с инертными и негорючими газами — аргоном, гелием, азотом, диоксидом углерода и т. п. [c.15]

    Антропогенные источники поступления в окружающую среду. Газовые и нефтяные скважины, каменноугольные шахты. На нефтехимических производствах Э. (наряду с метаном, пропаном, бутаном, изобутаном и пентаном) выделяется во внешнюю среду при термической и каталитической переработке нефти и ее пиролизе. Выделяется также из бензинов, синтетических масел и смол и ряда других полимерных материалов. В небольших количествах Э. (вместе с другими алканами) обнаруживается в составе продуктов горения некоторых синтетических материалов ( Вредное воздействие. .. ). [c.23]

    В практике атомно-абсорбционного анализа основным видом поглощающей ячейки являются различного рода газовые пламена. Для этого используются горючие газы светильный, пропан, бутан, ацетилен, водород и др. Окислители при горении — кислород, который поступает в чистом виде или как составная часть атмосферного воздуха, закись азота и некоторые другие газы. [c.244]

    В последнее время для электромонтажных работ (пайка, сварка) широко применяется газ пропан-бутан. Основным его преимуществом является возможность производства ряда паяльных работ без сжатого воздуха. При этом используются горелки, к которым подводится только пропан-бутан, а кислород, необходимый для горения пропан-бутана, поступает в горелку из воздуха. При использовании малых баллонов редуктор не требуется. Получается простая компактная установка. На рис. 4-15 показано переносное устройство для пайки пропан-бутаном, оно содержит два баллона пропан- [c.111]

    Для обеспечения устойчивого горения газов необходимо, чтобы они первоначально зажигались в горелках при помощи газа, имеющего высокую теплотворную способность, например природного газа, который подводят к горелкам по самостоятельной трубе. Если к сажевому заводу нет подводки природного газа, то при розжиге свечи к этому трубопроводу присоединяют баллон с сжиженным пропаном или бутаном. [c.240]

    Из табл. 1 видно также, что применение инертного разбавителя — азота позволяет снизить избыток хлора до минимума (мольное соотношение хлор н-бутан 8,8 1), процесс протекает при этом стабильно без горения. [c.63]

    Для оплавления покрытий с помощью горелок большое значение имеет мощность пламени. Целесообразно применять большую мощность пламени, при которой металл быстро прогревается только на небольшую глубину. В той или иной мере это достигается надлежащей конструкцией горелок, выбором оптимального соотношения- высококалорийных горючих газов с кислородом и другими мероприятиями. Наиболее часто применяют ацетилен, пропан, бутан, метан, природный газ и так называемый городской газ, при горении которых температура пламени доходит до 2000—3150 °С. В общем же, газовые горелки хорошо зарекомендовали себя как средство пламенной поверхностной закалки деталей машин, но они мало пригодны для оплавления покрытий. Металлические детали, в особенности массивные, трудно нагреть этим методом до достаточно высокой температуры вследствие теплоотдачи, а керамические изделия растрескиваются. [c.68]

    Для создания пламени используют различные конструкции горелок, потребляющие в качестве горючих веществ ацетилен, пропан, бутан, коксовый или генераторный газ, а для поддержания горения — кислород. [c.197]

    В полномасштабной камере сгорания оказалось вообще невозможным исследовать срыв пламени при богатой смеси вследствие опасности перегрева, и поэтому внимание исследователей было сосредоточено на изучении срыва пламени при бедных смесях, т. е. на правой части AB ) кривой рис. 7. Такая кривая, показывающая непрерывное расширение предела стабильности при бедных смесях по мере уменьшения расхода воздуха, получается при газообразном топливе, например таком, как бутан илч испаренный керосин. Но при работе на распыленном топливе кривая загибается книзу, как показано на рис. 7, и идет приблизительно по линии постоянного расхода топлива В С. Повидимому, на участке АВ скорость воздуха, расход топлива и давление достаточно высоки, чтобы получить довольно хорошее распыливание. Однако по мере приближения к точке В расход топлива, при котором происходит срыв пламени, становится все меньше, пока, наконец, не будет достигнут расход, ниже которого распыливание слишком плохо, чтобы могло продолжаться горение. При таком положении кривая предела устойчивости сгорания пойдет приблизительно по линии постоянного расхода топлива В С.  [c.108]

    В промышленности сжиженные газы применяются для термической обработки металлов, для резки черных металлов, плавления, сварки и пайки цветных металлов, при обработке стекла и фарфора, в специальной аппаратуре для металлопокрытий, поверхностной закалки, сушки и др. Пропан и бутан редко используются для сварки черных металлов ввиду низкой теоретической температуры их горения. [c.6]

    Все, что обеспечивает более быстрое и полное взаимодействие воздуха с топливом, ведет к уменьшению дымообразования. К этому выводу приводит изучение образования и уничтожения копоти в пламени бунзеновской горелки [104], в которой мелко дисперсная копоть лучше сгорает. Дополнительная подача воздуха мало действует на маленькое пламя и оказывает значительное влияние на сильное. Бутан при горении дает большое коптящее нламя, если поток газов струйный, но нужное пламя может быть получено нри увеличении аэрации, достигаемой при подаче газов в турбулентном потоке. [c.482]

    Смесь газообразного парафинового углеводорода с кислородом и НВг, обычно в отношении 2 2 1, реагирует в паровой фазе при 180—200° в течение примерно 3 минут. Присутствие НВг уменьшает тенденцию к горению и крекингу углеродного скелета. Этан в этих условиях дает уксусную кислоту, пропанацетон ц некоторое количество пропионовой кислоты, н-бутан дает метилэтилкетон, диацетил и изобутан соответственно — гидроперекись третичного бутила и третичный бутиловый спирт. Выход кислородсодержащих продуктов — 50—80% на прореагировавший углеводород. После образования кетонов НВг немедленно удаляют из газов поглощением щелочью или олефинами. [c.465]

    Решение. Природный газ содержит четыре горючих компонента метан СН4, этан СаН , пропан СзН и бутан С4Н9. Записываем уравнения реакций горения газов  [c.159]

    Продукты разложения парафина С26Н54 при горении имеют целый ряд углеводородов при атом содержание этилена — наибольшее. Интересно отметить, что, по данным Маршетца (1938 г.), при термическом разложении октана (при 571 °С и 0,1 МПа) образуются те же газообразные продукты (кроме бутадиена, вместо которого, в нез начительных количествах обнаружен бутан), причем максимальное содержание приходится тоже на долю этилена. [c.115]

    Паттон и Тоней анализировали сигаретный дым на колонке длиной 1,3 м, наполненной силикагелем, при 25 °С, при этом были выделены этан, этилен, пропан, ацетилен, изобутан, бутан и пропилен. Дести и Уайтам определили состав углеводородов в изооктане и изучали процесс горения топлива в двигататях внутреннего сгорания . Гильд с сотрудниками анализировали топливо для двигателей на колонке длиной 2 м, наполненной апие-зоном (30%) на фиребрике С-22. Температуру колонки поднимали от 40 до 125 °С. Всего было найдено 40 компонентов, которые выходили в течение I ч. [c.129]

    Наиболее хорошо разработана технология микрокапсулирования неполярных органич. растворителей, углеводородных топлив и ма-с е л. Микрокапсулированный бензин в виде брикетов может храниться в открытых местах, не требует тары для перевозки, свободно плавает на воде без растекания и допускает сбрасывание с парашютом в труднодоступные районы. Его горение протекает без взрыва и прекращается при использовании обычных средств пожаротушения. Кроме бензина, получают микрокапсулированные бутан, лигроин,керосин, дизельное топливо, смазочные материалы, алифатич., ароматич. и алици-клич. углеводороды, к-рые превращают таким образом в сыпучие нелетучие продукты. Осуществляют также М. катализаторов и инициаторов полимеризации (триэтилентетрамин, ди ти-лентриамин, эфират трехфтористого бора, диэтилани-лин, перекись бензоила), синтетич. олигомеров и полимеров (полиэфиров, полиамидов, эпоксидных смол) и др. М, применяют для временного изолирования гидридов легких металлов (Ве, Li, Mg) от высокореакционноспособных компонентов твердых топлив. [c.126]

    Горючие газы. Горючие и поддерживающие горение сжатые и сжиженные газы (ацетилен, водород, кислород, бутан и др.) получают и хранят в баллонах. Работа с газами, находящимися в баллонах, требует большой осторожности, внимания и строгого соблюдения установленных правил обращения с ними. При нарушении этих правил и инструкций может произойти взрыв баллона с тяжелыми для работающего последствиями. Неопытным работникам, приступающим к работе с горючими газами, находящимися в баллонах под большим давлением, необходимо тщательно однакомиться с правилами о порядке работы с данным газом. [c.118]

    Итак, изменение температуры дегидрирования в пределах 550—590° С и объемной скорости в пределах 500—1000 мало влияет на количество удаляемого кислорода. Однако это не означает, что в данных условиях скорость горения углеводородов и водорода за счет избыточного кислорода не зависит от температуры. Дело в том, что в опытах наблюдается не скорость образования СО, СОг и НгО, а скорость их выделения, которая определяется, как это было установлено, скоростью десорбции этих веществ из катализатора. Для подтверждения этого факта проведены опыты, в которых в течение первых 4 мин катализатор продувался водородом (570° С, объемная скорость 1000 ч» ), а затем 8 мин пода-вался бутан при тех же условиях. После продувки катализатора водородом в продуктах окисления содержится кислорода в 2 раза, а воды — в 3 раза больше, чем в соответствующих опытах без продувки водородом, причем водородом уносится (десорбируется) лишь около 15—20% от количества воды, выделяющейся затем при дегидрировании. Следовательно, скорость взаимодействия водорода с избыточным кислородом больше скорости взаимодействия углеводородов, однако скорость десорбции воды водородом во много раз меньше, чем бутаном или бутиленом. Влажность контактного газа в этих опытах составляла  [c.47]

    Скорость окисления бутадиена с образованием кислородсодержащих продуктов на этом катализаторе равна примерно скорости окисления С4Н8-1 скорость реакции Н-С4Н8 СОд равна также примерно /2o скорости горения бутадиена. Установлено, что бутан совершенно инертен при условиях окислительного дегидрирования лишь небольшая часть его превращается в СО2 + СО. [c.210]

    Измерение поглощения в инфракрасной области спектра широко применяется вместо химических анализов для определения газов и паров. Определение содержания окиси и двуокиси углерода, аммиака, двуокиси серы, метана и других углеводородов, а также водяного пара с успехом может быть произведено при помощи инфракрасного спектрофотометра, так как эти газы и водяной пар имеют полосы поглощения преимущественно в инфракрасной области спектра. О быстроте действия прибора можно судить но двум опубликованным работам [56, 57], в которых определили изменение концентрации двуокиси углерода при времени реакции порядка 0,15 секунд. Инфракрасный спектрофотометр дает возможность анализировать и некоторые бинарные газовые смеси. Так, были определены окись и двуокись углерода в газообразных продуктах горения сложного состава с точностью до 0,2%, н-бутан и изобутан с точностью до 0,5% и т. п. Анализ многокомпонентных систем с помощью инфракрасного спектрофотометра представляет ббльшие трудности, так как полосы поглощения отдельных газообразных веществ, наклады-ваясь друг на друга, затрудняют выбор полос, принадлежащих определенному, интересующему нас компоненту. [c.250]

    Следующим по опасности за ацетиленом идет водород, у которого также широкая область воспламенения (4—75% ), высокая теплота горения (119 840 кДж/кг) и низкая минимальная энергия зажигания (0,017 МДж). Другие горючие газы (метан, бутан, этан, пропан, этилен и т. п.) также представляют значительную пожаро-и взрывоопасность, так как их Снпв, Тсв и Ргор соответственно находятся в пределах 1,8—5%, 335—540°С и 45 560—48 070 кДж/кг, Некоторые негорючие газы (кислород, хлор, фтор, сжатый воздух, окись азота) являются сильными окислителями, поддерживающими [c.281]

    Эффективных средств устранения собственного поглощения пламени пока не предложено. Отдельными авторами рекомендуется добавка органических растворителей, например кетонов при определении висмута [125] несколько ослабляется ОН-поглощение при горении в воздухе смеси обычных углеводородов (метан, пропан, бутан), однако при этом возникают полосы молекулы Сг и СН. Существование собственного поглощения пламени, естественно, снижает селективность атомно-абсорбционного анализа по ряду элементов и в целом вопрос о выборе наиболее подходящего пламе-нп для целей атомной абсорбции остается открытым. В заключение следует отметить, что непламенные средства атоми-зации в этом отношении более выгодны. При получении пара элементов в разрядных трубках с полым катодом (при эффективно действующей системе очистки инертного газа) полость катода практически полностью свободна от молекул. [c.31]

    Представляют интерес данные по составу газа термоокислительного пиролиза бутана в зависимости от глубины реакции (рис. 6). Несмотря на значительные различия в механизмах реакций неполного горения бутана и метана, и в это М случае характер накопления продуктов реакции во многом подобен наблюдаемому при термоокислительном пиролизе метана. Интервал исследованной глубины реакции 0,39—0,87. До глубины реакции 0,75 почти полностью расходуется бутан и в значительной степени кислород. Накопление этилена и пропилена про.ходит через макси.мумы. Количество метана непрерывно увеличивается и к моменту почти полного исчезновения бутана достигает 0,22 моля на 1 моль исходной смеси. Происходит небольшое накопление С2Н2 и СО2. [c.23]

    В сухую пробирку с отводной трубкой (рис. 28) помещают несколько миллилитров йодистого этила 2H5J и свеженарезанные тонкие листочки высушенного фильтровальной бумагой металлического натрия. Для ускорения реакции добавляют 2—3 капли ацетонитрила. Смесь нагревают в пламени спиртовки. Когда реакция начнётся, прекращают нагревание и, по вытеснении воздуха из прибора, собирают бутан в пробирку по способу вытеснения воды. Демонстрируют горение бутана. [c.76]

    В пробирку с отводной трубкой. наливают немного бромистого этила СгНвВг и помещают свеженарезанные листочки натрия. Пробирку закрывают пробкой и нагревают слегка на спиртовке. Реакция идёт довольно медленно, однако через некоторое время в пробирке над водой удаётся собрать бутан и наблюдать затем его горение. [c.76]


chem21.info

Основные свойства газов, применяемых при газосварочных работах

Специфика газовой сварки, резки и наплавки металлов и их сплавов предъявляет особые, дополнительные (повышенные) требования по технике безопасности, к безопасной организации рабочих мест, обслуживанию газовой аппаратуры и оборудования, а также к методам организации безопасного проведения работ.

Горючие газы, смешиваясь с воздухом или кислородом, образуют взрывоопасные смеси, которые способны взрываться от искры любого происхождения, ацетилен взрывоопасен даже при отсутствии кислорода или воздуха, так как с повышением температуры и давления он может распадаться на углерод и водород с выделением большого количества тепла. К тому же медью и серебром ацетилен образует взрывчатые соединения, которые взрываются от малейших ударов или нагревания. Не меньшая опасность возникает пи получении ацетилена в генераторах, а также при хранении и вскрытии барабанов с карбидом кальция.

Кислород, находящийся в баллоне под давлением, обладает высокой химической активностью, особенно при соприкосновении с минеральными маслами, а также жирами растительного и животного происхождения.

Во время газовой сварки и резки металлов и их сплавов в воздух рабочей зоны попадают вредные для здоровья газы, пары, пыль и окислы металлов. Поэтому строгое и неуклонное соблюдение всех правил техники безопасности и производственной санитарии, ясное представление о причинах, могущих вызвать ту или иную опасность, а также знание необходимых мер и способов ее предупреждения гарантирует безопасное выполнение проводимых работ и сохранение здоровья сварщиков.

Основные свойства газов, применяемых при газосварочных работах

Каждый газосварщик (газорезчик), их подручные, также лица, занятые хранением и перевозкой баллонов с газом, должны хорошо знать основные свойства газов, с которыми им приходится работать.

Кислород (О2) – бесцветный газ, не имеющий запаха, тяжелее воздуха (вес 1 м3 кислорода при 0°С = 1,429 кг, вес 1м3 воздуха = 1,293 кг). Для газосварочных работ кислород получают из атмосферного воздуха (в атмосферном воздухе содержится около 28% кислорода) путем его глубокого охлаждения с последующим отделением азота или путем электролиза воды.

Такой способ получения кислорода из воздуха наиболее распространен, так как в этом случае можно получить практически любое количество кислорода требуемой чистоты при наименьшей затрате энергии. При температуре – 183 0С и давлении 760 мм рт. ст. кислород превращается в легко подвижную голубоватую жидкость, причем из одного литра жидкого кислорода образуется около 860 литров газообразного.

Кислород не горит, а поддерживает горение, энергично вступая в химическое соединение почти со всеми веществами. Соприкосновение кислорода, находящегося под высоким давлением, с маслами, жирами, угольной пылью, ворсинками ткани и т.д. приводит их к мгновенному окислению, воспламенению и взрыву при обычных температурах, хотя температура воспламенения этих продуктов значительно высокая (200 – 450 0С).

Пористые органические вещества (уголь, торф, сажа, шерсть, ткани), пропитанные жидким кислородом, могут взрываться от искры, пламени и других источников тепловых импульсов. Поэтому при пользовании сжатым или сжиженным кислородом необходимо внимательно следить за тем, чтобы он не соприкасался с легковоспламеняющимися и горючими веществами, в том числе маслами и жирами минерального, растительного или животного происхождения.

Кислород хранят и транспортируют в специальных стальных баллонах или цистернах со специальной тепловой изоляцией.

При газовой сварке, наплавке и резке металлов и их сплавов в качестве горючего применяют различные горючие газы: ацетилен, водород, естественные и нефтяные газы, пары жидких нефтепродуктов (бензин, керосин) и другие. Сгорая в кислороде, эти газы развивают достаточно высокую температуру пламени (ацетилен до 3200, водород до 2100, пропан до 2000, бутан до 2100, пары бензина до 2400 и пары керосина до 2100 0С). Наиболее высокая температура пламени наблюдается при сгорании в кислороде ацетилена. Пламя ацетилена способно практически расплавить все существующие тугоплавкие металлы и их сплавы. Другие же газы с более низкой температурой пламени применяют как заменители ацетилена.

Ацетилен (С2Н2) является химическим соединением углерода и водорода, представляет собой бесцветный газ, легче воздуха, со слабым эфирным запахом. Технический ацетилен, применяемый для газовой сварки и резки металлов, из-за присутствующих в нем некоторых примесей отличается резким неприятным запахом. При сгорании ацетилена в кислороде температура пламени достигает 32000. Ацетилен взрывоопасен в смеси с воздухом, если в ней содержится от 2,8 до 80% ацетилена по объему и в смеси с кислородом, если ацетилен содержится от 2,8 до 93% по объему.

Указанные смеси могут взрываться от искры открытого пламени или сильного нагрева.

При нагревании до 450 – 5000 и одновременном повышении давления до 1,5 – 2 атм ацетилен взрывается, образуя взрывную волну, имеющую давление в 10 – 11 раз больше первоначального абсолютного давления ацетилена.

Взрывчатость ацетилена сильно понижается при размещении его в тонких (капилярных) сосудах. Это свойство ацетилена используется при наполнении ацетиленом баллонов под давлением. Ацетилен легче кислорода и воздуха. Плотность ацетилена по отношению к воздуху составляет 0,9, а по отношению к кислороду – 0,8. При длительном соприкосновении ацетилена с красной медью и серебром образуется ацетиленовая медь или ацетиленистое серебро, которые при нагревании до 110 – 1200 и при сильном ударе взрываются. Поэтому для изготовления ацетиленовой аппаратуры эти металлы не применяются.

При нагревании ацетилена до 300 0С может происходить его полимеризация, которая заключается в том, что молекулы ацетилена уплотняются и он превращается в бензол и другие продукты. Полимеризация, протекающая при недостаточном отводе тепла, может привести к взрыву ацетилена и разрушению ацетиленовых генераторов. Чтобы предотвратить возможность полимеризации и взрывчатого распада, ацетилена, температура в ацетиленовых генераторах не должна превышать 100 0С.

Очень важное свойство ацетилена – его способность растворяться во многих жидкостях: ацетоне, бензоле, бензине и др. Лучшим растворителем ацетилена является ацетон: при температуре +10 0С в одном литре ацетона растворяется 26 л ацетилена. Степень растворимости ацетилена в ацетоне в значительной мере зависит от температуры окружающей среды. С повышением температуры окружающей среды растворимость ацетилена в ацетоне уменьшается.

К природным газам относятся все горючие газы, которые добываются из недр земли или сопутствуют нефти при добыче ее из нефтяных месторождений. Последние называются попутными.

Природный газ в основном состоит из метана (СН4), содержание которого составляет от 85 до 98%. Остальные 15 – 20% составляют азот, этан, пропан, сероводород и т.д. Природный газ легкий (удельный вес по воздуху 0,55 – 0,73), бесцветный, не имеет запаха (и тем он опасен), не ядовит, но является удушающим газом. Для придания газу характерного резкого неприятного запаха к нему добавляется одорант (на 1000 м3 газа 16 г).

Природный газ также опасен и тем, что при неполном сгорании выделяет окись углерода (СО) – угарный газ – бесцветный и очень ядовитый.

При содержании в воздухе 0,5% угарного газа через 20 – 30 мин у человека наступает смерть, 1% газа после нескольких вздохов приводит к потере сознания, а через 1 – 2 мин – к смерти.

За последние годы в практике газопламенной обработки металлов, в частности для газовой резки металлов, широкое применение получил природный газ.

Пределы взрываемости смеси природного газа с воздухом значительно ниже пределов взрываемости ацетилено-воздушных смесей. Эти пределы составляют от 3,8 до 17% объемных.

Сжиженные газы, пропан-бутановые смеси получаются в процессе сжижения их для удобства хранения и транспортировки. Сжиженными газами принято называть смеси углеводородов – пропана (С3Н8), бутана (С4Н10) в количестве от 5 до 30%. Их также называют техническим пропаном (ГОСТ 10196-62), а иногда сжиженными нефтяными газами. При обычных условиях эта смесь представляет газ, а при температурах ниже +20 0С или давлениях выше атмосферного смесь газов конденсируется, переходя в жидкое состояние.

В последнее время, особенно для газовой резки металлов и их сплавов, широкое применение получили сжиженные газы – пропан и бутан, а также их смеси. При обычной температуре и небольшом давлении пропан-бутановые смеси легко переходят из газообразного состояния в жидкое.

Сжиженные газы тяжелее воздуха (удельный вес пропана по воздуху 1,253, бутана – 2,007), они могут скапливаться в низких местах – траншеях, колодцах, ямах и других углублениях, образуя с воздухом пропан-бутановые взрывоопасные смеси, которые могут взрываться от любого источника теплового импульса – искры открытого пламени и т.д. Поэтому перед началом огневых работ необходимо убедиться в отсутствии взрывоопасных смесей.

Положительные свойства пропан-бутановых смесей – небольшие пределы взрываемости. Так, например, пределы взрываемости пропана в смеси с воздухом составляют от 2 до 305% объемных частей пропана. Это в несколько раз ниже пределов взрываемости ацетилена с воздухом. Пропан, бутан и их смеси хранят и транспортируют к месту потребления в специальных баллонах или цистернах под давлением 16 кгс/см2. при таком давлении пропан-бутановые смеси находятся в жидком состоянии. Емкости обычно заполняют не более чем на половину их объема, так как при расширении сжиженного газа при нагревании баллона в нем может резко повыситься давление и вызвать взрыв баллона или цистерны. Поэтому заполненные пропан — бутановой смесью баллоны и цистерны предохраняют от нагревания и ударов.

Пары бензина и керосина применяются при газовой сварке, наплавке и резке металлов в качестве горючего.

Бензин – это прозрачная легкоподвижная жидкость со специфическим запахом, состоящая из углеводородов, выкипающих из нефти при температуре от 35 до 250 о. бензин очень летуч, испаряется при любой температуре, однако с повышением температуры скорость испарения возрастает. Пары бензина, смешиваясь с воздухом, образуют паро-воздушные взрывчатые смеси.

Взрываемость паро-воздушных смесей бензина ниже взрываемости ацетилено-воздушных (в пределах 0,65 до 8,5% объемных паров бензина). Кроме того, пары бензина, попадая в организм человека, могут вызвать острые хронические отравления. Бензин (керосин) транспортируют к месту потребления в металлической закрытой таре.


ohrana-bgd.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *