Барий и его характеристики
Общая характеристика бария
Барий встречается в природе главным образом в виде сульфатов и карбонатов, образуя минералы барит BaSO4 и витерит BaCO3. Содержание бария в земной коре равно 0,05% (масс.), что значительно меньше, чем содержание кальция.
В виде простого вещества барий представляет собой серебристо-белый металл (рис. 1), который на воздухе покрывается желтоватой пленкой продуктов взаимодействия с составными частями воздуха. Барий по твердости напоминает свинец. Плотность 3,76 г/см 3. Температура плавления 727oС, кипения 1640oС. Имеет объемно центрированную кристаллическую решетку.

Рис. 1. Барий. Внешний вид.
Атомная и молекулярная масса бария
Поскольку в свободном состоянии барий существует в виде одноатомных молекул Ba, значения его атомной и молекулярной масс совпадают. Они равны 137,327.
Изотопы бария
Известно, что в природе барий может находиться в виде семи стабильных изотопов
Существуют искусственные нестабильные изотопы бария с массовыми числами от 114-ти до 153-х, а также десять изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 133Ba с периодом полураспада равным 10,51 лет.
Ионы бария
На внешнем энергетическом уровне атома бария имеется два электрона, которые являются валентными:
1s22s22p63s23p63d104s24p64d 105s25р 66s2.
В результате химического взаимодействия барий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:
Ba0 -2e → Ba2+.
Молекула и атом бария
В свободном состоянии барий существует в виде одноатомных молекул Ba. Приведем некоторые свойства, характеризующие атом и молекулу бария:
Энергия ионизации атома, эВ |
5,21 |
Относительная электроотрицательность |
0,89 |
Радиус атома, нм |
0,222 |
Примеры решения задач
Барий
Барий | |
---|---|
Атомный номер | 56 |
Внешний вид простого вещества |
мягкий, слегка вязкий серебристо-белый металл |
Свойства атома | |
Атомная масса (молярная масса) |
137,327 а. е. м. (г/моль) |
Радиус атома | 222 пм |
Энергия ионизации (первый электрон) |
502,5 (5,21) кДж/моль (эВ) |
Электронная конфигурация | [Xe] 6s 2 |
Химические свойства | |
Ковалентный радиус | 198 пм |
Радиус иона | (+2e) 134 пм |
Электроотрицательность (по Полингу) |
0,89 |
Электродный потенциал | 0 |
Степени окисления | 2 |
Термодинамические свойства простого вещества | |
Плотность | 3,5 г/см³ |
Молярная теплоёмкость | 28,1 Дж/(K·моль) |
Теплопроводность | (18.4) Вт/(м·K) |
Температура плавления | 1 002 K |
Теплота плавления | 7,66 кДж/моль |
Температура кипения | 1 910 K |
Теплота испарения | 142,0 кДж/моль |
Молярный объём | 39,0 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки |
кубическая объёмноцентрированая |
Параметры решётки | 5,020 Å |
Отношение c/a | n/a |
Температура Дебая | n/a K |
Ba | 56 |
137,327 | |
[Xe]6s2 | |
Барий |
Барий — элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов, с атомным номером 56. Обозначается символом Ba (лат. Barium). Простое вещество барий (CAS-номер: 7440-39-3) — мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью.
Барий был открыт в виде оксида BaO в 1774 г. Карлом Шееле. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.
Своё название получил от греческого barys — «тяжёлый», так как его оксид (BaO) был впервые охарактеризован, как имеющий большую массу.
Нахождение в природе
Содержание бария в земной коре составляет 0,05 % по массе; в морской воде среднее содержание бария составляет 0,02 мг/литр. Основные минералы: барит (BaSO4) и витерит (BaCO3).
Редкие минералы бария: цельзиан или бариевый полевой шпат (алюмосиликат бария), гиалофан (смешанный алюмосиликат бария и калия), нитробарит (нитрат бария) и пр.
Изотопы
Природный барий состоит из смеси семи стабильных изотопов: 130Ba, 132Ba, 134Ba, 135Ba, 136Ba, 137Ba, 138Ba. Последний является самым распространенным (71,66 %). Известны и радиоактивные изотопы бария, наиболее важным из которых является 140Ba. Он образуется при распаде урана, тория и плутония.
Получение
Основное сырье для получения бария — баритовый концентрат (80-95 % BaSO4), который в свою очередь получают флотацией барита. Сульфат бария в дальнейшем восстанавливают коксом или природным газом:
BaSO4 + 4С = BaS + 4CO↑
BaSO4 + 2CH4 = BaS + 2С + 4H2O↑.
Далее сульфид при нагревании гидролизуют до гидроксида бария Ba(OH)2 или под действием CO2 превращают в нерастворимый карбонат бария BaCO3, который затем переводят в оксид бария BaO (прокаливание при 800 °C для Ba(OH)2 и свыше 1000 °C для BaCO3):
BaS + 2H2O = Ba(OH)2 + H2S↑
BaS + H2O + CO2 = BaCO3 + H2S↑
Ba(OH)2 = BaO + H2O↑
BaCO3 = BaO + CO2↑
Металлический барий получают из оксида восстановлением алюминием в вакууме при 1200-1250°С:
4BaO + 2Al = 3Ba + BaAl2O4.
Очищают барий перегонкой в вакууме или зонной плавкой.
Физические свойства
Барий — серебристо-белый ковкий металл. При резком ударе раскалывается. Существуют две аллотропные модификации бария: до 375 °C устойчив α-Ba с кубической объемно-центрированной решеткой (параметр а = 0,501 нм), выше устойчив β-Ba.
Твердость по минералогической шкале 1,25; по шкале Мооса 2.
Хранят металлический барий в керосине или под слоем парафина.
Химические свойства
Барий — щёлочноземельный металл. Интенсивно окисляется на воздухе, образуя оксид бария BaO и нитрид бария Ba3N2, а при незначительном нагревании воспламеняется. Энергично реагирует с водой, образуя гидроксид бария Ba(ОН)2:
Ba + 2Н2О = Ba(ОН) 2 + Н2↑
Активно взаимодействует с разбавленными кислотами. Многие соли бария нерастворимы или малорастворимы в воде: сульфат бария BaSO4, сульфит бария BaSO3, карбонат бария BaCO3, фосфат бария Ba3(PO4)2. Сульфид бария BaS, в отличие от сульфида кальция CaS, хорошо растворим в воде.
Легко вступает в реакцию с галогенами, образуя галогениды.
При нагревании с водородом образует гидрид бария BaH2, который в свою очередь с гидридом лития LiH дает комплекс Li[BaH3].
Реагирует при нагревании с аммиаком:
6Ba + 2NH3 = 3BaH2 + Ba3N2
Нитрид бария Ba3N2 при нагревании взаимодействует с CO, образуя цианид:
Ba3N2 + 2CO = Ba(CN)2 + 2BaO
С жидким аммиаком дает темно-синий раствор, из которого можно выделить аммиакат [Ba(NH
[Ba(NH3)6] = Ba(NH2)2 + 4NH3 + Н2
Карбид бария BaC2 может быть получен при нагревании в дуговой печи BaO с углем.
С фосфором образует фосфид Ba3P2.
Барий восстанавливает оксиды, галогениды и сульфиды многих металлов до соответствующего металла.
Качественный и количественный анализ
Качественно в растворах барий обнаруживается по выпадению осадка сульфата бария BaSO4, отличимого от соответствующих сульфатов кальция и сульфатов стронция крайне низкой растворимостью в неорганических кислотах.
Родизонат натрия выделяет из нейтральных солей бария характерный красно-бурый осадок родизоната бария. Реакция является очень чувствительной, специфичной, позволяя определить 1 часть ионов бария на 210000 массовых частей раствора[2].
Соединения бария окрашивают пламя в желто-зеленый цвет (длина волн 455 и 493 нм).
Количественно барий определяют гравиметрическим методом в виде BaSO4 или BaCrO4.
Применение
Применение в качестве геттерного материала
Металлический барий, часто в сплаве с алюминием используется в качестве газопоглотителя (геттера) в высоковакуумных электронных приборах, а так же добавляется совместно с цирконием в жидкометаллические теплоносители (сплавы натрия, калия, рубидия, лития, цезия) для уменьшения агрессивности к трубопроводам, и в металлургии.
Оптика
Фторид бария применяется в виде монокристаллов в оптике (линзы, призмы).
Пиротехника
Пероксид бария используется для пиротехники и как окислитель. Нитрат бария и хлорат бария используется в пиротехнике для окрашивания пламени (зеленый огонь).
Атомно-водородная энергетика
Хромат бария применяется при получении водорода и кислорода термохимическим способом (цикл Ок-Ридж, США).
Высокотемпературная сверхпроводимость
Оксид бария совместно с оксидами меди и редкоземельных металлов применяется для синтеза сверхпроводящей керамики работающей при температуре жидкого азота и выше.
Ядерная энергетика
Оксид бария применяется для варки специального сорта стекла — применяемого для покрытия урановых стержней. Один из широкораспространенных типов таких стекол имеет следующий состав — (оксид фосфора — 61 %, ВаО — 32 %, оксид алюминия — 1,5 %, оксид натрия — 5,5 %). В стекловарении для атомной промышленности применяется так же и фосфат бария.
Химические источники тока
Фторид бария используется в твердотельных фторионных аккумуляторных батареях в качестве компонента фторидного электролита.
Оксид бария используется в мощных медноокисных аккумуляторах в качестве компонента активной массы (окись бария-окись меди).
Сульфат бария применяется в качестве расширителя активной массы отрицательного электрода при производстве свинцово-кислотных аккумуляторов.
Цены
Цены на металлический барий в слитках чистотой 99,9 % колеблются около 30 долларов за 1 кг.
Биологическая роль
Биологическая роль бария изучена недостаточно. В число жизненно важных микроэлементов он не входит. Все растворимые соли бария сильно ядовиты.
himsnab-spb.ru
БАРИЙ | Энциклопедия Кругосвет
Содержание статьиБАРИЙ – химический элемент 2-й группы периодической системы, атомный номер 56, относительная атомная масса 137,33. Расположен в шестом периоде между цезием и лантаном. Природный барий состоит из семи стабильных изотопов с массовыми числами 130(0,101%), 132(0,097%), 134(2,42%), 135(6,59%), 136(7,81%), 137(11,32%) и 138 (71,66%). Барий в большинстве химических соединений проявляет максимальную степень окисления +2, но может иметь и нулевую. В природе барий встречается только в двухвалентном состоянии.
История открытия.
В 1602 Касциароло (болонский сапожник и алхимик) подобрал в окрестных горах камень, который настолько тяжелый, что Касциароло заподозрил в нем золото. Пытаясь выделить золото из камня, алхимик прокалил его с углем. Хотя выделить золото при этом не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым цветом. Известие о столь необычной находке произвело настоящую сенсацию в алхимической среде и необычный минерал, получивший целый ряд названий – солнечный камень (Lapis solaris), болонский камень (Lapis Boloniensis), болонский фосфор (Phosphorum Boloniensis) стал участником разнообразных экспериментов. Но время шло, а золото и не думало выделяться, поэтому интерес к новому минералу постепенно пропал, и долгое время его считали видоизмененной формой гипса или извести. Лишь через полтора столетия, в 1774 известные шведские химики Карл Шееле и Юхан Ган пристально изучили «болонский камень» и установили, что в нем содержится некая «тяжелая земля». Позднее, в 1779, Гитон де Морво назвал эту «землю» барот (barote) от греческого слова «barue» – тяжелый, а в дальнейшем изменил название на барит (baryte). Под этим названием бариевая земля фигурировала в учебниках химии конца 18 – начала 19 вв. Так, например, в учебнике А.Л.Лавуазье (1789) барит входит в список солеобразующих землистых простых тел, причем приводится и другое название барита – «тяжелая земля» (terre pesante, лат. terra ponderosa). Содержащийся в минерале неизвестный пока металл стали называть барием (лат. – Barium). В русской литературе 19 в. также употреблялись названия барит и барий. Следующим известным минералом бария стал природный карбонат бария, открытый в 1782 Витерингом и названный впоследствии в его честь витеритом. Металлический барий был впервые получен англичанином Гэмфри Дэви в 1808 путем электролиза влажного гидроксида бария с ртутным катодом и последующим испарением ртути из амальгамы бария. Следует отметить, что в том же 1808 несколько раньше Дэви амальгаму бария получил шведский химик Йенс Берцелиус. Несмотря на свое название, барий оказался сравнительно легким металлом с плотностью 3,78 г/см3, поэтому в 1816 английский химик Кларк выступил с предложением отклонить название «барий» на том основании, что если бариевая земля (оксид бария) действительно тяжелее других земель (оксидов), то металл, наоборот, легче других металлов. Кларк хотел назвать этот элемент плутонием в честь древнеримского бога, властителя подземного царства Плутона, однако это предложение не встретило поддержки у других ученых и легкий металл продолжал именоваться «тяжелым».
Барий в природе.
В земной коре содержится 0,065% бария, он встречается в виде сульфата, карбоната, силикатов и алюмосиликатов. Основные минералы бария – уже упоминавшиеся выше барит (сульфат бария), называемый также тяжелым или персидским шпатом, и витерит (карбонат бария). Мировые минерально-сырьевые ресурсы барита оценивались в 1999 в 2 млрд. тонн, значительная часть их сосредоточена в Китае (около 1 млрд. тонн) и в Казахстане (0,5 млрд. тонн). Большие запасы барита есть и в США, Индии, Турции, Марокко и Мексике. Российские ресурсы барита оцениваются в 10 миллионов тонн, его добыча ведется на трех основных месторождениях, расположенных в Хакасии, Кемеровской и Челябинской областях. Общая годовая добыча барита в мире составляет около 7 миллионов тонн, Россия производит 5 тыс. тонн и импортирует 25 тыс. тонн барита в год.
Получение.
Основным сырьем для получения бария и его соединений служат барит и, реже, витерит. Восстанавливая эти минералы каменным углем, коксом или природным газом, получают соответственно сульфид и оксид бария:
BaSO4 + 4C = BaS + 4CO
BaSO4 + 2CH4 = BaS + 2C + 4H2O
BaCO3 + C = BaO + 2CO
Металлический барий получают, восстанавливая его оксидом алюминия.
3BaO + 2Al = 3Ba + Al2O3
Впервые этот процеcc осуществил русский физико-химик Н.Н.Бекетов. Вот как он описывал свои опыты: «Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (алюминия) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния…». Сейчас процесс восстановления алюминием проводят в вакууме при температурах от 1100 до 1250° C, при этом образующийся барий испаряется и конденсируется на более холодных частях реактора.
Кроме того, барий можно получить электролизом расплавленной смеси хлоридов бария и кальция.
Простое вещество.
Барий – серебристо-белый ковкий металл, при резком ударе раскалывается. Температура плавления 727° С, температура кипения 1637° С, плотность 3,780 г/см3. При обычном давлении существует в двух аллотропных модификациях: до 375° C устойчив a-Ba с кубической объемно-центрированной решеткой, выше 375° С устойчив b-Ba. При повышенном давлении образуется гексагональная модификация. Металлический барий обладает высокой химической активностью, он интенсивно окисляется на воздухе, образуя пленку, содержащую BaO, BaO2 и Ba3N2, при незначительном нагревании или при ударе воспламеняется.
2Ba + O2 = 2BaO; Ba + O2 = BaO2; 3Ba + N2 = Ba3N2,
поэтому барий хранят под слоем керосина или парафина. Барий энергично реагирует с водой и растворами кислот, образуя гидроксид бария или соответствующие соли:
Ba + 2H2O = Ba(OH)2 + H2
Ba + 2HCl = BaCl2 + H2
С галогенами барий образует галогениды, с водородом и азотом при нагревании – соответственно гидрид и нитрид.
Ba + Cl2 = BaCl2; Ba + H2 = BaH2
Металлический барий растворяется в жидком аммиаке с образованием темно-синего раствора, из которого можно выделить аммиакат Ba(NH3)6 – кристаллы с золотистым блеском, легко разлагающиеся с выделением аммиака. В этом соединении барий имеет нулевую степень окисления.
Применение в промышленности и науке.
Применение металлического бария весьма ограничено из-за его высокой химической активности, соединения бария используются гораздо шире. Сплав бария с алюминием – сплав альба, содержащий 56% Ba – основа геттеров (поглотителей остаточных газов в вакуумной технике). Для получения собственно геттера барий испаряют из сплава, нагревая его в вакуумированной колбе прибора, в результате на холодных частях колбы образуется «бариевое зеркало». В небольших количествах барий используется в металлургии для очистки расплавленных меди и свинца от примесей серы, кислорода и азота. Барий добавляют в типографские и антифрикционные сплавы, сплав бария с никелем используется для изготовления деталей радиоламп и электродов свечей зажигания в карбюраторных двигателях. Кроме того, есть нестандартные применения бария. Одно из них – создание искусственных комет: выпущенные с борта космического аппарата пары бария легко ионизируются солнечными лучами и превращаются в яркое плазменное облако. Первая искусственная комета была создана в 1959 во время полета советской автоматической межпланетной станции «Луна-1». В начале 1970-х германские и американские физики, проводя исследования электромагнитного поля Земли, выбросили над территорией Колумбии 15 килограмм мельчайшего порошка бария. Образовавшееся плазменное облако вытянулось вдоль линий магнитного поля, позволив уточнить их положение. В 1979 струи бариевых частиц использовали для изучения полярного сияния.
Соединения бария.
Наибольший практический интерес представляют соединения двухвалентного бария.
Оксид бария (BaO): промежуточный продукт в производстве бария – тугоплавкий (температура плавления около 2020° C) белый порошок, реагирует с водой, образуя гидроксид бария, поглощает углекислый газ из воздуха, переходя в карбонат:
BaO + H2O = Ba(OH)2; BaO + CO2 = BaCO3
Прокаливаемый на воздухе при температуре 500–600° C, оксид бария реагирует с кислородом, образуя пероксид, который при дальнейшем нагревании до 700° C вновь переходит в оксид, отщепляя кислород:
2BaO + O2 = 2BaO2; 2BaO2 = 2BaO + O2
Так получали кислород вплоть до конца 19 в., пока не был разработан метод выделения кислорода перегонкой жидкого воздуха.
В лаборатории оксид бария можно получить прокаливанием нитрата бария:
2Ba(NO3)2 = 2BaO + 4NO2 + O2
Сейчас оксид бария используется как водоотнимающее средство, для получения пероксида бария и изготовления керамических магнитов из феррата бария (для этого смесь порошков оксидов бария и железа спекают под прессом в сильном магнитном поле), но основное применение оксида бария – изготовление термоэмиссионных катодов. В 1903 молодой немецкий ученый Венельт проверял закон испускания электронов твердыми телами, открытый незадолго до этого английским физиком Ричардсоном. Первый из опытов с платиновой проволокой полностью подтвердил закон, но контрольный эксперимент не удался: поток электронов резко превышал ожидаемый. Поскольку свойства металла не могли измениться, Венельт предположил, что на поверхности платины есть какая-то примесь. Перепробовав возможные загрязнители поверхности, он убедился в том, что дополнительные электроны испускал оксид бария, входивший в состав смазки вакуумного насоса, используемого в эксперименте. Однако научный мир не сразу признал это открытие, так как его наблюдение не удавалось воспроизвести. Лишь почти через четверть века англичанин Колер показал, что для проявления высокой термоэлектронной эмиссии оксид бария нужно прогревать при очень низких давлениях кислорода. Объяснить это явление смогли только в 1935. Немецкий ученый Поль предположил, что электроны испускаются небольшой примесью бария в оксиде: при низких давлениях часть кислорода улетучивается из оксида, а оставшийся барий легко ионизируется с образованием свободных электронов, которые покидают кристалл при нагревании:
2BaO = 2Ba + O2; Ba = Ba2+ + 2е
Правильность этой гипотезы была окончательно установлена в конце 1950-х советскими химиками А.Бунделем и П.Ковтуном, которые измерили концентрацию примеси бария в оксиде и сопоставили ее с потоком термоэмиссии электронов. Сейчас оксид бария является активной действующей частью большинства термоэмиссионных катодов. Так например, пучок электронов, формирующий изображение на экране телевизора или компьютерного монитора, испускается оксидом бария.
Гидроксид бария, октагидрат (Ba(OH)2·8H2O). Белый порошок, хорошо растворимый в горячей воде (больше 50% при 80° C), хуже в холодной (3,7% при 20° C). Температура плавления октагидрата 78° C, при нагревании до 130° C он переходит в безводный Ba(OH)2. Гидроксид бария получают растворяя оксид в горячей воде или нагревая сульфид бария в потоке перегретого пара. Гидроксид бария легко реагирует с углекислым газом, поэтому его водный раствор, называемый «баритовой водой» используют в аналитической химии в качестве реактива на CO2. Кроме того, «баритовая вода» служит реактивом на сульфат- и карбонат-ионы. Гидроксид бария применяется для удаления сульфат-ионов из растительных и животных масел и промышленных растворов, для получения гидроксидов рубидия и цезия, в качестве компонента смазок.
Карбонат бария (BaCO3). В природе – минерал витерит. Белый порошок, нерастворимый в воде, растворимый в сильных кислотах (кроме серной). При нагревании до 1000° С разлагается с выделением CO2:
BaCO3 = BaO + CO2
Карбонат бария добавляют в стекло для увеличения его коэффициента преломления, вводят в состав эмалей и глазурей.
Сульфат бария (BaSO4). В природе – барит (тяжелый или персидский шпат) – основной минерал бария – белый порошок (температура плавления около 1680° C), практически нерастворимый в воде (2,2 мг/л при 18° C), медленно растворяется в концентрированной серной кислоте.
С сульфатом бария издавна связано производство красок. Правда, вначале его использование носило криминальный характер: в измельченном виде барит подмешивали к свинцовым белилам, что значительно удешевляло конечный продукт и, одновременно, ухудшало качество краски. Тем не менее, такие модифицированные белила продавались по той же цене, что и обычные, принося значительную прибыль владельцам красильных заводов. Еще в 1859 в департамент мануфактур и внутренней торговли поступили сведения о жульнических махинациях ярославских заводчиков, добавлявших к свинцовым белилам тяжелый шпат, что «вводит потребителей в обман на счет истинного качества товара, причем поступила и просьба о воспрещении означенным заводчикам употребления шпата при выделке свинцовых белил». Но эти жалобы ни к чему не привели. Достаточно сказать, что в 1882 в Ярославле был основан шпатовый завод, который, в 1885 выпустил 50 тысяч пудов измельченного тяжелого шпата. В начале 1890-х Д.И.Менделеев писал: «…В подмесь к белилам на многих заводах примешивается барит, так как и привозимые из-за границы белила, для уменьшения цены, содержат эту подмесь».
Сульфат бария входит в состав литопона – неядовитой белой краски с высокой кроющей способностью, широко востребованной на рынке. Для изготовления литопона смешивают водные растворы сульфида бария и сульфата цинка, при этом происходит обменная реакция и в осадок выпадает смесь мелкокристаллических сульфата бария и сульфида цинка – литопон, а в растворе остается чистая вода.
BaS + ZnSO4 = BaSO4Ї + ZnSЇ
В производстве дорогих сортов бумаги сульфат бария играет роль наполнителя и утяжелителя, делая бумагу белее и плотнее, его используют и в качестве наполнителя резин и керамики.
Более 95% добываемого в мире барита используется для приготовления рабочих растворов для бурения глубоких скважин.
Сульфат бария сильно поглощает рентгеновские и гамма-лучи. Это свойство широко используется в медицине для диагностики желудочно-кишечных заболеваний. Для этого пациенту дают проглотить суспензию сульфата бария в воде или его смесь с манной кашей – «бариевую кашу» и затем просвечивают рентгеновскими лучами. Те участки пищеварительного тракта, по которым проходит «бариевая каша», на снимке выглядят темными пятнами. Так врач может получить представление о форме желудка и кишок, определить место возникновения заболевания. Сульфат бария используется также для изготовления баритобетона, используемого при строительстве атомных электростанций и атомных заводов для защиты от проникающей радиации.
Сульфид бария (BaS). Промежуточный продукт в производстве бария и его соединений. Торговый продукт представляет собой серый рыхлый порошок, плохо растворимый в воде. Сульфид бария применяется для получения литопона, в кожевенной промышленности для удаления волосяного покрова со шкур, для получения чистого сероводорода. BaS – компонент многих люминофоров – веществ, светящихся после поглощения световой энергии. Именно его получил Касциароло, прокаливая барит с углем. Сам по себе сульфид бария не светится: необходимы добавки веществ-активаторов – солей висмута, свинца и других металлов.
Титанат бария (BaTiO3). Одно из самых промышленно важных соединений бария – белое тугоплавкое (температура плавления 1616° C) кристаллическое вещество, нерастворимое в воде. Получают титанат бария сплавлением диоксида титана с карбонатом бария при температуре около 1300° C:
BaCO3 + TiO2 = BaTiO3 + CO2
Титанат бария – один из лучших сегнетоэлектриков (см. также СЕГНЕТОЭЛЕКТРИКИ), очень ценных электротехнических материалов. В 1944 советский физик Б.М.Вул обнаружил незаурядные сегнетоэлектрические способности (очень высокую диэлектрическую проницаемость) у титаната бария, который сохранял их в широком температурном диапазоне – почти от абсолютного нуля до +125° C. Это обстоятельство, а также большая механическая прочность и влагостойкость титаната бария способствовали тому, что он стал одним из самых важных сегнетоэлектриков, используемых, например, для изготовления электрических конденсаторов. Титанат бария, как и все сегнетоэлектрики, обладает и пьезоэлектрическими свойствами: изменяет свои электрические характеристики под действием давления. При действии переменного электрического поля в его кристаллах возникают колебания, в связи с чем их используют в пьезоэлементах, радиосхемах и автоматических системах. Титанат бария применяли при попытках обнаружить гравитационные волны.
Другие соединения бария.
Нитрат и хлорат (Ba(ClO3)2) бария – составная часть фейерверков, добавки этих соединений придают пламени ярко-зеленую окраску. Пероксид бария входит в состав запальных смесей для алюминотермии. Тетрацианоплатинат(II) бария (Ba[Pt(CN)4]) светится под воздействием рентгеновских и гамма-лучей. В 1895 немецкий физик Вильгельм Рентген, наблюдая свечение этого вещества предположил существование нового излучения, названного впоследствии рентгеновским. Сейчас тетрацианоплатинатом(II) бария покрывают светящиеся экраны приборов. Тиосульфат бария (BaS2O3) придает бесцветному лаку жемчужный оттенок, а, смешав его с клеем, можно добиться полной имитации перламутра.
Токсикология соединений бария.
Все растворимые соли бария ядовиты. Сульфат бария, применяемый при рентгеноскопии, практически нетоксичен. Смертельная доза хлорида бария составляет 0,8–0,9 г, карбоната бария – 2–4 г. При приеме внутрь ядовитых соединений бария возникают жжение во рту, боли в области желудка, слюнотечение, тошнота, рвота, головокружение, мышечная слабость, одышка, замедление пульса и падение артериального давления. Основной метод лечения отравлений барием – промывание желудка и употребление слабительных средств.
Основными источниками поступления бария в организм человека являются пища (особенно морепродукты) и питьевая вода. По рекомендации Всемирной организацией здравоохранения содержание бария в питьевой воде не должно превышать 0,7 мг/л, в России действуют гораздо более жесткие нормы – 0,1 мг/л.
Юрий Крутяков
www.krugosvet.ru
С чем активно взаимодействует на воздухе барий?
Другие предметы Просто Настя 2 (108) С чем активно взаимодействует на воздухе барий? 1) с азотом воздуха 2) с водяным паром 3) с кислородом воздуха 4) все ответы верны 4 года В лидерыОтветы
Амир Мияссаров 5 (1272)с кислородом
2 нравится комментировать 4 года Ответы Mail.Ru Домашние задания Другие предметы Все вопросыКатегории
Избранные
КАТЕГОРИИ
Авто, Мото Автострахование Выбор автомобиля, мотоцикла Оформление авто-мото сделок ГИБДД, Обучение, Права Сервис, Обслуживание, Тюнинг ПДД, Вождение Прочие Авто-темы Автоспорт Бизнес, Финансы Макроэкономика Производственные предприятия Собственный бизнес Страхование Банки и Кредиты Недвижимость, Ипотека Бухгалтерия, Аудит, Налоги Остальные сферы бизнеса Долги, Коллекторы Знакомства, Любовь, Отношения Любовь Знакомства Отношения Расставания Дружба Прочие взаимоотношения Компьютеры, Связь Интернет Железо Программное обеспечение Прочее компьютерное Мобильные устройства Офисная техника Мобильная связь Образование Детские сады Школы ВУЗы, Колледжи Дополнительное образование Образование за рубежом Прочее образование Философия, Непознанное Мистика, Эзотерика Психология Религия, Вера Прочее непознанное Философия Путешествия, Туризм Самостоятельный отдых Документы Отдых в России Отдых за рубежом Прочее туристическое Семья, Дом, Дети Строительство и Ремонт Беременность, Роды Воспитание детей Мебель, Интерьер Домашняя бухгалтерия Домоводство Загородная жизнь Свадьба, Венчание, Брак Организация быта Прочие дела домашние Спорт Футбол Хоккей Экстрим Другие виды спорта Занятия спортом События, результаты Спортсмены Зимние виды спорта Стиль, Мода, Звезды Мода Светская жизнь и Шоубизнес Прочие тенденции стиля жизни Стиль, Имидж Темы для взрослых Другое О проектах Mail.ru Ответы Mail.ru Почта Mail.ru Прочие проекты Новости Mail.ru Агент Mail.ru Мой Мир Mail.ru ICQ Облако Mail.ru Красота и Здоровье Коррекция веса Здоровый образ жизни Врачи, Клиники, Страхование Болезни, Лекарства Косметика, Парфюмерия Баня, Массаж, Фитнес Уход за волосами Маникюр, Педикюр Детское здоровье Салоны красоты и СПА Прочее о здоровье и красоте Животные, Растения Домашние животные Комнатные растения Сад-Огород Дикая природа Прочая живность Города и Страны Вокруг света Карты, Транспорт, GPS Климат, Погода, Часовые пояса Коды, Индексы, Адреса ПМЖ, Недвижимость Прочее о городах и странах Общество, Политика, СМИ Общество Политика Прочие социальные темы Средства массовой информации Еда, Кулинария Закуски и Салаты Первые блюда Вторые блюда Напитки Десерты, Сладости, Выпечка Консервирование Торжество, Праздник Готовим детям Готовим в … Покупка и выбор продуктов На скорую руку Прочее кулинарное Фотография, Видеосъемка Обработка и печать фото Обработка видеозаписей Выбор, покупка аппаратуры Уход за аппаратурой Техника, темы, жанры съемки Прочее фото-видео Товары и Услуги Идеи для подарков Техника для дома Прочие промтовары Сервис, уход и ремонт Прочие услуги Досуг, Развлечения Хобби Концерты, Выставки, Спектакли Охота и Рыбалка Клубы, Дискотеки Рестораны, Кафе, Бары Советы, Идеи Игры без компьютера Прочие развлечения Новый Год День Святого Валентина Восьмое марта Наука, Техника, Языки Гуманитарные науки Естественные науки Лингвистика Техника Работа, Карьера Написание резюме Подработка, временная работа Кадровые агентства Отдел кадров, HR Профессиональный рост Смена и поиск места работы Обстановка на работе Трудоустройство за рубежом Прочие карьерные вопросы Гороскопы, Магия, Гадания Гороскопы Гадания Сны Прочие предсказания Магия Юридическая консультация Административное право Гражданское право Конституционное право Семейное право Трудовое право Уголовное право Финансовое право Жилищное право Право социального обеспечения Военная служба Паспортный режим, регистрация Прочие юридические вопросы Юмор Золотой фонд Искусство и Культура Музыка Литература Кино, Театр Живопись, Графика Архитектура, Скульптура Прочие искусства Компьютерные и Видео игры Прочие Браузерные Клиентские Консольные Мобильные Программирование Другие языки и технологии Java JavaScript jQuery MySQL Perl PHP Python Веб-дизайн Верстка, CSS, HTML, SVG Системное администрирование Домашние задания Другие предметы Литература Математика Алгебра Геометрия Иностранные языки Химия Физика Биология История География Информатика Экономика Русский язык Обществознание Плесский колледж бизнеса и туризма Компания «Azimyt-K»Проекты
Mail.RuПочтаМой МирИгрыНовостиЗнакомстваПоискВсе проекты Вход в личный кабинет Помощь Обратная связь Полная версия Главная Все проекты© Mail.Ru, 2018
touch.otvet.mail.ru
Барий — Знаешь как
Содержание статьи
(Barium; от греч.тяжелый), Ва — хим. элемент II группы периодической системы элементов; ат. н. 56, ат. м. 137,34. Серебристо-белый металл. В соединениях проявляет степень окисления +2. Природный барий состоит из семи стабильных изотопов, среди к-рых преобладает изотоп 138Ва (71,66%). Барий в виде окиси открыл в 1774 швед, химик К. Шееле.
Металлический барий получил в 1808 англ. химик Г. Дэви. Содержание бария в земной коре — 5 X 10 % В свободном состоянии в природе не встречается. Из минералов пром. значение имеют барит и менее распространенный витерит. Важнейшие неорганические соединения: окись BaO, перекись BaO2 , гидроокись Ва (ОН)2,карбонат ВаС03, сульфат BaS04 и хлорид ВаСl2. Кристаллическая решетка Бария кубическая объемноцентрированная с периодом а = 5,019 А;плотность 3,76 г/см3; tпл 710° С; tкип 1637 -1640° С; температурный коэфф линейного расширения (т-ра 0 — 100° С) 1,9 · 10 град ; удельная теплоемкость 0,068 кал/г · град; удельное электрическое сопротивление 6 · 10-5 ом · см, твердость по Бринеллю 4,2, по шкале Мооса 2. По хим. св-вам сходен с кальцием, стронцием и радием. На воздухе быстро окисляется. При нагревании на воздухе легко воспламеняется и сгорает. Энергично разлагает воду. С водородом образует гидрид ВаН2. При нагревании соединяется непосредственно с азотом, серой и галогенами. Основным сырьем для получения бария и его соединений служит барит, к-рый восстанавливают углем в пламенных печах.
Образующийся растворимый сульфид бария перерабатывают на др. соли металла. Металлический барий получают термическим восстановлением его окиси порошком алюминия при т-ре 1100— 1200° С Процесс ведут в электровакуумных аппаратах периодического действия, где последовательно проходят восстановление, отгонка, конденсация и отливка металла в слиток.
Технический продукт содержит 96—98% металла. Двойной перегонкой в вакууме при т-ре 900° С содержание примесей снижают до 1 X 10—4%. Сплавы бария получают электролизом расплава смеси хлоридов. Практическое применение металлического бария невелико. Барий и его сплавы с магнием и алюминием используют для поглощения остаточных газов в технике высокого вакуума (см. Геттеры). Б. вводят в некоторые антифрикционные материалы. Сплавы свинец — барий вытесняют полиграфические сплавы свинец — сурьма. Сплавы бария с никелем применяют для изготовления электродов запальных свечей двигателей и в радиолампах. Сульфат BaS04 применяют как белый пигмент, а также в произ-ве линолеума и бумаги. Титанат BaTi03 — один из важнейших сегнетоэлектри-ческих материалов. Окись ВаО используют при изготовлении стекла, эмалей и термокатализаторов. Перекись Ва02 служит для получения перекиси водорода, для отбеливания тканей, ее используют также в качестве катализатора крекинг-процесса, как один из компонентов запальных смесей в алюмотермии и пиротехнике.
Фторид BaF2 применяется при изготовлении эмалей и оптических стекол. Цирконат BaZr03 — высококачественный огнеупорный материал. Рентгеновское и радиоактивное излучение возбуждает желто-зеленую флуоресценцию комплексной соли Ва [Pt (CN)4], на чем основано применение спец. экранов, покрытых этой солью. Соединения Б. хороню поглощают рентгеновские лучи и гамма-излучение, вследствие чего их вводят в состав защитных материалов в рентгеновских установках и ядерных реакторах. Окрашенные соли Б. являются пигментами: хромат ВаСrO4 — желтый, манганат ВаМnO4 — зеленый. Растворимые соли бария ядовиты.
Характеристика элемента
Свойства бария наиболее близки к свойствам щелочных металлов. Структура атома бария такова, что первый потенциал ионизации (5,21 эВ ) расположен между значениями для лития и натрия. Однако ион Ва+ пока не обнаружен, так как при реакциях удаляются от атома сразу же два электрона с 6s² — орбитали . Суммарный потенциал ионизации (I1+ I2) невелик и равен 9,95 эВ . Образующийся Ва²⁺-ион (Rион= 1.29 А) поляризует анионы слабо, поэтому в соединениях бария связи ионного типа, а его комплексные ионы неустойчивы.
Свойства простого вещества и соединении. Барий немного тверже свинца и мягче цинка. В свободном виде имеет серебристо-белый блеск, но на воздухе блеск теряется, появляется сначала коричневато-желтая, а затем серая пленка —смесь оксида, пероксида и нитрида: ВаО, ВаO2 и Ва3N2 . Образование всех трех веществ идет с выделением значительного количества теплоты. Наиболее устойчив пероксид бария ВаО2 , образующийся из оксида при нагревании до 500°С, но около 800°С ВаO2 разлагается на оксид и кислород, что ранее применялось для получения кислорода из воздуха. Пероксид стронция SrО2 получается значительно труднее и менее устойчив, чем ВаО2. Действием кислорода пол давлением и при повышенной температуре на пероксиды могут быть получены супероксиды типа ВаО4. Взаимодействие металлов НЛ-подгруппы с водородом идет при нагревании, при этом возникают твердые гидриды ионного типа: CaН2, Srh3, ВаН2 . Бария химически активнее кальция и стронция и реагирует с неметаллами более энергично. Уже при обычной температуре он реагирует с оксидом углерода (IV):
5Ва + 2CO2 = BaC2 + 4BaO
При высокой температуре Ва восстанавливает оксид углерода (II):
Ва + СО = ВаО + С
Ba + 2C = BaC2
Оксид бария ВаО с водой дает щелочь (баритовая вода):
ВаО + Н2О = Ва(ОН)2
а пероксид бария ВаО2 служит для получения пероксида водорода но обратимой реакции :
BaO2 + 2h3O ⇄ Ва (ОН)2 + Н2O
Равновесие легко смещается вправо даже под действием таких кислот, как угольная:
Ва (OH)2 + CO2 = ВаСО3↓ + h3O
Получение и использование
Барий довольно распространенный элемент. Входит в состав многих труднорастворимых минералов.
Главные его природные соединения: интерит ВаСОз и тяжелый шпат. Получение барня осуществляется электролизом расплавленного хлорида. При этом учитывается, что , ВаСl2 ядовит. Металл неустойчив на воздухе, поэтому его хранят под слоем керосина. Из соединений бария самым ценным является титанат бария — один из важнейших сегнетоэлектриков . Для медицины интересен сульфат бария . Благодаря способности сильно поглощать рентгеновские
лучи эта соль («бариева каша») попользуется в рентгеноскопии желудочно-кишечного тракта. BaSO4 нерастворим ни в воде, ни в слабой соляной кислоте (содержащейся в желудочном соке) и благодаря своей низкой растворимости нашел применение в рентгенологии . Устойчивость его к действию кислот, оснований и его белый цвет обусловливают применение для изготовления кислотостойких замазок и эмалей. Карбонаты, сульфаты, фториды и средние фосфаты бария труднорастворимы в воде, что используется в аналитической химии.Лит.: Дымчишин Д. А. Производство бариевых солей. Л.
Вы читаете, статья на тему барий
znaesh-kak.com
Барий Википедия
Барий | |
---|---|
← Цезий | Лантан → | |
Мягкий, вязкий серебристо-белый металл | |
Барий в пробирке | |
Название, символ, номер | Барий / Barium (Ba), 56 |
Атомная масса (молярная масса) | 137,327(7)[1] а. е. м. (г/моль) |
Электронная конфигурация | [Xe] 6s2 |
Радиус атома | 222 пм |
Ковалентный радиус | 198 пм |
Радиус иона | (+2e) 134 пм |
Электроотрицательность | 0,89 (шкала Полинга) |
Электродный потенциал | -2,906 |
Степени окисления | +2 |
Энергия ионизации (первый электрон) | 502,5 (5,21) кДж/моль (эВ) |
Плотность (при н. у.) | 3,5 г/см³ |
Температура плавления | 1 002 K |
Температура кипения | 1 910 K |
Уд. теплота плавления | 7,66 кДж/моль |
Уд. теплота испарения | 142,0 кДж/моль |
Молярная теплоёмкость | 28,1[2] Дж/(K·моль) |
Молярный объём | 39,0 см³/моль |
Структура решётки | кубическая объёмноцентрированная |
Параметры решётки | 5,020 Å |
Теплопроводность | (300 K) (18.4) Вт/(м·К) |
Номер CAS | 7440-39-3 |
Ба́рий — элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium). Простое вещество барий — мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью.
История
Барий был открыт в виде оксида BaO в 1774 году Карлом Шееле и Юханом Ганом[3]. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.
Происхождение названия
Своё название получил от др.-греч. βαρύς — «тяжёлый».
Нахождение в природе
Содержание бария в земной коре составляет 0,05 % по массе; в морской воде среднее содержание бария составляет 0,02 мг/л. Барий активен, он входит в подгруппу щелочноземельных металлов и в минералах связан достаточно прочно. Основные минералы: барит (BaSO4) и витерит (BaCO3).
Редкие минералы бария: цельзиан или бариевый полевой шпат (алюмосиликат бария), гиалофан (смешанный алюмосиликат бария и калия), нитробарит (нитрат бария) и пр.
Типы месторождений
По минеральным ассоциациям баритовые руды делятся на мономинеральные и комплексные. Комплексные подразделяются на барито-сульфидные (содержат сульфиды свинца, цинка, иногда меди и железного колчедана, реже Sn, Ni, Au, Ag), барито-кальцитовые (содержат до 75 % кальцита), железо-баритовые (содержат магнетит, гематит, а в верхних зонах гетит и гидрогетит) и барито-флюоритовые (кроме барита и флюорита, обычно содержат кварц и кальцит, а в виде небольших примесей иногда присутствуют сульфиды цинка, свинца, меди и ртути).
С практической точки зрения наибольший интерес представляют гидротермальные жильные мономинеральные, барито-сульфидные и барито-флюоритовые месторождения. Промышленное значение имеют также некоторые метасоматические пластовые месторождения и элювиальные россыпи. Осадочные месторождения, представляющие собой типичные химические осадки водных бассейнов, встречаются редко и существенной роли не играют.
Как правило, баритовые руды содержат другие полезные компоненты (флюорит, галенит, сфалерит, медь, золото в промышленных концентрациях), поэтому они используются комплексно.
Изотопы
Известны изотопы бария с массовыми числами от 114 до 153, и 10 ядерных изомеров. Природный барий состоит из смеси шести стабильных изотопов (132Ba, 134Ba, 135Ba, 136Ba, 137Ba, 138Ba) и одного изотопа с огромным периодом полураспада, много больше возраста Вселенной (130Ba).
Получение
Основное сырьё для получения бария — баритовый концентрат (80—95 % BaSO4), который, в свою очередь, получают флотацией барита. Сульфат бария в дальнейшем восстанавливают коксом или природным газом:
- BaSO4+4C→BaS+4CO{\displaystyle {\mathsf {BaSO_{4}+4C\rightarrow BaS+4CO}}}
- BaSO4+2Ch5→BaS+2C+4h3O{\displaystyle {\mathsf {BaSO_{4}+2CH_{4}\rightarrow BaS+2C+4H_{2}O}}}
Далее сульфид при нагревании гидролизуют до гидроксида бария Ba(OH)2 или под действием CO2 превращают в нерастворимый карбонат бария BaCO3, который затем переводят в оксид бария BaO (прокаливание при 800 °C для Ba(OH)2 и свыше 1000 °C для BaCO3):
- BaS+2h3O→Ba(OH)2+h3S↑{\displaystyle {\mathsf {BaS+2H_{2}O\rightarrow Ba(OH)_{2}+H_{2}S\uparrow }}}
- BaS+h3O+CO2→BaCO3+h3S↑{\displaystyle {\mathsf {BaS+H_{2}O+CO_{2}\rightarrow BaCO_{3}+H_{2}S\uparrow }}}
- BaCO3→BaO+CO2{\displaystyle {\mathsf {BaCO_{3}\rightarrow BaO+CO_{2}}}}
Получают металлический барий электролизом безводного расплава хлорида бария:
- BaCl2→Ba+Cl2{\displaystyle {\mathsf {BaCl_{2}\rightarrow Ba+Cl_{2}}}}
Физические свойства
Барий — серебристо-белый ковкий металл. При резком ударе раскалывается. Существуют две аллотропные модификации бария: до 375 °C устойчив α-Ba с кубической объёмно-центрированной решёткой (а = 0,501 нм), выше устойчив β-Ba[источник не указан 1967 дней].
Твёрдость по шкале Мооса 1,25[4].
Хранят металлический барий в керосине или под слоем парафина.
Химические свойства
Барий — щёлочноземельный металл. На воздухе барий быстро окисляется, образуя смесь оксида бария BaO и нитрида бария Ba3N2, а при незначительном нагревании воспламеняется. Энергично реагирует с водой, образуя гидроксид бария Ba(ОН)2:
- Ba+2h3O→Ba(OH)2+h3↑{\displaystyle {\mathsf {Ba+2H_{2}O\rightarrow Ba(OH)_{2}+H_{2}\uparrow }}}
Активно взаимодействует с разбавленными кислотами. Многие соли бария нерастворимы или малорастворимы в воде: сульфат бария BaSO4, сульфит бария BaSO3, карбонат бария BaCO3, фосфат бария Ba3(PO4)2. Сульфид бария BaS, в отличие от сульфида кальция CaS, хорошо растворим в воде. Растворимые соли бария позволяют определить наличие в растворе серной кислоты и её растворимых солей по выпадению белого осадка сульфата бария, нерастворимого в воде и кислотах[5].
Легко вступает в реакцию с галогенами, образуя галогениды.
При нагревании с водородом образует гидрид бария BaH2, который, в свою очередь, с гидридом лития LiH даёт комплекс Li[BaH3].
Реагирует при нагревании с аммиаком:
- 6Ba+2Nh4→3Bah3+Ba3N2{\displaystyle {\mathsf {6Ba+2NH_{3}\rightarrow 3BaH_{2}+Ba_{3}N_{2}}}}
Нитрид бария Ba3N2 при нагревании взаимодействует с CO, образуя цианид:
- Ba3N2+2CO→Ba(CN)2+2BaO{\displaystyle {\mathsf {Ba_{3}N_{2}+2CO\rightarrow Ba(CN)_{2}+2BaO}}}
С жидким аммиаком даёт тёмно-синий раствор, из которого можно выделить аммиакат [Ba(NH3)6], имеющий золотистый блеск и легко разлагающийся с отщеплением NH3. В присутствии платинового катализатора аммиакат разлагается с образованием амида бария:
- [Ba(Nh4)6]→Ba(Nh3)2+4Nh4+h3{\displaystyle {\mathsf {[Ba(NH_{3})_{6}]\rightarrow Ba(NH_{2})_{2}+4NH_{3}+H_{2}}}}
Карбид бария BaC2 может быть получен при нагревании в дуговой печи BaO с углём.
С фосфором образует фосфид Ba3P2.
Барий восстанавливает оксиды, галогениды и сульфиды многих металлов до соответствующего металла.
Качественный и количественный анализ
Качественно в растворах барий обнаруживается по выпадению осадка сульфата бария BaSO4, отличимого от соответствующих сульфатов кальция и сульфатов стронция крайне низкой растворимостью в неорганических кислотах.
Родизонат натрия выделяет из нейтральных солей бария характерный красно-бурый осадок родизоната бария. Реакция является очень чувствительной, специфичной, позволяя определить 1 часть ионов бария на 210000 массовых частей раствора[6].
Соединения бария окрашивают пламя в желто-зелёный цвет (длина волн 455 и 493 нм).
Количественно барий определяют гравиметрическим методом в виде BaSO4 или BaCrO4.
Применение
- Вакуумные электронные приборы
Металлический барий, часто в сплаве с алюминием используется в качестве газопоглотителя (геттера) в высоковакуумных электронных приборах.
Оксид бария, в составе твёрдого раствора оксидов других щёлочноземельных металлов — кальция и стронция (CaO, SrO), используется в качестве активного слоя катодов косвенного накала.
- Антикоррозионный материал
Барий добавляется совместно с цирконием в жидкометаллические теплоносители (сплавы натрия, калия, рубидия, лития, цезия) для уменьшения агрессивности последних к трубопроводам, и в металлургии.
- Сегнето- и пьезоэлектрик
Титанат бария используется в качестве диэлектрика при изготовлении керамических конденсаторов, а также в качестве материала для пьезоэлектрических микрофонов и пьезокерамических излучателей.
- Оптика
Фторид бария применяется в виде монокристаллов в оптике (линзы, призмы).
- Пиротехника
Пероксид бария используется для пиротехники и как окислитель. Нитрат бария и хлорат бария используется в пиротехнике для окрашивания пламени (зелёный огонь).
- Атомно-водородная энергетика
Хромат бария применяется при получении водорода и кислорода термохимическим способом (цикл Ок-Ридж, США).
- Высокотемпературная сверхпроводимость
Пероксид бария совместно с оксидами меди и редкоземельных металлов, а также купрат бария[7], применяются для синтеза сверхпроводящей керамики, работающей при температуре жидкого азота и выше.
- Ядерная энергетика
Оксид бария применяется для варки специального сорта стекла — применяемого для покрытия урановых стержней. Один из широкораспространённых типов таких стекол имеет следующий состав — (оксид фосфора — 61 %, ВаО — 32 %, оксид алюминия — 1,5 %, оксид натрия — 5,5 %). В стекловарении для атомной промышленности применяется также и фосфат бария.
- Химические источники тока
Фторид бария используется в твердотельных фторионных аккумуляторных батареях в качестве компонента фторидного электролита.
Оксид бария используется в мощных медноокисных аккумуляторах в качестве компонента активной массы (окись бария-окись меди).
Сульфат бария применяется в качестве расширителя активной массы отрицательного электрода при производстве свинцово-кислотных аккумуляторов.
- Применение в медицине
Сульфат бария, нерастворимый и нетоксичный, применяется в качестве рентгеноконтрастного вещества при медицинском обследовании желудочно-кишечного тракта.
Цены
Цены на металлический барий в слитках чистотой 99,9 % колеблются около 30 долларов за 1 кг.
Биологическая роль и токсичность
Биологическая роль бария изучена недостаточно. В число жизненно важных микроэлементов он не входит.
Все растворимые в воде соединения бария высокотоксичны. Вследствие хорошей растворимости в воде из солей бария опасен хлорид, а также нитрат, нитрит, фторид, иодид, бромид, сульфид, хлорат и перхлорат. Хорошо растворимые в воде соли бария быстро резорбируются в кишечнике. Смерть может наступить уже через несколько часов от паралича сердца.
Симптомы острого отравления солями бария: слюнотечение, жжение во рту и пищеводе. Боли в желудке, колики, тошнота, рвота, понос, повышенное кровяное давление, твёрдый неправильный пульс, судороги, позже возможны и параличи, синюшность лица и конечностей (конечности холодные), обильный холодный пот, мышечная слабость, в особенности конечностей, доходящая до того, что отравленный не может кивнуть головой. Расстройство походки, а также речи вследствие паралича мышц глотки и языка. Одышка, головокружение, шум в ушах, расстройство зрения.
В случае тяжёлого отравления смерть наступает внезапно или в течение одних суток. Тяжёлые отравления наступают при приёме внутрь 0,2—0,5 г солей бария, смертельная доза 0,8—0,9 г.
Для оказании первой помощи необходимо промыть желудок 1 % раствором сульфата натрия или магния. Клизмы из 10 % растворов тех же солей. Приём внутрь раствора тех же солей (20,0 частей соли на 150,0 частей воды) по столовой ложке каждые 5 мин. Рвотные средства для удаления из желудка образовавшегося нерастворимого сульфата бария. Внутривенно 10—20 мл 3 % раствора сульфата натрия. Подкожно — камфора, кофеин, лобелин — по показаниям. Тепло на ноги. Внутрь слизистые супы и молоко.
Примечания
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
- ↑ Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 241. — 623 с. — 100 000 экз.
- ↑ Барий. // Популярная библиотека химических элементов. — М.: Издательство «Наука», 1977.
- ↑ Поваренных А. С. Твёрдость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.
- ↑ Ходаков Ю. В., Эпштейн Д. А., Глориозов П. А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 212. — 240 с. — 1 630 000 экз.
- ↑ Аналитическая химия бария. — Москва : Наука, 1977.
- ↑ Обогащенный дырками купрат бария оказался высокотемпературным сверхпроводником
Литература
Ссылки
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, |
wikiredia.ru
Растворимые соли бария чрезвычайно ядовиты. Введенный внутривенно хлорид
бария мгновенно вызывает смерть. Карбонат и сульфит бария ядовиты, так
как они растворяются в соляной кислоте, которая содержится в желудочном
соке. СОЕДИНЕНИЯ (ОБЩИЕ СВОЙСТВА) Гидрид бария применяют в качестве катализатора реакций гидрогенизации. ВаО представляет собой кубические (решетка типа NaCI) или гексагональные
бесцветные кристаллы (или белый аморфный порошок), очень
гигроскопичные, с плотностью 5,72 г/см3 (для кубической модификации) и
5,32 г/см3 (для гексагональной) и твердостью 3,3 по шкале Mooca; т. пл. 1923°, т. кип. 2000°. Ва0 люминесцирует под действием ультрафиолетовых
лучей и фосфоресцирует в рентгеновских лучах. При нагревании окись бария восстанавливается магнием, цинком, алюминием, кремнием и цианидами щелочных металлов. Термическое разложение перекиси бария ускоряют окислы — СеО, Cr2O3, С концентрированной соляной кислотой перекись бария реагирует, выделяя хлор: Ba(OH)2— белый порошок с плотностью 4,495 г/см3 и т. пл. 408°. В
катодных лучах гидроокись бария фосфоресцирует желто-оранжевым цветом.
Растворяется в воде, трудно растворима в ацетоне и метплацетате. Бесцветные кубические кристаллы BaF2 имеют решетку типа CaF2 с расстоянием между центром иона Ва2+ и иона F? 2,68 А. Плотность 4,83 г/см3, т.пл. 1280°, т. кип. 2137°. Кристаллы мало растворимы в воде (1,63 г/л при 18°), растворяются в фтористоводо-родной, соляной и азотной кислотах. Применяются для изготовления эмалей и оптических стекол. Температура плавления смеси BaF2*LiF 850°, а смеси BaF2*BaCl2 1010°. |
alexlat.ucoz.ru