Биолуб lvl ту – Смазывающая добавка «БИОЛУБ LVL». Купить смазывающую добавку «БИОЛУБ LVL». Продажа смазывающей добавки «БИОЛУБ LVL» в Москве, Санкт-Петербурге, Украине, Белоруссии, Казахстане. Цена. Объявление.

Смазочная добавка для буровых растворов биолуб lvl

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к смазочным добавкам для буровых растворов. Технический результат изобретения - повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах. Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты: сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%: указанные кислоты и сульфированный рыбий жир 70-90,9, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин 1-8, оксаль 5-25, указанные спирт, полиэтиленгликоль, полипропиленгликоль 1-24. 2 табл.

Изобретение относится к области бурения нефтяных и газовых скважин, в частности, к смазочным добавкам для буровых растворов.

Известно применение в качестве смазочных добавок к глинистым буровым растворам композиций природных жирных кислот и олигомерных полиэфиров, выступающих в роли эмульгаторов маслорастворимой фазы. [Смазочная добавка к буровым растворам. Патент РФ 2163615, опубл. 27.02.2001]. Кроме того, существуют смазочные составы, в которых эмульгирующий эффект обеспечиваетется присутствием щелочных нейтрализующих агентов [Смазочная добавка к буровым растворам. Патент РФ 2163616, опубл. 27.02.2001]. В таких композициях смазочный эффект обеспечивается совместным действием природных жирных кислот, их солей, а также гидрофобной углеводородной жидкости.

В качестве наиболее близкого аналога (прототипа) по совокупности свойств выбран смазочный состав, включающий природные высшие жирные кислоты, органические и неорганические нейтрализующие агенты, олигомерные полиэфиры и воду [Смазочная добавка к буровым растворам. Патент РФ 2163617, опубл. 27.02.2001]. В данной композиции содержание высших жирных кислот лежит в пределах от 20 до 85% (мас.). Эмульгирующий эффект обеспечивается комбинированным действием органических и неорганических оснований. Однако прототип обладает рядом недостатков:

1. Максимальное содержание высших жирных кислот (ВЖК) в составе прототипа не превышает 85% (мас.), что не обеспечивает достаточно высокого смазочного эффекта в глинистых растворах. Повышение массовой доли жирных кислот в составе прототипа приводит к снижению эмульгирующей активности в результате закономерного уменьшения массовой доли нейтрализующих агентов. При этом снижается коллоидная растворимость смазочной добавки и ухудшается смазочный эффект.

2. Наличие водной фазы в составе прототипа приводит к снижению содержания основного вещества, обладающего смазочным эффектом. Однако снизить массовую долю воды в составе прототипа невозможно, так как ее наличие обуславливает растворимость неорганического нейтрализующего агента, выполняющего основную эмульгирующую функцию.

3. Способность жирных кислот в составе прототипа снижать коэффициент трения на границе "металл - порода" в существенной степени снижена из-за отсутствия стабилизирующего фактора, обеспечивающего нормальную ориентацию гибких углеводородных радикалов в адсорбционных смазочных слоях.

Технический результат изобретения повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах.

Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С

2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, отличается тем, что она дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты:сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%:




указанные кислоты и сульфированный рыбий жир70-90,9
гидроксид и/или карбонат щелочного металла,
и/или моно-, ди-, триэтаноламин1-8
оксаль5-25
указанные спирт, полиэтиленгликоль,
полипропиленгликоль1-24

В ходе лабораторных испытаний проводились измерения коэффициента трения (k

тр.) буровых растворов, обработанных новой смазочной добавкой (исследования проводились на приборе фирмы Baroid (США), который позволяет получить полную картину поведения буровых растворов в условиях постоянно возрастающей нагрузки от 0,34 до 4,13 МПа с фиксацией для каждого образца своей предельной нагрузки (Рmax), при которой достигается полное разрушение смазочного слоя. Прочность смазочного слоя характеризуется величиной показателя эффективности смазочного действия (ЭСД), имеющего смысл удельного коэффициента трения смазочной пленки, для которой предельная нагрузка составляет 1 МПа. ЭСД вычисляется по следующей формуле:

ЭСД=kтр.max

Новая смазочная добавка БИОЛУБ LVL имеет, по сравнению с прототипом, следующие преимущества.

Во-первых, массовая доля высших жирных кислот (ВЖК) в составе смазочной добавки может быть повышена до 90% (мас.), что сопровождается значительным улучшением смазочной способности. Действительно, введение 0,5% новой смазочной добавки в 1,5-2 раза улучшает смазочные свойства как глинистого, так и безглинистого раствора, по сравнению с аналогичными добавками прототипа (табл.1, 2, опыты №№1, 2, 6). Повышение массовой доли смазочной добавки до 1 мас.% приводит к некоторому снижению эффекта: новая смазочная композиция работает в 1,5 раза эффективнее прототипа.

Во-вторых, в составе новой смазочной композиции присутствует сульфированный рыбий жир (СРЖ), обладающий свойствами эффективного эмульгатора в неводных средах.

Поэтому новый смазочный состав практически не содержит воды, что обеспечивает его высокую эффективность в глинистых и безглинистых растворах. Так, коэффициент трения буровых растворов, содержащих 0,5% новой смазочной добавки, с различными массовыми соотношениями между жирными кислотами и триглицеридом (от ВЖК:СРЖ=99:1 до ВЖК:СРЖ=1:99), в 1,2-1,6 раза ниже коэффициента трения глинистого раствора, содержащего 0,5% прототипа (табл.1, 2 опыты 3, 4, 6).

В-третьих, оксаль в составе новой смазочной добавки создают "каркасный" эффект, ориентируя углеводородные радикалы в направлении нормали к трущимся поверхностям и обеспечивая наибольшую толщину смазочного адсорбционного слоя. В результате этого даже значительное снижение массовой доли жирных кислот в составе новой смазочной добавки (до 70% (мас.) обеспечивает высокий уровень смазочной активности буровых растворов обоих типов: смазочные свойства раствора, обработанного 0,5% новой смазочной добавки с пониженным содержанием ВЖК, в 1,6 раза выше по сравнению с раствором, содержащим 0,5% прототипа (табл.1, 2 опыт 5, 6).

Таким образом, проведенные эксперименты показали значительное технологическое превосходство новой смазочной добавки БИОЛУБ LVL по сравнению с прототипом.







Таблица 1.
Смазочные свойства безглинистого биополимерного раствора, обработанного различными смазочными составами БИОЛУБ LVL (Биополимер - 0,25%; КМЦ - 0,9%; вода - остальное)
Смазочный состав, % (мас.)Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа-1
ВЖК - 900,50,0180,0044
1
СРЖ -0,9
Пропиленгликоль - 3,11,00,0130,0031
Гидроксид натрия - 1
Оксаль - 5
ВЖК - 900,50,0180,0044
2СРЖ -0,9
Пропиленгликоль 3,11,00,0140,0033
Карбонат натрия - 1
Оксаль - 5
ВЖК - 79,200,50,0250,0048
3СРЖ - 0,80
Смесь полиэтиленгликолей* - 131,00,020,006
Гидроксид калия - 1
Карбонат натрия - 1
Оксаль - 5
ВЖК - 0,830,50,0340,0082
4СРЖ - 79,20
Этанол - 51,00,0180,0044
Триэтаноламин -5
Оксаль - 10
ВЖК - 69,30,50,0250,006
5СРЖ - 0,7
Пропиленгликоль - 21,00,0220,0053
Триэтаноламин -3
Оксаль - 25
6Прототип0,50,040,0097
1,00,020,0048
* триэтиленгликоль 20 мас.%, тетраэтиленгликоль 20 мас.%, пентаэтиленгликоль 60 мас.%






Таблица 2.
Смазочные свойства глинистого раствора, обработанного различными смазочными составами БИОЛУБ LVL (Плотность - 1,05 г/см3)
Смазочный состав, % (мас.)Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа-1
ВЖК - 900,50,029
0,007
1СРЖ -0,9
Пропиленгликоль - 3,11,00,0250,006
Гидроксид натрия - 1
Оксаль - 5
ВЖК - 900,50,0310,0075
2СРЖ -0,9
Пропиленгликоль 3,11,00,0250,006
Карбонат натрия - 1
Оксаль - 5
ВЖК - 79,200,50,0240,0053
3СРЖ - 0,80
Смесь полиэтиленгликолей* - 131,00,0220,0058
Гидроксид калия - 1
Карбонат натрия - 1
Оксаль - 5
4ВЖК - 0,830,50,0380,0092
СРЖ - 79,20
Этанол - 51,00,0300,0073
Триэтаноламин - 5
Оксаль - 10
ВЖК - 69,30,50,0310,0075
5СРЖ - 0,7
Пропиленгликоль - 21,00,0250,0061
Триэтаноламин -3
Оксаль - 25
6Прототип0,50,0430,01
1,00,0380,0092

bankpatentov.ru

Смазочная добавка для буровых растворов биолуб lvl

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к смазочным добавкам для буровых растворов. Технический результат изобретения - повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах. Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты: сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%: указанные кислоты и сульфированный рыбий жир 70-90,9, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин 1-8, оксаль 5-25, указанные спирт, полиэтиленгликоль, полипропиленгликоль 1-24. 2 табл.

 

Изобретение относится к области бурения нефтяных и газовых скважин, в частности, к смазочным добавкам для буровых растворов.

Известно применение в качестве смазочных добавок к глинистым буровым растворам композиций природных жирных кислот и олигомерных полиэфиров, выступающих в роли эмульгаторов маслорастворимой фазы. [Смазочная добавка к буровым растворам. Патент РФ 2163615, опубл. 27.02.2001]. Кроме того, существуют смазочные составы, в которых эмульгирующий эффект обеспечиваетется присутствием щелочных нейтрализующих агентов [Смазочная добавка к буровым растворам. Патент РФ 2163616, опубл. 27.02.2001]. В таких композициях смазочный эффект обеспечивается совместным действием природных жирных кислот, их солей, а также гидрофобной углеводородной жидкости.

В качестве наиболее близкого аналога (прототипа) по совокупности свойств выбран смазочный состав, включающий природные высшие жирные кислоты, органические и неорганические нейтрализующие агенты, олигомерные полиэфиры и воду [Смазочная добавка к буровым растворам. Патент РФ 2163617, опубл. 27.02.2001]. В данной композиции содержание высших жирных кислот лежит в пределах от 20 до 85% (мас.). Эмульгирующий эффект обеспечивается комбинированным действием органических и неорганических оснований. Однако прототип обладает рядом недостатков:

1. Максимальное содержание высших жирных кислот (ВЖК) в составе прототипа не превышает 85% (мас.), что не обеспечивает достаточно высокого смазочного эффекта в глинистых растворах. Повышение массовой доли жирных кислот в составе прототипа приводит к снижению эмульгирующей активности в результате закономерного уменьшения массовой доли нейтрализующих агентов. При этом снижается коллоидная растворимость смазочной добавки и ухудшается смазочный эффект.

2. Наличие водной фазы в составе прототипа приводит к снижению содержания основного вещества, обладающего смазочным эффектом. Однако снизить массовую долю воды в составе прототипа невозможно, так как ее наличие обуславливает растворимость неорганического нейтрализующего агента, выполняющего основную эмульгирующую функцию.

3. Способность жирных кислот в составе прототипа снижать коэффициент трения на границе "металл - порода" в существенной степени снижена из-за отсутствия стабилизирующего фактора, обеспечивающего нормальную ориентацию гибких углеводородных радикалов в адсорбционных смазочных слоях.

Технический результат изобретения повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах.

Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, отличается тем, что она дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты:сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%:

указанные кислоты и сульфированный рыбий жир70-90,9
гидроксид и/или карбонат щелочного металла,
и/или моно-, ди-, триэтаноламин1-8
оксаль5-25
указанные спирт, полиэтиленгликоль,
полипропиленгликоль1-24

В ходе лабораторных испытаний проводились измерения коэффициента трения (kтр.) буровых растворов, обработанных новой смазочной добавкой (исследования проводились на приборе фирмы Baroid (США), который позволяет получить полную картину поведения буровых растворов в условиях постоянно возрастающей нагрузки от 0,34 до 4,13 МПа с фиксацией для каждого образца своей предельной нагрузки (Рmax), при которой достигается полное разрушение смазочного слоя. Прочность смазочного слоя характеризуется величиной показателя эффективности смазочного действия (ЭСД), имеющего смысл удельного коэффициента трения смазочной пленки, для которой предельная нагрузка составляет 1 МПа. ЭСД вычисляется по следующей формуле:

ЭСД=kтр.max

Новая смазочная добавка БИОЛУБ LVL имеет, по сравнению с прототипом, следующие преимущества.

Во-первых, массовая доля высших жирных кислот (ВЖК) в составе смазочной добавки может быть повышена до 90% (мас.), что сопровождается значительным улучшением смазочной способности. Действительно, введение 0,5% новой смазочной добавки в 1,5-2 раза улучшает смазочные свойства как глинистого, так и безглинистого раствора, по сравнению с аналогичными добавками прототипа (табл.1, 2, опыты №№1, 2, 6). Повышение массовой доли смазочной добавки до 1 мас.% приводит к некоторому снижению эффекта: новая смазочная композиция работает в 1,5 раза эффективнее прототипа.

Во-вторых, в составе новой смазочной композиции присутствует сульфированный рыбий жир (СРЖ), обладающий свойствами эффективного эмульгатора в неводных средах.

Поэтому новый смазочный состав практически не содержит воды, что обеспечивает его высокую эффективность в глинистых и безглинистых растворах. Так, коэффициент трения буровых растворов, содержащих 0,5% новой смазочной добавки, с различными массовыми соотношениями между жирными кислотами и триглицеридом (от ВЖК:СРЖ=99:1 до ВЖК:СРЖ=1:99), в 1,2-1,6 раза ниже коэффициента трения глинистого раствора, содержащего 0,5% прототипа (табл.1, 2 опыты 3, 4, 6).

В-третьих, оксаль в составе новой смазочной добавки создают "каркасный" эффект, ориентируя углеводородные радикалы в направлении нормали к трущимся поверхностям и обеспечивая наибольшую толщину смазочного адсорбционного слоя. В результате этого даже значительное снижение массовой доли жирных кислот в составе новой смазочной добавки (до 70% (мас.) обеспечивает высокий уровень смазочной активности буровых растворов обоих типов: смазочные свойства раствора, обработанного 0,5% новой смазочной добавки с пониженным содержанием ВЖК, в 1,6 раза выше по сравнению с раствором, содержащим 0,5% прототипа (табл.1, 2 опыт 5, 6).

Таким образом, проведенные эксперименты показали значительное технологическое превосходство новой смазочной добавки БИОЛУБ LVL по сравнению с прототипом.

Таблица 1.
Смазочные свойства безглинистого биополимерного раствора, обработанного различными смазочными составами БИОЛУБ LVL (Биополимер - 0,25%; КМЦ - 0,9%; вода - остальное)
Смазочный состав, % (мас.)Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа-1
ВЖК - 900,50,0180,0044
1СРЖ -0,9
Пропиленгликоль - 3,11,00,0130,0031
Гидроксид натрия - 1
Оксаль - 5
ВЖК - 900,50,0180,0044
2СРЖ -0,9
Пропиленгликоль 3,11,00,0140,0033
Карбонат натрия - 1
Оксаль - 5
ВЖК - 79,200,50,0250,0048
3СРЖ - 0,80
Смесь полиэтиленгликолей* - 131,00,020,006
Гидроксид калия - 1
Карбонат натрия - 1
Оксаль - 5
ВЖК - 0,830,50,0340,0082
4СРЖ - 79,20
Этанол - 51,00,0180,0044
Триэтаноламин -5
Оксаль - 10
ВЖК - 69,30,50,0250,006
5СРЖ - 0,7
Пропиленгликоль - 21,00,0220,0053
Триэтаноламин -3
Оксаль - 25
6Прототип0,50,040,0097
1,00,020,0048
* триэтиленгликоль 20 мас.%, тетраэтиленгликоль 20 мас.%, пентаэтиленгликоль 60 мас.%
Таблица 2.
Смазочные свойства глинистого раствора, обработанного различными смазочными составами БИОЛУБ LVL (Плотность - 1,05 г/см3)
Смазочный состав, % (мас.)Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа-1
ВЖК - 900,50,0290,007
1СРЖ -0,9
Пропиленгликоль - 3,11,00,0250,006
Гидроксид натрия - 1
Оксаль - 5
ВЖК - 900,50,0310,0075
2СРЖ -0,9
Пропиленгликоль 3,11,00,0250,006
Карбонат натрия - 1
Оксаль - 5
ВЖК - 79,200,50,0240,0053
3СРЖ - 0,80
Смесь полиэтиленгликолей* - 131,00,0220,0058
Гидроксид калия - 1
Карбонат натрия - 1
Оксаль - 5
4ВЖК - 0,830,50,0380,0092
СРЖ - 79,20
Этанол - 51,00,0300,0073
Триэтаноламин - 5
Оксаль - 10
ВЖК - 69,30,50,0310,0075
5СРЖ - 0,7
Пропиленгликоль - 21,00,0250,0061
Триэтаноламин -3
Оксаль - 25
6Прототип0,50,0430,01
1,00,0380,0092

Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с C2 no C5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, отличающаяся тем, что она дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты:сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%:

указанные кислоты и сульфированный рыбий жир70-90,9
гидроксид и/или карбонат щелочного металла,
и/или моно-, ди-, триэтаноламин1-8
оксаль5-25
указанные спирт, полиэтиленгликоль,
полипропиленгликоль1-24

www.findpatent.ru

смазочная добавка для буровых растворов биолуб lvl - патент РФ 2304604

Классы МПК:C09K8/035 органические добавки
Автор(ы):Яхшибеков Феликс Рудольфович (RU), Рассадников Владимир Иванович (RU), Лушпеева Ольга Александровна (RU), Лосева Нина Тимофеевна (RU), Вахрушев Леонид Петрович (RU), Малов Владимир Владимирович (RU), Воеводин Леонид Иванович (RU)
Патентообладатель(и):Яхшибеков Феликс Рудольфович (RU),
Рассадников Владимир Иванович (RU),
Лушпеева Ольга Александровна (RU),
Лосева Нина Тимофеевна (RU),
Вахрушев Леонид Петрович (RU),
Малов Владимир Владимирович (RU),
Воеводин Леонид Иванович (RU)
Приоритеты:

подача заявки:
2005-03-30

публикация патента:
20.08.2007

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к смазочным добавкам для буровых растворов. Технический результат изобретения - повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах. Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты: сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%: указанные кислоты и сульфированный рыбий жир 70-90,9, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин 1-8, оксаль 5-25, указанные спирт, полиэтиленгликоль, полипропиленгликоль 1-24. 2 табл.

Изобретение относится к области бурения нефтяных и газовых скважин, в частности, к смазочным добавкам для буровых растворов.

Известно применение в качестве смазочных добавок к глинистым буровым растворам композиций природных жирных кислот и олигомерных полиэфиров, выступающих в роли эмульгаторов маслорастворимой фазы. [Смазочная добавка к буровым растворам. Патент РФ 2163615, опубл. 27.02.2001]. Кроме того, существуют смазочные составы, в которых эмульгирующий эффект обеспечиваетется присутствием щелочных нейтрализующих агентов [Смазочная добавка к буровым растворам. Патент РФ 2163616, опубл. 27.02.2001]. В таких композициях смазочный эффект обеспечивается совместным действием природных жирных кислот, их солей, а также гидрофобной углеводородной жидкости.

В качестве наиболее близкого аналога (прототипа) по совокупности свойств выбран смазочный состав, включающий природные высшие жирные кислоты, органические и неорганические нейтрализующие агенты, олигомерные полиэфиры и воду [Смазочная добавка к буровым растворам. Патент РФ 2163617, опубл. 27.02.2001]. В данной композиции содержание высших жирных кислот лежит в пределах от 20 до 85% (мас.). Эмульгирующий эффект обеспечивается комбинированным действием органических и неорганических оснований. Однако прототип обладает рядом недостатков:

1. Максимальное содержание высших жирных кислот (ВЖК) в составе прототипа не превышает 85% (мас.), что не обеспечивает достаточно высокого смазочного эффекта в глинистых растворах. Повышение массовой доли жирных кислот в составе прототипа приводит к снижению эмульгирующей активности в результате закономерного уменьшения массовой доли нейтрализующих агентов. При этом снижается коллоидная растворимость смазочной добавки и ухудшается смазочный эффект.

2. Наличие водной фазы в составе прототипа приводит к снижению содержания основного вещества, обладающего смазочным эффектом. Однако снизить массовую долю воды в составе прототипа невозможно, так как ее наличие обуславливает растворимость неорганического нейтрализующего агента, выполняющего основную эмульгирующую функцию.

3. Способность жирных кислот в составе прототипа снижать коэффициент трения на границе "металл - порода" в существенной степени снижена из-за отсутствия стабилизирующего фактора, обеспечивающего нормальную ориентацию гибких углеводородных радикалов в адсорбционных смазочных слоях.

Технический результат изобретения повышение эффективности смазочной добавки в глинистых и безглинистых буровых растворах.

Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с С 2 по С5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, отличается тем, что она дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты:сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%:

указанные кислоты и сульфированный рыбий жир70-90,9
гидроксид и/или карбонат щелочного металла, 
и/или моно-, ди-, триэтаноламин 1-8
оксаль5-25
указанные спирт, полиэтиленгликоль, 
полипропиленгликоль1-24

В ходе лабораторных испытаний проводились измерения коэффициента трения (k тр.) буровых растворов, обработанных новой смазочной добавкой (исследования проводились на приборе фирмы Baroid (США), который позволяет получить полную картину поведения буровых растворов в условиях постоянно возрастающей нагрузки от 0,34 до 4,13 МПа с фиксацией для каждого образца своей предельной нагрузки (Р max), при которой достигается полное разрушение смазочного слоя. Прочность смазочного слоя характеризуется величиной показателя эффективности смазочного действия (ЭСД), имеющего смысл удельного коэффициента трения смазочной пленки, для которой предельная нагрузка составляет 1 МПа. ЭСД вычисляется по следующей формуле:

ЭСД=kтр.max

Новая смазочная добавка БИОЛУБ LVL имеет, по сравнению с прототипом, следующие преимущества.

Во-первых, массовая доля высших жирных кислот (ВЖК) в составе смазочной добавки может быть повышена до 90% (мас.), что сопровождается значительным улучшением смазочной способности. Действительно, введение 0,5% новой смазочной добавки в 1,5-2 раза улучшает смазочные свойства как глинистого, так и безглинистого раствора, по сравнению с аналогичными добавками прототипа (табл.1, 2, опыты №№1, 2, 6). Повышение массовой доли смазочной добавки до 1 мас.% приводит к некоторому снижению эффекта: новая смазочная композиция работает в 1,5 раза эффективнее прототипа.

Во-вторых, в составе новой смазочной композиции присутствует сульфированный рыбий жир (СРЖ), обладающий свойствами эффективного эмульгатора в неводных средах.

Поэтому новый смазочный состав практически не содержит воды, что обеспечивает его высокую эффективность в глинистых и безглинистых растворах. Так, коэффициент трения буровых растворов, содержащих 0,5% новой смазочной добавки, с различными массовыми соотношениями между жирными кислотами и триглицеридом (от ВЖК:СРЖ=99:1 до ВЖК:СРЖ=1:99), в 1,2-1,6 раза ниже коэффициента трения глинистого раствора, содержащего 0,5% прототипа (табл.1, 2 опыты 3, 4, 6).

В-третьих, оксаль в составе новой смазочной добавки создают "каркасный" эффект, ориентируя углеводородные радикалы в направлении нормали к трущимся поверхностям и обеспечивая наибольшую толщину смазочного адсорбционного слоя. В результате этого даже значительное снижение массовой доли жирных кислот в составе новой смазочной добавки (до 70% (мас.) обеспечивает высокий уровень смазочной активности буровых растворов обоих типов: смазочные свойства раствора, обработанного 0,5% новой смазочной добавки с пониженным содержанием ВЖК, в 1,6 раза выше по сравнению с раствором, содержащим 0,5% прототипа (табл.1, 2 опыт 5, 6).

Таким образом, проведенные эксперименты показали значительное технологическое превосходство новой смазочной добавки БИОЛУБ LVL по сравнению с прототипом.

Таблица 1.
Смазочные свойства безглинистого биополимерного раствора, обработанного различными смазочными составами БИОЛУБ LVL (Биополимер - 0,25%; КМЦ - 0,9%; вода - остальное)
Смазочный состав, % (мас.) Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа-1
 ВЖК - 900,5 0,0180,0044
1СРЖ -0,9   
 Пропиленгликоль - 3,11,00,013 0,0031
  Гидроксид натрия - 1    
 Оксаль - 5   
 ВЖК - 90 0,50,0180,0044
2СРЖ -0,9    
  Пропиленгликоль 3,11,0 0,0140,0033
 Карбонат натрия - 1    
 Оксаль - 5    
  ВЖК - 79,200,50,0250,0048
3СРЖ - 0,80   
Смесь полиэтиленгликолей* - 13 1,00,020,006
 Гидроксид калия - 1   
 Карбонат натрия - 1   
 Оксаль - 5    
 ВЖК - 0,830,50,034 0,0082
4 СРЖ - 79,20   
Этанол - 51,00,018 0,0044
  Триэтаноламин -5    
 Оксаль - 10   
 ВЖК - 69,3 0,50,0250,006
5СРЖ - 0,7   
Пропиленгликоль - 21,00,022 0,0053
  Триэтаноламин -3    
 Оксаль - 25   
6Прототип0,50,04 0,0097
1,0 0,020,0048
* триэтиленгликоль 20 мас.%, тетраэтиленгликоль 20 мас.%, пентаэтиленгликоль 60 мас.%
Таблица 2.
Смазочные свойства глинистого раствора, обработанного различными смазочными составами БИОЛУБ LVL (Плотность - 1,05 г/см 3)
Смазочный состав, % (мас.)Концентрация смазки, % (мас.)Коэффициент тренияЭффективность смазочного действия, МПа -1
  ВЖК - 900,50,0290,007
1СРЖ -0,9   
Пропиленгликоль - 3,11,00,0250,006
 Гидроксид натрия - 1    
  Оксаль - 5   
 ВЖК - 900,5 0,0310,0075
2СРЖ -0,9   
Пропиленгликоль 3,11,00,0250,006
 Карбонат натрия - 1    
  Оксаль - 5   
 ВЖК - 79,200,5 0,0240,0053
3СРЖ - 0,80   
Смесь полиэтиленгликолей* - 13 1,00,0220,0058
 Гидроксид калия - 1   
 Карбонат натрия - 1   
 Оксаль - 5    
4ВЖК - 0,830,50,0380,0092
СРЖ - 79,20    
Этанол - 5 1,00,0300,0073
 Триэтаноламин - 5    
  Оксаль - 10   
 ВЖК - 69,30,5 0,0310,0075
5СРЖ - 0,7   
Пропиленгликоль - 21,00,0250,0061
 Триэтаноламин -3    
  Оксаль - 25   
6Прототип 0,50,0430,01
1,00,0380,0092

ФОРМУЛА ИЗОБРЕТЕНИЯ

Смазочная добавка для буровых растворов, содержащая природные высшие жирные кислоты, низший одноатомный спирт с C 2 no C5 и/или олигомерный полиэтиленгликоль со степенью полимеризации n=2-5, и/или олигомерный полипропиленгликоль с n=1-3, отличающаяся тем, что она дополнительно содержит оксаль, гидроксид и/или карбонат щелочного металла, и/или моно-, ди-, триэтаноламин, сульфированный рыбий жир при соотношении указанные кислоты:сульфированный рыбий жир 99:1-1:99 при следующем соотношении компонентов добавки, мас.%:

указанные кислоты и сульфированный рыбий жир70-90,9
гидроксид и/или карбонат щелочного металла, 
и/или моно-, ди-, триэтаноламин 1-8
оксаль5-25
указанные спирт, полиэтиленгликоль, 
полипропиленгликоль1-24

Официальная публикация
патента РФ № 2304604

patent-2304604.pdf

www.freepatent.ru

Технические условия ТУ 2458-009-82330939-2008 "Добавка смазочная для буровых растворов Биолуб LVL".

Номер заключения
16.11.10.245.Т.000075.03.09
Дата
25.03.2009
Тип бланка заключения
санитарно-эпидем. заключение на проекты, ТУ (терр.орг, 2005) [21]
Типографский номер бланка
505979
Проектная документация
Технические условия ТУ 2458-009-82330939-2008 "Добавка смазочная для буровых растворов Биолуб LVL".
 
СООТВЕТСТВУЕТ государственным санитарно-эпидемиологическим правилам и нормативам:
ГН 2.2.5.1313-03 "ПДК вредных веществ в воздухе рабочей зоны", ГН 2.2.5.1338-03 "Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест", ГН 2.1.5.1315-03 "Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования", СП 2.2.2.1327-03 "Гигиенические требования к организации технологических процессов, производственному оборудованию и рабочему инструменту", СП 1.1.1058-01 "Организация и проведение производственного контроля за соблюдением санитарных правил и выполнением санитарно-противоэпидемических (профилактических) мероприятий".
Основание:
экспертное заключение по проекту ТУ № 30499 от 24.02.2009г. ФГУЗ "Центр гигиены и эпидемиологии в Республике Татарстан (Татарстан)".
Фирма-разработчик
ООО "Миррико Комплексное Обеспечение", 420095, РТ, г.Казань, ул.Восстания, д.100.Российская Федерация

Все данные получены с сервера поиска по Реестрам Роспотребнадзора и санитарно-эпидемиологической службы России

e-ecolog.ru

буровой раствор без твердой фазы с улучшенными смазочными свойствами - патент РФ 2290426

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к буровым растворам. Технический результат - получение экологически малоопасного морозоустойчивого малокомпонентного состава бурового раствора без твердой фазы для вскрытия продуктивных пластов, в том числе и горизонтальными скважинами, обладающего высокой удерживающей и выносящей способностью, а также улучшенной смазочной способностью. Буровой раствор без твердой фазы содержит, мас.%: понизитель фильтрации - карбоксиметилцеллюлозу 0,8-1,2, ингибирующую и утяжеляющую добавку - хлористый натрий NaCl 5,0-25,0, структурообразователь - ксантановый биополимер Kem X 0,3-0,4, смазочные добавки БИОЛУБ LVL и ГЛИТАЛ 0,1-0,2, воду остальное.

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к буровым растворам.

Известен буровой раствор без твердой фазы, содержащий карбоксиметилцеллюлозу, ксантановый биополимер (Kem X), хлористый натрий и воду при следующем соотношении ингредиентов, мас.% (/1/ наиболее близкий аналог):

Карбоксиметилцеллюлоза0,8-1,2
Хлористый натрий (NaCl) 5,0-25,0
Ксантановый биополимер (Kem X)0,3-0,4
Водаостальное

Данный буровой раствор обладает превосходными несущими и удерживающими свойствами как в динамическом, так и в статическом состоянии.

Недостатком известного бурового раствора, выбранного нами в качестве прототипа, являются неудовлетворительные триботехнические свойства, что особенно опасно при бурении глубоких наклонно направленных скважин с большим отклонением от вертикали и горизонтальных скважин.

Технический результат - получение экологически малоопасного морозоустойчивого малокомпонентного состава бурового раствора без твердой фазы для вскрытия продуктивных пластов, в том числе и горизонтальными скважинами, обладающего высокой удерживающей и выносящей способностью, а также улучшенной смазочной способностью.

Буровой раствор без твердой фазы, содержащий понизитель фильтрации - карбоксиметилцеллюлозу, ингибирующую и утяжеляющую добавку - хлористый натрий NaCl, структурообразователь - ксантановый биополимер Kem X и воду, дополнительно содержит смазочные добавки БИОЛУБ LVL и ГЛИТАЛ при следующем соотношении ингредиентов, мас.%:

Карбоксиметилцеллюлоза0,8-1,2
NaCl5,0-25,0
Ксантановый биополимер Kem X 0,3-0,4
Смазочные добавки БИОЛУБ LVL 
и ГЛИТАЛ0,1-0,2
Водаостальное

БИОЛУБ LVL - смазочная добавка, представляющая композицию природных высших жирных кислот на основе талового масла, полигликолей и модифицирующих жиров, выпускаемая в соответствии с ТУ №2458-001-74614597-04.

ГЛИТАЛ - смазочная добавка, представляющая композицию природных высших жирных кислот и полиалкиленгликолей, выпускаемая в соответствии с ТУ №2458-019-32957739-01.

Смазочные добавки используются в соотношениях БИОЛУБ LVL: ГЛИТАЛ 1:1, 2:1, 1:2. Технический результат достигается совместным использованием двух добавок.

Смазочные добавки способствуют снижению внутрискважинных сил трения, совместимы со всеми реагентами, применяемыми для химической обработки заявляемого бурового раствора. Всего 1,0-2,0 кг/м 3 требуется для достижения высоких смазочных свойств данного состава бурового раствора. Предлагаемые для введения в состав бурового раствора смазочные добавки обладают всеми основными требованиями, предъявляемыми к ним:

- адсорбироваться на глинистых поверхностях и трущихся элементах бурильного инструмента;

- сохранять свои свойства во всем диапазоне температур, в которых находится буровой раствор;

- не подвергаться гидролизу или реакциям разложения в водной среде и не оказывать отрицательного воздействия на показатели бурового раствора;

- не загрязнять окружающую среду.

Кроме того, использование в составе бурового раствора в качестве понизителя фильтрации карбоксиметилцеллюлозы, в частности Tyiose ЕС-7, повышает его термостойкость до 140°С, а наличие высококачественного ксантанового биополимера Kem X обеспечивает достаточные псевдопластические свойства, высокую удерживающую и выносящую способность. При этом NaCl не только обеспечивает необходимую плотность раствора и его морозоустойчивость, но и предотвращает биодеградацию смазочных добавок БИОЛУБ LVL и ГЛИТАЛ, полимеров Kem X и Tyiose EC 7. Следовательно, использование бактерицидов в составе бурового раствора не обязательно.

Для проверки эффективности действия предлагаемого бурового раствора были проведены лабораторные исследования.

В лабораторных условиях растворы готовят следующим образом.

В воду при непрерывном перемешивании на лабораторной мешалке постепенно добавляют биополимер Kem X и понизитель фильтрации Tyiose EC 7. Перемешивают до полного растворения полимеров, обычно 1-1,5 часа, затем вводят хлористый натрий (NaCl) и смазочные добавки БИОЛУБ LVL и ГЛИТАЛ, тщательно перемешивают и замеряют параметры.

Замеры параметров производятся в соответствии с СТП 103-99: плотность - пикнометром, смазочную способность - на приборе фирмы OFI, США (EP/LUBRICITY TESTER model 21200) по коэффициенту трения пары «металл-металл» при нагрузке 1,03 МПа, условную вязкость - воронкой Марша (СПВ 5), показатель фильтрации - на фильтре-прессе, статическое напряжение сдвига, динамическое напряжение сдвига, пластическую вязкость - вискозиметром Fann. Поскольку основным преимуществом биополимерных растворов является их способность обладать свойствами твердого тела при низких скоростях сдвига и при нахождении в покое и свойствами жидкости при высоких скоростях (например, при истечении из насадок долота), дополнительно на вискозиметре Брукфельда замеряется вязкость при низких скоростях сдвига - 0,051 сек"1 (ВНСС). Оценка влияния бурового раствора на коллекторские свойства продуктивного пласта определяется по коэффициенту восстановления проницаемости на установке FDTES-1 GO-140.

Составы бурового раствора, мас.%:

Пример 1 (минимум)

Карбоксиметилцеллюлоза 0,8
Хлористый натрий NaCl 5,0
Ксантановый биополимер Kem X0,3
Смазочные добавки БИОЛУБ LVL 
и ГЛИТАЛ (1:1)0,1
Вода93,8

Пример 2

Карбоксиметилцеллюлоза 1,0
Хлористый натрий NaCl 15,0
Ксантановый биополимер Kem X0,35
Смазочные добавки БИОЛУБ LVL 
и ГЛИТАЛ (2:1)0,15
Вода83,5

Пример 3 (максимум)

Карбоксиметилцеллюлоза 1,2
Хлористый натрий NaCl 25,0
Ксантановый биополимер Kem X0,4
Смазочные добавки БИОЛУБ LVL 
и ГЛИТАЛ (1:2)0,3
Вода73,1

Предложенный буровой раствор при минимальном расходе и ассортименте используемых химических реагентов обладает требуемыми технологическими свойствами, превосходными несущими свойствами и дополнительно высокими смазочными свойствами, как в динамическом, так и в статическом состоянии. На это указывает высокое значение динамического напряжения сдвига, низкое пластической вязкости, высокое значение вязкости при низких скоростях сдвига (ВНСС) и низкий коффициент трения пары «металл-металл», обеспечивающий минимальное внутрискважинное трение при бурении скважин.

Использование предложенного бурового раствора.

Бурение скважины до кровли продуктивного пласта может осуществляться на любом традиционно используемом буровом растворе. В пробуренную скважину спускается техническая обсадная колонна и цементируется в соответствии с действующими регламентами. Для бурения в интервале продуктивных пластов (в том числе и при вскрытии их горизонтальными стволами) используется предлагаемый буровой раствор. Буровой раствор готовится следующим образом. В гидро- или глиномешалку, на 2/3 заполненную водой, вводят расчетное количество биополимера и карбоксиметилцеллюлозы и перемешивают до полного растворения. Затем добавляю необходимое количество NaCl. После растворения готовый биополимерный раствор сливают в чистую емкость. Бурение из-под технической колонны начинают на приготовленном биополимерном растворе. В процессе бурения биополимерный раствор обрабатывается смазочными добавками БИОЛУБ LVL и ГЛИТАЛ до концентрации, обеспечивающей коэффициент трения 0,07-0,14 в зависимости от технологических требований. С использованием современного оборудования должна обеспечиваться хорошая очистка бурового раствора от выбуренной породы. Параметры бурового раствора в процессе бурения поддерживаются на уровне регламентированных добавлением смазочной добавки и водных растворов биополимера и карбоксиметилцеллюлозы.

Технико-экономическая эффективность.

1. Обеспечение высокой смазочной способности за счет низкого коэффициента трения бурового раствора при бурении горизонтальных и сильно искривленных (пологих) скважин, где потенциально велики энергозатраты на преодоление сил трения колонны труб о стенки скважины.

2. Снижение или даже полное исключение осложнений, связанных с прихватами бурильного инструмента. Это обеспечивается рядом факторов, в том числе и за счет дополнительного заявляемого фактора в области повышения смазочной способности бурового раствора, взаимно усиливающих друг друга за счет синергетического эффекта. Во-первых, система не содержит твердой фазы и, следовательно, отсутствует абразивное трение. Во-вторых, водная основа минерализована, то есть система эффективно ингибирует процесс гидратации глинистой составляющей коллектора, сохраняя устойчивость пород, склонных к обвалообразованию. В-третьих, благодаря свойствам биополимера и высоким значениям ВНСС, фильтрация бурового раствора в пластовых условиях отсутствует или кратковременна, что резко снижает вероятность прилипания бурильного инструмента за счет перепада давления. Кроме того, данный фактор обеспечивает сохранение коллекторских свойств продуктивного пласта. В-четвертых, система содержит специальные смазочные добавки, адсорбируемые на стенках скважины, металлических трущихся поверхностях бурового инструмента, за счет чего резко снижается внутрискважинное трение бурильного инструмента и липкость полимерглинистой корки. Все вышеуказанные факторы в совокупности обеспечивают уникальные противоприхватные способности заявляемого раствора.

3. Увеличение механической скорости бурения и проходки на долото за счет повышения смазочной способности биополимерного раствора и отсутствия в системе раствора твердой тинистой фазы.

4. Снижение отрицательного влияния на окружающую природную среду за счет того, что не используются токсичные смазочные добавки типа нефти, все компоненты системы биоразлагаемы.

Экспериментальные испытания предложенного бурового раствора проведены при бурении более пятидесяти эксплуатационных скважин на месторождениях ОАО «Сургутнефтегаз». Все скважины пробурены без осложнений, механическя скорость бурения и проходка на долото в среднем возросли соответственно на 36% и 28%.

ИСТОЧНИК ИНФОРМАЦИИ

/1/ ПАТЕНТ RU №2208033 Буровой раствор без твердой фазы. / Маслов Ю.Н., Щавелев Н.Л., Лушпеева О.А., Лосева Н.Т., Проводников Г.Б., Диниченко И.К. по заявке №2001105228 от 23.02.2001, приоритет от 23.02.2001, опубл. 10.07.2003, бюл. №19

ФОРМУЛА ИЗОБРЕТЕНИЯ

Буровой раствор без твердой фазы, содержащий понизитель фильтрации - карбоксиметилцеллюлозу, ингибирующую и утяжеляющую добавку - хлористый натрий NaCl, структурообразователь - ксантановый биополимер Kem X и воду, отличающийся тем, что он дополнительно содержит смазочные добавки БИОЛУБ LVL и ГЛИТАЛ при следующем соотношении ингредиентов, мас.%:

Карбоксиметилцеллюлоза 0,8-1,2
NaCl 5,0-25,0
Ксантановый биополимер Kem X0,3-0,4
Смазочные добавки БИОЛУБ LVL 
и ГЛИТАЛ0,1-0,2
ВодаОстальное

www.freepatent.ru

Влияние смазочных добавок на характеристики бурового раствора, применяемого при бурении скважин в Восточной Сибири Текст научной статьи по специальности «Геология»

УДК 622.244.442

DOI 10.21285/0130-108Х-2016-56-3-86-94

ВЛИЯНИЕ СМАЗОЧНЫХ ДОБАВОК НА ХАРАКТЕРИСТИКИ БУРОВОГО РАСТВОРА, ПРИМЕНЯЕМОГО ПРИ БУРЕНИИ СКВАЖИН В ВОСТОЧНОЙ СИБИРИ

© Э.В. Шакирова1, Е.В. Аверкина2, Т.Р. Сабиров3

1-3Иркутский национальный исследовательский технический университет, 664074, Россия, г. Иркутск, ул. Лермонтова, 83.

В последнее время на месторождения в больших объемах поставляются отечественные и зарубежные смазывающие добавки для буровых растворов. Смазывающие добавки необходимы для повышения технико-экономических показателей строительства наклонно-направленных скважин. В данной статье протестированы различные смазочные добавки, изучено, какое влияние они оказывают на основные свойства соленасыщенного полисахаридного бурового раствора, применяемого на Ярактинском нефтегахоконден-сатном месторождении. Анализировались следующие реагенты: Бурфлюб, Биолуб LVL, Bau DF Lube, Бурфлюб-БТ, ST-Slide DW. Приведены результаты тестирования на предмет соответствия требованиям технических условий и лабораторных экспериментов по определению их растворимости в различных технологических средах.

Представлены опыты по выявлению подробного изучения липкости глинистых корок, созданных из искусственных и естественных растворов. Все вышеперечисленные реагенты обладают смазочными свойствами и могут применяться без пеногасителей. Следует отметить что, при обработке бурового раствора реагентами ST-Slide DW и Бурфлюб в концентрации 3 и 5% незначительно увеличивается уровень рН. При добавлении реагентов ST-Slide DW и Bau DF Lube увеличиваются значения показателя фильтрации в 1%-й концентрации, затем снижаются с ее увеличением. Старение бурового раствора наглядно демонстрирует воздействие тепла на структурно-механические и реологические свойства бурового раствора. У всех растворов после термостатирования наблюдается снижение условной вязкости, снижение показателей пластической вязкости, статического и динамического напряжений сдвига. В процессе бурения скважины это может привести к снижению крутящего момента (при вращении бурового инструмента) и гидравлических сопротивлений при циркуляции бурового раствора. Окончательное решение о возможности применения данных добавок на Ярактинском нефтегахоконденсатном месторождении следует принимать после проведения промышленных испытаний, на данном же этапе по результатам тестирования смазочных добавок в соленасыщенном полисахаридном буровом растворе к применению может быть рекомендована смазочная добавка Бурфлюб-БТ.

Ключевые слова: смазочная добавка, буровой раствор, коэффициент трения, полисахаридный буровой раствор, поверхностное натяжение, реологические показатели.

Формат цитирования: Шакирова Э.В., Аверкина Е.В., Сабиров Т.Р. Исследование смазочных добавок на характеристики бурового раствора, применяемого при бурении скважин в Восточной Сибири // Известия Сибирского отделения Секции наук о Земле Российской академии естественных наук. Геология, поиски и разведка рудных месторождений. 2016. № 3 (56). С. 86-94. DOI 10.21285/0130-108Х-2016-56-3-86-94.

THE EFFECT OF LUBRICATING ADDITIVES ON CHARACTERISTICS OF THE MUD USED IN WELL-DRILLING IN EASTERN SIBERIA

E.V. Shakirova, E.V. Averkina, T.R. Sabirov

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia.

1Шакирова Эльвира Венеровна, доцент кафедры нефтегазового дела, e-mail: [email protected] Shakirova Elvira, Associate Professor of the Department of Oil and Gas Business, e-mail: [email protected]

2Аверкина Елена Владимировна, старший преподаватель кафедры нефтегазового дела, e-mail: [email protected]

Averkina Elena, Senior Lecturer of the Department of Oil and Gas Business, e-mail: [email protected]

3Сабиров Тимур Ришатович, студент, e-mail: [email protected] Sabirov Timur, Student, e-mail: [email protected]

These days oil and gas fields are supplied with large volumes of domestic and foreign lubricants for drilling muds. The lubricating additives are required to increase technical and economic indicators of controlled directional wells construction. This article tests various lubricating additives, studies their effect on the basic properties of the salt saturated polysaccharide drilling mud applied at the Yaraktinsky oil and gas condensate field. The following reagents have been analyzed: Burflyub, Biolub LVL, Bau DF Lube, Burflyub-BT, ST-Slide DW. The results of testing their compliance to the requirements of specifications and laboratory experiments on their solubility determination in various technological environments are provided.

The article presents the experiments on the identification and detailed study of stickiness of mud cakes derived from artificial and natural solutions. All reagents mentioned above have lubricating properties and can be used without defoaming agents. It should be noted that, drilling mud treatment with ST-Slide DW and Burflyub reagents in the concentration of 3% and 5% slightly increases the pH level. Addition of ST-Slide DW and Bau DF Lube reagents increases the filtering values in 1% concentration. Then filtering values decrease as concentration increases. Drilling mud aging clearly demonstrates the effect of heat on structural-mechanical and rheological properties of a drilling mud. After the thermostatic control all solutions feature decrease in conditional viscosity, reduced indicators of plastic viscosity, static and dynamic tension of shift. When drilling a well it can decrease the torque (under boring tool rotation) and hydraulic resistances in drilling mud circulation. The final decision on the application feasibility of these additives at the Yaraktinsky oil and gas condensate field should be made after industrial testing. At this stage, according to the results of testing lubricating additives in the salt saturated poly-saccharide drilling mud Burflyub-BT lubricant can be recommended for the application at the Yaraktinsky oil and gas condensate field.

Keywords: lubricant (lubricating additive), drilling mud, coefficient of friction, polysaccharide drilling mud, surface tension, rheological performances

For citation: Shakirova E.V., Averkina E.V., Sabirov T.R. The effect of lubricating additives on characteristics of the mud used in well-drilling in Eastern Siberia. Proceedings of the Siberian Department of the Section of Earth Sciences, Russian Academy of Natural Sciences. Geology, Prospecting and Exploration of Ore Deposits. 2016. No. 3 (56). Pp. 86-94. DOI 10.21285/0130-108X-2016-56-3-86-94.

Нефтегазовый промысловый комплекс играет важную роль в современной национальной экономике Российской Федерации. Нефть и газ являются стратегическим сырьем, не только важным для отечественной индустрии, но и идущим и на экспорт.

Необходимость быстрейшего развития экономики нашей страны ставит перед работниками нефтяной промышленности задачу повышения эффективности и улучшения качества бурения, которая включает в себя как количественный рост, то есть увеличение скоростных показателей бурения, так и повышение качества самих буровых работ.

Тенденции развития технологии в последнее время направлены на минимизацию вредного воздействия на продуктивный пласт во время бурения, качественное крепление и цементирование скважины, использование новых технологий для очистки бурового раствора, повышение износостойкости и долговечности узлов трения бурового оборудования и прежде всего породоразрушаю-щего инструмента, уменьшение вредного воздействия на окружающую среду во время бурения.

К решению этих задач привлечены крупные научно-исследовательские учреждения, а также научные кадры ведущих вузов нашей страны. В научно-исследовательских лабораториях и на производстве изыскиваются наиболее совершенные способы проводки скважин в различных условиях.

Восточно-Сибирский регион играет важную роль в развитии России. Перспективными на нефть и газ являются 3/4 общей площади Восточной Сибири (3,2 млн км2). В настоящее время наиболее перспективными считаются Байкитская (Юрубчено-Тохомская) и Непско-Ботуобинская (включая Ковык-тинский район) нефтегазоносные области.

Основные запасы газа связывают с такими газоконденсатными и нефтекон-денсатными месторождениями, как Ко-выктинское, Юрубченское, Собиновское и Ярактинское в южной и юго-восточной части региона, а также Пеляткинское и Дерябинское в Таймырском АО.

Ярактинское месторождение расположено в 140 км от города Усть-Кута, в северной части Усть-Кутского района и южной части Катангского района

Иркутской области. Нефтегазоносность связана с отложениями вендского и кембрийского возрастов - песчаниками ярактинского горизонта общей мощностью до 40 м.

Разработка месторождения ведется наклонно-направленными и горизонтальными скважинами в сложных геолого-технических условиях, в связи с чем наметилась тенденция роста аварийности буровых работ при строительстве скважин, в которой основную роль занимают прихваты бурильного инструмента и обсадных труб [1].

Этот вид осложнений напрямую связан с триботехническими свойствами бурового раствора. Зарубежный и отечественный опыт бурения скважин буровых растворов с улучшенными смазочными свойствами показывает, что это мероприятие оказывает общетехнологическое положительное влияние на работу и износ узлов трения оборудования и породоразрушающего инструмента, снижение осложнений стволов скважин. Указанное достигается без существенных материальных затрат путем введения в буровые растворы специальных смазочных добавок.

Лубриканты снижают силы трения на всех поверхностях контакта, движущихся или перемещаемых элементов (деталей) бурового инструмента и оборудования между собой и с горной породой. При этом снижается износ, повышается длительность эксплуатации оборудования, уменьшается вероятность осложнений процесса бурения вследствие прихватов и посадок бурового инструмента, залипания колонны бурильных труб в желобах и на участках искривления скважины [2].

Трудности, обусловленные большим крутящим моментом и силами трения, особенно велики в наклонных скважинах с большими зенитными углами и в горизонтальных скважинах. Бурильная колонна лежит на нижней стенке скважины и имеет большую площадь контакта с породой и обсадной колонной. В таких условиях применение смазываю-

щей жидкости может дать существенные преимущества при условии, если другие свойства бурового раствора приемлемы и применяется оптимальная технология бурения [3].

Смазочные добавки должны удовлетворять следующим требованиям:

- адсорбироваться на металлических поверхностях с образованием реологически пластичного или полупластичного их состояния с высоким пределом текучести;

- сохранять свои основные свойства в минерализованной среде во всем диапазоне температур и pH, в которых находится буровой раствор;

- не растворяться в водной среде;

- не подвергаться гидролизу или реакциям разложения в водной среде, не оказывать отрицательного воздействия на параметры бурового раствора и проницаемость продуктивного пласта.

В настоящее время на рынке имеется большой ассортимент смазочных добавок для буровых растворов на водной основе. Выбор конкретной добавки зависит от характера действия, экологических соображений, типа раствора, его плотности, от температуры в скважине и от того, какой вид трения преобладает: сталь по стали или сталь по породе. При бурении длинных прямолинейных участков ствола большая часть ствола может быть необсаженной, и будет преобладать трение «сталь по породе» («сталь по фильтрационной корке»). Горизонтальный участок часто бурят после того, как вышележащий ствол перекрыт обсадной колонной. В таком случае будет преобладать трение «сталь по стали»

[4].

В учебно-исследовательской лаборатории буровых растворов и крепления скважин ИРНИТУ были проведены исследования влияния смазочных добавок на основные и смазочные свойства бурового раствора. Изучались следующие образцы смазочных добавок: Бурфлюб -ООО ПСК «Буртехнологии», Биолуб LVL - ООО «Промышленная химия», Bau DF Lube - ООО «Баулюкс»,

Бурфлюб-БТ - ООО ПСК «Буртехноло- Полученные данные исследования

гии», ST-Slide DW - ООО «Сервис ТЭК- растворимости реагентов в различных

бурение». Физико-химические свойства технологических жидкостях определяли

реагентов представлены в табл. 1. при смешении реагент - среда (в соотно-

шении 1:10) (табл. 2).

Таблица 1

Физико-химические свойства смазочных добавок

Наименование характеристики Добавка

Бурфлюб-БТ Bau DF Lube Бурфлюб Биолуб LVL 8Т-8Ше DW

Внешний вид Жидкость от светло-коричневого до темно-коричневого цвета Жидкость от светло-жёлтого до темно-коричневого цвета Жидкость от тёмно-коричневого цвета Жидкость от коричневого до темно-коричневого цвета Жидкость от светло-коричневого до темно-коричневого цвета

Плотность при 20°С, кг/м3 900-1000 900-1090 900-1000 900 900-1050

pH 1%-й дисперсии 7-11,5 7-11,5 7-11,5 7-11,5 7-11,5

Температура застывания, °С -20 -25 -20 -19 -21

Таблица 2

Растворимость смазочных добавок в различных технологических средах

Технологическая среда Раствор

KCl №01 СаС12 №а2СОз

Бурфлюб-БТ Мутная жидкость. В поверхностном слое реагент коричневого цвета. Эмульсия Эмульсия на поверхностном слое, реагент коричневого цвета, жидкость мутная Жидкость мутная (светло-коричневая). Поверхностный слой коричневого цвета Жидкость светло-коричневого цвета. Однородная

Bau DF Lube Жидкость прозрачная. В поверхностном слое реагент темно-коричневого цвета. Эмульсия Слой реагента на поверхности темно-коричневого цвета Слой реагента на поверхности. Раствор мутно-желтого цвета. Эмульсия Жидкость непрозрачная, мутного (светло-коричневого) цвета. Поверхностный слой темно-коричневого цвета

Бурфлюб Жидкость прозрачная. В поверхностном слое реагент коричневого цвета. Произошла коалесценция Слой реагента темно-коричневого цвета. Эмульсия, жидкость прозрачная Прозрачная жидкость. Поверхностный слой темно-коричневого цвета Мутная жидкость светло-коричневого цвета. Поверхностный слой коричневого цвета. На стенках пробирки часть эмульсии

Биолуб LVL Тонкий поверхностный слой желтого цвета. Мутная жидкость бежевого цвета Эмульсия. На поверхности слой реагента желтого цвета. Прозрачная жидкость Раствор бежевого цвета, однородный. На поверхности слой реагента желтого цвета. Мутная жидкость. Светло-желтого цвета. Большой поверхностный слой бежевого цвета.На стенках пробирки часть эмульсии

ST-Slide DW Эмульсия. Поверхностный слой ярко-желтого цвета. Произошла коалесценция. Жидкость прозрачного цвета Эмульсия. На поверхности слой реагента ярко-желтого цвета. Полупрозрачная жидкость. Эмульсия. На поверхности слой реагента ярко-желтого цвета. Произошла коалесценция. Жидкость полупрозрачная Непрозрачная жидкость. Поверхностный слой желтого цвета.

Испытание смазочных добавок проводилось на буровом растворе, применяемом при строительстве эксплуатационных скважин на Ярактинском нефтегахокондженсатном месторождении.

При бурении под техническую и эксплуатационную колонны приготавливается соленасыщенный полисахарид-ный буровой раствор (СПБР) с плотностью 1,22-1,25 г/см3. Состав СПБР: раствор хлорида натрия NaCl плотностью 1,175-1,18 г/см3, кальцинированная сода Na2CO3, крахмал «КРЭМ», биополимер «Биосин», полианионная целлюлоза высокой вязкости «ОснопакH-O».

При тестировании смазочная добавка в соленасыщенный полисахарид-ный буровой раствор вводилась в диапазоне концентраций от 0,1 до 5% в соответствии с рекомендациями производителей добавок.

Замер показателей буровых растворов осуществлялся в соответствии со стандартом API на следующих приборах: вискозиметр (модель 900 фирмы OFITE для измерения реологических показателей), тестер предельного давления для определения коэффициента трения, фильтр-пресс полной площади Fann для определения водоотдачи, прибор для определения коэффициента липкости КТК-2, ВБР-2 для определения условной вязкости, рычажные весы для определения плотности бурового раствора, pH-метр (фирма Oakton) для определения водородного показателя, 5-вальцовая печь (фирма OFITE) для определения воздействия температуры на буровой раствор.

Для определения воздействия забойной температуры на свойства бурового раствора и поведения смазочных добавок в этих условиях было проведено термостатирование при температуре 50°С в течение 24 ч. В геологическом разрезе Ярактинского месторождения максимальная температура на забое достигает 47°С.

Полученные данные лабораторных исследований влияния смазочных доба-

вок на свойства бурового раствора представлены в табл. 3, 4.

Из полученных данных (табл. 3, 4) следует, что по мере повышения концентрации смазочной добавки структурно-реологические и фильтрационные свойства бурового раствора практически не изменяются, плотность бурового раствора до и после термостарения остается постоянной, а именно 1,22 г/см3. Можно отметить, что при обработке бурового раствора реагентами ST-Slide DW и Бурфлюб в концентрации 3 и 5% незначительно увеличивается уровень рН. При добавлении реагентов ST-Slide DW и Bau DF Lube увеличиваются значения показателя фильтрации в 1%-й концентрации, затем снижаются с ее увеличением.

Старение бурового раствора наглядно демонстрирует воздействие тепла на структурно-механические и реологические свойства бурового раствора. У всех растворов после термоста-тирования наблюдается снижение условной вязкости, снижение показателей пластической вязкости, статического и динамического напряжений сдвига. В процессе бурения скважины это может привести к снижению крутящего момента (при вращении бурового инструмента) и гидравлических сопротивлений при циркуляции бурового раствора [5].

Из табл. 3, 4 видно, что лучшей смазывающей способностью обладает реагент Бурфлюб-БТ, затем в равной степени влияют на коэффициент трения Бурфлюб, Биолуб LVL и ST-Slide DW.

Также можно заметить, что при 1%-й концентрации смазочных добавок показатели коэффициента трения являются оптимальными, и добавление в буровой раствор большей концентрации добавки нецелесообразно с экономической точки зрения [6].

У большинства детергентов с увеличением ее концентрации уменьшается коэффициент липкости. Но, к примеру, наименьшее значение коэффициента липкости при максимальной концентрации у добавки Биолуб LVL оказалось

Таблица 3

Лабораторные исследования смазочных добавок (Бурфлюб-БТ, 8Т-8Ме Б1, Биолуб ЬУЬ) на соленасыщенном полисахаридном буровом растворе

Состав раствора Условная вязкость УВ700/500, с Пластическая вязкость Ппл, сПз Динамическое напряжение сдвига ДНС, Па Статическое напряжение сдвига СНС10/10, Па Фильтрация Ф30, см3 Корка k, мм Коэф-фи-циент липкости k krnn Коэффициент трения k kmp Водородный показатель pн

Исх. СПБР 60,4 26,4 11,2 2,1/2,9 5,6 1 0,192 0,217 7,5

После т/с 42,16 21,0 9,5 1,6/2,1 5,6 1 0,230 0,192 8,44

Бурфлюб-БТ

1 Исх, +0,1% 50,12 23,5 9,8 1,7/2,5 6,4 1 0,212 0,285 8,8

2 Исх, +0,3% 49,64 23,6 10,2 1,9/2,7 6,4 1 0,324 0,303 7

3 Исх, +0,5% 51,04 23,9 10,2 1,8/2,7 5,8 1 0,230 0,169 7

После т/с 30,58 19,3 6,7 1,2/1,4 4,8 1 0,305 0,166 7

4 Исх, +1% 54,36 24,0 10,4 2,1/2,7 4,4 1 0,249 0,143 7,72

После т/с 32,96 18,3 6,5 1,4/1,8 5 1 0,221 0,149 7,8

5 Исх, +3% 51,12 24,6 10,9 2,2/2,8 6 1 0,158 0,121 7,46

После т/с 39,61 19,7 7,5 1,5/2,5 5,4 1 0,158 0,147 7,65

6 Исх, +5% 53,36 23,8 10,6 2,1/2,8 5,8 1 0,141 0,109 7,34

После т/с 46,24 24,3 10,4 1,9/2,4 5,2 1 0,158 0,129 7,56

ST-Slide DW

1 Исх, +0,1% 44,52 22,3 8,0 1,2/1,5 6,8 1 0,194 0,194 8

2 Исх, +0,3% 42 21,4 8,8 1,5/1,9 7,2 1 0,212 0,199 7,68

3 Исх, +0,5% 62 27,8 12,0 2,2/3,5 5,2 1 0,194 0,171 7

После т/с 31,68 21,1 7,6 1,4/1,7 9 1 0,305 0,186 7

4 Исх, +1% 49,24 25,4 10,1 2,1/2,8 7 1 0,158 0,212 8,86

После т/с 30,92 17,7 6,6 0,8/1,1 7,6 1 0,267 0,192 8,83

5 Исх, +3% 54,72 25,2 11,6 2,1/3,1 6 1 0,176 0,205 8,8

После т/с 33,68 18,4 7,0 0,9/1,1 6 1 0,194 0,193 8,55

6 Исх, +5% 61,24 26,3 12,5 2,3/3,4 6,4 1 0,268 0,191 8,8

После т/с 31,56 18,9 7,6 1,4/1,6 4,8 0,5 0,424 0,194 8,59

Биолуб LVL

1 Исх, +0,1% 39 21,4 8,4 1,3/1,7 7,5 1 0,305 0,202 8,61

2 Исх, +0,3% 40,4 21,6 8,4 1,4/1,8 6,2 1 0,249 0,195 8,54

3 Исх, +0,5% 55,12 24,3 11,2 2,4/3,5 5 1 0,230 0,201 8,28

После т/с 26,32 11,5 5,5 1,3/1,6 5,8 1 0,466 0,199 8,28

4 Исх, +1% 57 20,6 10,6 2,3/3,7 6 1 0,194 0,196 7,99

После т/с 32,2 14,5 6,1 1,6/1,9 6,4 1 0,194 0,169 7,99

5 Исх, +3% 58,84 23,7 11,6 2,5/4,1 5,2 1 0,212 0,206 6,74

После т/с 38,16 16,3 6,9 1,9/3,7 6,8 1 0,230 0,161 7,15

6 Исх, +5% 64,4 23,8 12,5 2,5/4,8 5,6 1 0,194 0,187 6,39

После т/с 39,2 17,6 8,4 2/3,8 5 1 0,158 0,160 6,61

Таблица 4

Лабораторные исследования смазочных добавок (Бурфлюб, Bau DF Lube, АСПМ) на соленасыщенном полисахаридном буровом растворе

Состав раствора Условная вязкость УВ 700/500, с Пластическая вязкость Ппл, сПз Динамическое напряжение сдвига ДНС, Па Статическое напряжение сдвига СНС10/10, Па Фильтрация Ф30, 3 см3 Корка k, мм Коэффициент липкости k клип Коэффициент трения k ктр Водородный показатель pH

Исх. СПБР 60,4 26,4 11,2 2,1/2,9 5,6 1 0,192 0,217 7,5

После т/с 42,16 21,0 9,5 1,6/2,1 5,6 1 0,230 0,192 8,44

Бурфлюб

Исх. +0,1% 49,76 21,4 10,4 2,3/2,8 7,4 1 0,212 0,212 7,96

Исх. +0,3% 47,72 20,9 10,3 2,1/2,8 6 1 0,176 0,190 7,48

Исх. +0,5% 54,56 22,1 10,4 2,3/3,5 6,6 1 0,122 0,199 6,67

После т/с 32,6 16,3 7,4 2,0/3,9 6,4 1 0,194 0,200 7,36

Исх. +1% 54,96 22,2 10,3 2,2/3,5 5,8 1 0,122 0,206 6,44

После т/с 34,12 16,3 7,4 2,1/3,7 6,4 1 0,122 0,202 7,24

Исх. +3% 58 23,2 11,5 2,3/3,2 6,4 1 0,249 0,207 11,08

После т/с 40,4 18,7 8,7 2,4/3,7 6 1 0,158 0,163 6,25

Исх. +5% 61,96 23,2 12,7 2,4/3,3 6,4 1 0,158 0,203 11,46

После т/с 40,88 18,5 8 2,3/3,6 6 1 0,176 0,190 6,07

Bau DF Lube

Исх. +0,1% 50,32 22,4 10,3 2,1/3 6 1 0,249 0,193 7,62

Исх. +0,3% 48,4 21,6 10 2,2/3,2 6,4 1 0,158 0,189 7,84

Исх. +0,5% 56,48 23,9 11 2,2/3,4 5,6 1 0,268 0,288 8,44

После т/с 36,16 18,6 8,0 1,9/2,2 5,2 1 0,255 8,40

Исх. +1% 63,12 24,1 12,2 2,4/3,7 7,4 1 0,105 0,208 8,49

После т/с 32,24 16,6 6,7 1,6/1,9 5,2 1 0,140 0,203 8,39

Исх. +3% 66,84 24,5 11,9 2,4/3,5 5,6 1 0,230 0,177 8,31

После т/с 36,36 17,8 7,2 1,7/2 4,8 1 0,230 0,138 8,19

Исх. +5% 67,64 24,9 12,5 2,4/3,6 5,4 1 0,194 0,192 8,13

После т/с 41,32 18,6 8 1,8/2,1 4,8 1 0,194 0,146 8,02

АСПМ

Исх. +0,1% 44,11 21,5 10 1,6/2,4 5,6 1 0,286 0,182 8,47

Исх. +0,3% 42,14 21,9 9,4 1,6/2,3 7,2 1 0,324 0,191 8,52

Исх. +0,5% 41,06 21,0 9,6 1,7/2,3 6,4 1 0,286 0,185 8,51

После т/с 42 21,5 8,8 1,7/2,2 5,2 1 0,267 0,291 8,29

Исх. +1% 45,38 23,0 10,4 2,1/2,4 6,4 1 0,194 0,206 8,55

После т/с 42,67 20,7 9,0 1,8/2,3 5,6 1 0,176 0,180 8,42

Исх. +3% 54,4 24,1 10,7 2,2/2,2 6,6 1 0,194 0,230 8,62

После т/с 43,23 21,6 9,6 1,8/2,3 6,2 1 0,207 0,201 8,41

Исх. +5% 68 28,6 13,2 2,5/2,9 6,2 1 0,230 0,206 8,71

После т/с 50,37 24,9 11,6 2,1/2,6 6,2 1 0,230 0,204 8,42

равным значению коэффициента липкости у добавки Бурфлюб при минимальной его концентрации. Это говорит о большей эффективности смазочной добавки Бурфлюб.

После термостатирования значения коэффициента трения и липкости для различных добавок относительно выравниваются, что говорит о существенном влиянии пластовых условий на смазочные способности добавок [7].

В качестве сравнительного эксперимента использовали вместо смазочной добавки АСПМ-алюмосиликатная стек-локристаллическая полая микросфера. Микросферы применяются в буровых

растворах при цементировании нефтяных скважин для локализации выбросов нефти.

Одной из основных характеристик смазывающей способности добавки кроме коэффициента трения и коэффициента липкости является значение коэффициента поверхностного натяжения [8].

Замеры производились методом счета капель, далее поверхностное натяжение рассчитывалось по формуле

0,072-№к.в

в = -,

№к.р

где Ык.в - количество капель дистиллированной воды; Ык.р - количество капель исследуемого раствора.

Полученные значения поверхностного натяжения у растворов с добавлением смазочной добавки приведены в табл. 5. Видно, что межфазное натяжение у растворов со смазочными добавками ST-Slide DW, Биолуб LVL, Бурфлюб, Bau DF Lube в различных концентрациях несколько выше, чем у Бурфлюб-БТ, что в очередной раз подтверждает эффективность данной смазочной добавки по сравнению с остальными.

рекомендована смазочная добавка Бурфлюб-БТ.

Применение рекомендуемых смазочных добавок к буровому раствору при бурении скважин позволит уменьшить время, затрачиваемое на ликвидацию осложнений и их последствий в процессе бурения, и увеличить тем самым технико-экономические показатели.

Также проведенный эксперимент показал, что смазочные добавки могут

Таблица 5

Лабораторное исследование поверхностного натяжения буровых растворов со смазочными добавками

Концентрация смазочной добавки С, % Поверхностное натяжение а, Н/м

Бурфлюб-БТ ST-Slide DW Биолуб LVL Бурфлюб Bau DF Lube

0,1 0,050 0,075 0,064 0,067 0,067

0,3 0,046 0,072 0,045 0,056 0,062

0,5 0,043 0,067 0,043 0,045 0,069

1 0,032 0,062 0,042 0,046 0,062

3 0,028 0,058 0,035 0,043 0,055

5 0,027 0,046 0,037 0,037 0,046

Окончательное решение о возможности применения данных добавок следует принимать после проведения промышленных испытаний, на данном же этапе по результатам тестирования смазочных добавок в соленасыщенном по-лисахаридном буровом растворе к применению на Ярактинском нефтегазокон-денсатном месторождении может быть

являться довольно активными компонентами бурового раствора и влияют не только на смазочные характеристики бурового раствора, но и на структурно-механические и фильтрационные свойства. Причиной данного явления является адсорбция компонентов смазочных добавок на поверхности твердых частиц в растворе.

Библиографический список

1. Булатов А.И., Макаренко П.П., Проселков Ю.М. Буровые промывочные и тампонажные растворы: учеб.пособие для вузов. М.: Недра, 1999. 424 с.

2. Рязанов Я.А. Энциклопедия по буровым растворам. Оренбург: Летопись, 2005. 663 с.

3. Ламбин А.И., Иванишин В.М., Сираев Р.У., Аверкина Е.В., Шакирова Э.В., Коротков А.В. Исследование влияния состава эмульсионных буровых растворов на их показатели // Известия Сибирского отделения Секции наук о Земле Российской академии естественных

наук. Геология, поиски и разведка рудных месторождений. 2015. №№ 4. С. 58-66.

4. Sotnikov A.K., Chernokalov K.A., Akchurin R.K. More Productive Drilling as a key technology of deep horizontal boreholes drilling in basal carbonate crevice, urubcheno-tohomskoe oil-gas-condensate pool // GEOBAIKAL: 2nd Irkutsk International Conference. Irkutsk, 2012.

5. Вахромеев А.Г., Иванишин В.М., Сираев Р.У., Разяпов Р.К., Данилова Е.М., Сверкунов С.А. Геологические аспекты применения технологии

первичного вскрытия сложенных карбонатных коллекторов рифея на «управляемом давлении» // Бурение и нефть. 2013. № 11. С. 30-33.

6. Повалихин А.С., Калинин А.Г., Бастриков С.Н., Солодкий К.М. Бурение наклонных, горизонтальных и многоза-

бойных скважин. М.: ЛитНефтеГаз, 2011. 647 с.

7. Петров Н.А., Давыдова И.Н. Влияние лубрикантов на основные и смазочные свойства глинистых растворов // Нефтегазовое дело. 2012. Т. 10. № 3. С. 15-23.

References

1. Bulatov A.I., Makarenko P.P., Proselkov Ju.M. Burovye promyvochnye i tamponazhnye rastvory [Drilling fluids and cementing slurries]. Moscow, Nedra Publ., 1999. 424 p.

2. Rjazanov Ja.A. Jenciklopedija po burovym rastvoram [Encyclopedia of drilling muds]. Orenburg, Letopis' Publ., 2005. 663 p.

3. Lambin A.I., Ivanishin V.M., Si-raev R.U., Averkina E.V., Shakirova Je.V., Korotkov A.V. Issledovanie vlijanija sostavajemul'sionnyh burovyh rastvorov na ih pokazateli [Study of the effect of emulsion drilling mud composition on its performance]. Izvestija Sibirskogo otdelenija Sekcii nauk o Zemle Rossijskoj akademii estestvennyh nauk. Geologija, poiski i razvedka rudnyh mestorozhdenij [Proceedings of the Siberian Branch of the Section of Earth Sciences of the Russian Academy of Natural Sciences. Geology, Prospecting and Exploration of Ore Deposits], 2015, no. 4, pp. 58-66.

4. Sotnikov A.K., Chernokalov K.A., Akchurin R.K. More Productive Drilling as a key technology of deep horizontal

boreholes drilling in basal carbonate crevice, urubcheno-tohomskoe oil-gas-condensate pool. GEOBAIKAL: 2nd Irkutsk International Conference. Irkutsk, 2012.

5. Vahromeev A.G., Ivanishin V.M., Siraev R.U., Razjapov R.K., Danilova E.M., Sverkunov S.A. Geologicheskie aspekty primenenija tehnologii pervich-nogo vskrytija slozhennyh karbonatnyh kollektorov rifeja na «upravljaemom davlenii» [Geological aspects of technology using primary opening-up of Riphean complicated carbonate reservoirs with "controlled pressure"]. Burenie i neft' [Drilling and Oil], 2013, no. 11, рр. 30-33.

6. Povalihin A.S., Kalinin A.G., Bastrikov S.N., Solodkij K.M. Burenie naklonnyh, gorizontal'nyh i mnogozabojnyh skvazhin [Drilling of inclined, horizontal and branched wells]. Moscow, LitNefte-Gaz, 2011. 647 р.

7. Petrov N.A., Davydova I.N. Vlija-nie lubrikantov na osnovnye i smazochnye svojstva glinistyh rastvorov [Effect of lubricants on basic and lubricating properties of muds]. Neftegazovoe delo [Oil and Gas Business], 2012, V. 10, no. 3, рр. 15-23.

Статья поступила 25.06.2016 г.

Article received25.06.2016.

cyberleninka.ru

Поставка химических и специальных материалов

Объекты лота:
Наименование Цена за ед. Кол-во Ед. изм. Сумма
Транспортные расходы не указана 1 не указана 118 000,00
Спирт поливиниловый ПВС, марка 18/11 не указана 0,3 Тонна; Метрическая тонна (1000 кг) 124 586,68
Кислота лимонная 1-в.пищевая не указана 14,4 Тонна; Метрическая тонна (1000 кг) 1 565 252,06
Кислота лимонная 1-в.пищевая не указана 14 Тонна; Метрическая тонна (1000 кг) 1 618 500,08
Транспортные расходы не указана 1 не указана 118 000,00
Добавка смазывающая Бурлак сухая не указана 0,6 Тонна; Метрическая тонна (1000 кг) 72 727,20
Гидроксид натрия (едкий натр) 99,5%, гранулированный, марка ГР высший сорт СТО 00203275-206-2007 в мешках не указана 65 Тонна; Метрическая тонна (1000 кг) 6 606 339,74
Сода кальцинированная марки Б не указана 5,25 Тонна; Метрическая тонна (1000 кг) 105 733,97
Абсорбент Spill-Sorb 80х40х35см, мешок 25 кг. не указана 0,05 Тонна; Метрическая тонна (1000 кг) 37 691,34
Клей на основе карбоксиметилцеллюлозы КМЦ-Н не указана 0,085 Тонна; Метрическая тонна (1000 кг) 14 547,00
Кислота нитрилотриметилфосфоновая (НТФ) не указана 0,075 Тонна; Метрическая тонна (1000 кг) 23 126,21
Транспортные расходы не указана 1 не указана 15 713,85
Смазочная добавка БИОЛУБ LVL ТУ 2458-009-82330939-2008 с изм. 1 - 6, в полипропиленовых бочках объёмом 200 дм3 не указана 2 Тонна; Метрическая тонна (1000 кг) 196 819,99
Препарат ОС-20 марка А не указана 1,62 Тонна; Метрическая тонна (1000 кг) 239 600,59
Соль динатриевая этилендиамин-N,N',N'-тетрауксусной кислоты, 2-водная (трилон Б) в мешках 25 кг не указана 0,1 Тонна; Метрическая тонна (1000 кг) 26 703,11
Кислота нитрилотриметил фосфоновая (НТФ) не указана 0,1 Тонна; Метрическая тонна (1000 кг) 26 114,93
Пластификатор С-3 сухой, упаковка мешок 25 кг. ТУ 5870-002-58042865-03 не указана 0,3 Тонна; Метрическая тонна (1000 кг) 38 586,00
Пластификатор С-3 сухой, упаковка мешок 25 кг. ТУ 5745-001-21095447-2015 не указана 2,075 Тонна; Метрическая тонна (1000 кг) 266 886,50
Натр едкий технический чешуированный не указана 7,8 Тонна; Метрическая тонна (1000 кг) 792 760,77
Спирт поливиниловый ПВС, марка 18/11 не указана 2,075 Тонна; Метрическая тонна (1000 кг) 861 724,50
Транспортные расходы не указана 1 не указана 135 700,00
Асбест хризотиловый ОМ-6 не указана 2,7 Тонна; Метрическая тонна (1000 кг) 105 385,81
Кислота оксиэтилидендифосфоновая ОЭДФ ТУ 2439-363-05763441-2002, в мешках не указана 0,1 Тонна; Метрическая тонна (1000 кг) 29 771,11
Карбоксиметилцеллюлоза ТУ 2231-001-53535770-01 не указана 0,18 Тонна; Метрическая тонна (1000 кг) 25 662,00

is-zakupki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *