Амфотерные элементы все – Урок №42. Классификация химических элементов. Амфотерные соединения.

Содержание

Амфотерные элементы и их соединения

    Элементы IVА-группы. Эту группу Периодической системы составляют элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ. Электронная конфигурация внешнего уровня их атомов ns np . В соединениях эти элементы проявляют характерные степени окисления (+11) и (+IV). По электроотрицательности и химическим свойствам элементы С и Si относятся к неметаллам, элементы Ge, Sn и РЬ-к амфотерным элементам, металлические свойства которых возрастают при увеличении порядкового номера и уменьшении степени окисления. [c.146]
    В периодической системе элементов амфотерные элементы занимают средние места в периодах по диагонали из верхнего левого угла к нижнему правому углу. Типичные элементы, образующие амфотерные соединения бериллий, алюминий, хром, цинк, германий, мышьяк, олово, сурьма, свинец и др. У этих элементов не достроены р-атомные орбитали (табл. 5). Исключение составляет лишь хром, у которого во внешнем слое находятся 3d 4s -электроны хром — переходный металл с хорошо выраженной способностью к комплексообразованию. 
[c.25]

    Таким образом, и в этом случае амфотерные элементы не образуют простых ионов, а лишь комплексные. Однотипные же соединения металлических элементов при этом распадаются на слабо сольватированные простые ионы, например  [c.475]

    Если амфотерный элемент имеет в соединениях несколько степеней окисления, то амфотерные свойства наиболее ярко проявляются для промежуточной степени окисления. Например, у хрома известны три степени окисления-( +II), ( + 111) и ( + У1). Для Сг » кислотные и основные свойства выражены в равной степени, тогда как у Сг» наблюдается преобладание основных свойств, а у Сг преобладание кислотных свойств  [c.99]

    Элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ составляют IVA группу Периодической системы Д. И, Менделеева. Общая электронная формула валентного уровня атомов этих элементов ns np . Преобладающие степени окисления элементов в соединениях ( + 11) и ( + 1V), По электроотрицательности элементы С и Si относят к неметаллам. Ge, Sn и РЬ — к амфотерным элементам с возрастающим металлическим характером по мере увеличения порядкового номера. Поэтому в соединениях элементов со степенью окисления (IV) связи ковалентны для свинца (И) и в меньшей степени для олова (И) известны ионные кристаллы. В целом устойчивость степени окисления ( + IV) уменьшается, а устойчивость степени окисления ( + 11) увеличивается от С к РЬ. Соединения свинца (IV) —сильные окислители, соединения остальных элементов в степени окисления (И) — сильные восстановители. 

[c.202]

    Алюминий — типичный амфотерный элемент. В отличие от бора для него типичны не только анионные, но и катионные комплексы. В большинстве соединений атомы алюминия находятся в состоянии и реже 5р -гибридизации. Отсюда для алюминия наиболее характерны координационные числа 6 и 4. 

[c.524]

    В последнее время в промышленности при проведении этерификации используют амфотерные катализаторы — соединения элементов переходной валентности, из которых наибольший интерес представляют производные алюминия, титана и олова, в частности тетрабутоксититан, С тетрабутоксититаном этерификация карбоновых кислот спиртами осуществляется при 170—200 °С до достижении кислотного числа ие более 0,35. Применение этого катализатора позволяет упростить стадии обработки эфира-сырца,, повысить степень конверсии, т. е. снизить расходные нормы на сырье и улучшить качество пластификаторов. [c.338]

    Так же ведут себя при расплавлении соединения и других амфотерных элементов, например  [c.475]

    Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента—металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элементанеметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца (II) доминируют основные свойства, а сам марганец входит в состав катионов типа [Мп (HjO) ] , тогда как у оксида и гидроксида марганца (Vil) доминируют кислотные свойства, а сам марганец входит в состав анионов типа МПО4. Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, напри- 

[c.14]

    В соответствии со сказанным, расплавленные соединения металлических элементов проявляют высокую, а амфотерных элементов — пониженную электропроводность. 

[c.569]

    Мышьяк реагирует со многими металлами и неметаллами, но только при высокой температуре. В соединениях проявляет валентность —3, +3 и +5. По своему химическому характеру мышьяк — амфотерный элемент он одновременно проявляет слабые металлические и значительные неметаллические свойства. [c.484]

    Сам элемент алюминий проявляет в этих соединениях свойства металла и неметалла. Следовательно, алюминий-амфотерный элемент. Подобные свойства имеют также элементы А-групп-Ве, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., a также больщинство элементов Б-групп-Сг, Мп, Fe, Zn, d, Au и др. Например  [c.98]

    Алюминий, галлий, таллий — амфотерные элементы. Галлий во многом похож на алюминий. Химия таллия от них существенно отличается. Характерной степенью окисления Т1 является +1. Его соединения в основном похожи на элементы I группы. Многие свойства соединений в ряду В—А1—Оа—1п—Т1 изменяются немонотонно за счет явления вторичной периодичности. 

[c.481]

    Таким образом, подразделяя элементы на металлы и неметаллы, всегда следует иметь в виду, по каким свойствам это деление осуществляется по химическим или физическим. Деление на металлы и неметаллы относительно, поскольку существуют так называемые амфотерные элементы, причем амфотерность их проявляется и в физических, и в химических свойствах. При этом следует подчеркнуть, что в данном случае речь идет об амфотерности самих элементов и соответствующих простых веществ, а не об амфотерности их соединений в различных степенях окисления. Амфотерные элементы, как и следует ожидать, группируются вблизи диагональной границы, разделяющей металлы и неметаллы. [c.32]

    На первом этапе средствами проблемного обучения раскрывается относительность деления элементов на металлы и неметаллы через доказательство амфотерных свойств соединений некоторых элементов. При получении учащимися гидроксида цинка и исследовании его свойств учитель созда

www.chem21.info

Тема №11 «Свойства оснований, амфотерных гидроксидов и кислот»

  • НОВОСТИ
  • КУРС ХИМИИ
    • Дополнительные уроки
    • Курс химии
    • Разбор заданий ЕГЭ
  • ТЕСТЫ
    • Вариаты ЕГЭ
    • Тесты по заданиям
    • Тесты по темам
  • СТАТЬИ
  • ОПЫТЫ
  • ТАБЛИЦА МЕНДЕЛЕЕВА

Поиск

CHEM-MIND.com
  • НОВОСТИ
    • Новости

      Алгоритм обучения для подготовки к ЕГЭ по химии

      Новости

      Ответы в тестах вновь правильно отображаются!

      Новости

      Технические проблемы

      Новости

      Новый раздел на сайте

      Новости

      С 8 марта

  • КУРС ХИМИИ
    • ВсеДополнительные урокиКурс химииРазбор заданий ЕГЭ Разбор заданий ЕГЭ

      Разбор задания №11 ЕГЭ по химии

      Разбор заданий ЕГЭ

      Разбор задания №10 ЕГЭ по химии

      Разбор заданий ЕГЭ

      Разбор задания №9 ЕГЭ по химии

      Разбор заданий ЕГЭ

      Разбор задания №8 ЕГЭ по химии

  • ТЕСТЫ
    • ВсеВариаты ЕГЭТесты по заданиямТесты по темам Тесты по темам

      Тест №40 «Высокомолекулярные соединения»

      Тесты по темам

      Тест №39 «Химия и проблемы охраны окружающей среды»

      Тесты по темам

      Тест №38 «Общие научные принципы химического производства»

      Тесты по темам

      Тест №37 «Химическая лаборатория»

  • СТАТЬИ
    • Статьи

      Решение типовых задач по химии

      Статьи

      Современная таблица Менделеева

      Статьи

      Ионные уравнения реакций

      Статьи

      Внутренний экзамен МГМСУ по химии

      Статьи

      Книги для подготовки к химии

  • ОПЫТЫ
    • Опыты

      Химическая ракета

      Опыты

      Неньютоновская жидкость

      Опыты

      Лодка на диоксиде углерода

      Опыты

      Как вырастить жеоду в домашних условиях

      Опыты

      Горящая рука/пузыри

  • ТАБЛИЦА МЕНДЕЛЕЕВА

www.chem-mind.com

Элементы амфотерные — Справочник химика 21

    В периодической системе элементов амфотерные элементы занимают средние места в периодах по диагонали из верхнего левого угла к нижнему правому углу. Типичные элементы, образующие амфотерные соединения бериллий, алюминий, хром, цинк, германий, мышьяк, олово, сурьма, свинец и др. У этих элементов не достроены р-атомные орбитали (табл. 5). Исключение составляет лишь хром, у которого во внешнем слое находятся 3d 4s -электроны хром — переходный металл с хорошо выраженной способностью к комплексообразованию. [c.25]
    Так же ведут себя при расплавлении соединения и других элементов амфотерного характера, например  [c.516]

    Элементы подгруппы германия германий — олово — свинец. Простые вещества, их получение и свойства. Валентность в соединениях. Окиси и гидроокиси двухвалентных элементов. Амфотерный характер их. Наиболее важные соли и их химические свойства. Двуокиси олова и свинца. [c.235]

    Элементы этой подгруппы образуют окислы типа R02 и КО, а водородные соединения — типа КН4. Гидраты высших окислов углерода и кремния обладают кислотными свойствами, гидраты окислов остальных элементов амфотерны, причем кислотные свойства сильнее выражены у германия, а основные — у свинца. От углерода к свинцу уменьшается прочность водородных соединений [c.254]

    Элементы подгруппы углерода образуют оксиды общей формулы ROi и НО, а водородные соединения — РН. Гидраты высших оксидов углерода и кремния обладают кислотными свойствами, гидраты остальных элементов амфотерны, причем кислотные свойства сильнее выражены у гидратов германия, а основные—у гидратов свинца. От тлерода к свинцу уменьшается прочность водородных соединений КН4 СН — прочное вещество, а РЬН — в свободном виде не выделено. [c.126]

    Германий, олово и свинец—элементы амфотерные германий по существу находится на грани между неметаллами и металлами, так как неметаллические и металлические свойства выражены у него почти одинаково. Олово и свинец обладают более выраженным металлическим характером, по физическим свойствам относятся к типичным металлам, что согласуется с величиной их ионных радиусов (табл. 58). [c.407]

    Элементы подгруппы углерода образуют оксиды общей формулы КОа и КО, а водородные соединения —формулы НН4. Гидраты высших оксидов углерода и кремния обладают кислотными свойствами, гидраты остальных элементов амфотерны, причем кислотные свойства сильнее выражены у гидратов германия, а основнью — у гидратов свинца. От углерода к свинцу уменьшается прочность водородных соединений КН4 СН — прочное вещество, а РЬН в свободном виде не выделено. В подгруппе с ростом порядкового номера уменьшается энергия ионизации атома и увеличивается атомный радиус (п. 3 и 6 табл. 11.1), т. е. неметаллические свойства ослабевают, а металлические усиливаются. [c.206]

    Свойства простых веществ и соединений. Все металлы VIН группы имеют небольшой объем атомов, плотную упаковку кристаллической решетки п, как следствие этого, прочность металлической связи и высокие температуры плавления. Важной особенностью железа, кобальта и никеля является способность этих металлов к намагничиванию. Переменная степень окисления членов подгруппы VIIIB обусловливает отчасти и их разнообразнейшие каталитические свойства. Способность образовывать кислородные соединения в каждом ряду VIII группы быстро уменьшается с возрастанием порядкового номера. Железо окисляется легко, никель —с тру дом (а палладий и платина в этом отношении сходны с серебром и золотом). Гидроксиды элементов амфотерны с преобладанием основных свойств. Существуют соединения железа, например ферраты (К.2ре04), где атом Ре входит в состав аниона. Подобно хромитам и перманганатам, эти соединения — сильные окислители. Металлы легко образуют сплавы и интерметаллические соединения. Характерная черта, особенно порошкообразных металлов — способность поглощать огромное количество водорода. Поглощенный водород частично, видимо, диссоциирует на атомы и проявляет повышенную химическую активность. Это используется при проведении химических процессов. с участием. водорода. [c.373]

    У элементов, амфотерность которых выражена сильнее (они сосредоточены в середине периодов), наблюдается заметное сосуществование металлических и неметаллических свойств. С некоторым приближением можно сказать, что у каждого элслмента сумма металлических и неметаллических свойств постоянна. [c.230]


www.chem21.info

Химические элементы амфотерные — Справочник химика 21

    Элементы подгруппы германия германий — олово — свинец. Простые вещества, их получение и свойства. Валентность в соединениях. Окиси и гидроокиси двухвалентных элементов. Амфотерный характер их. Наиболее важные соли и их химические свойства. Двуокиси олова и свинца. [c.235]

    Теория Бренстеда — Лоури объединяет в общую группу прото-литических реакций все виды взаимодействия между кислотами и основаниями, в том числе нейтрализацию, гидролиз, диссоциацию кислот и оснований, распад растворителя на ионы и др. Из определения кислоты и основания по протолитической теории вытекает, что все атомы, характеризующиеся большой электроотрицательностью, могут образовывать кислоты, так как сильнее притягивают электроны, чем протоны. Наоборот, атомы, обладающие малой электроотрицательностью, могут образовывать основания, так как они сильнее притягивают протоны, чем электроны. Отсюда следует, что в высшем состоянии окисления элемент должен образовать соединение, со свойствами кислоты, так как электроотрицательность центрального комплексообразующего атома возрастает с повышением состояния окисления химического элемента. Например, соединения Мп (И) и Мп (ИГ) обладают основными свойствами, соединения Мп (IV) амфотерны, Мп (VI) и Мп (VII) образуют кислоты. Аналогичные соотношения наблюдаются у хрома, ванадия и других элементов. Можно сказать, что основания обладают присущими им свойствами не потому, что они способны отщеплять гидроксильный ион, но вследствие того, что гидроксильный ион способен присоединять протон с образованием воды. [c.54]


    Французский химик Луи Никола Воклен в 1797 г. демонстрировал в Парижской академии наук свойства оксида открытого им нового химического элемента — хрома. Он сказал, что это удивительное зеленое вещество может взаимодействовать как с кислотами, так и со щелочами. В те времена химики могли только догадываться о возможной амфотерности оксидов и гидроксидов. Воклен подействовал на оксид хрома серной [c.73]

    Периодический закон и Периодическая система химических элементов имеют и большое философское значение. В них объективно отражается действие законов материалистической диалектики и, прежде всего, закона перехода количества в качество. Так, каждому порядковому номеру (количество) соответствует химический элемент с индивидуальными свойствами (каче- ство). В Периодической системе наглядно проявляется также закон единства и борьбы противоположностей, который реализуется в существовании амфотерных оксидов и гидроксидов. [c.109]

    Как известно, наиболее ярким проявлением двойственности принято считать амфотерность, которую понимают как способность некоторых веществ в зависимости от условий проявлять то кислотные, то основные, а у химических элементов — то металлические, то неметаллические свойства. [c.215]

    К амфотерным веществам пока относят по существу два типа веществ. К первому из них принадлежат те, у которых двойственность поведения обусловлена наличием различных функциональных групп (так называемая нескрытая ярко проявляющаяся двойственность). К этому типу веществ относят, в частности, белки. Ко второму типу относят вещества, у которых наблюдается проявление двойственности, но причины, обусловливающие последнюю, скрыты от исследователя, так как образующиеся в процессе химических реакций производные по своему строению не соответствуют структуре исходных веществ ( скрытая двойственность). Если придерживаться точки зрения, что двойственная реакционная способность есть явление исключительно распространенное, то, очевидно, следует выделить еще одну группу веществ с так называемой скрытой трудно проявляющейся двойственностью. Таково проявление двойственности при ряде процессов кислотно-основного взаимодействия. Примерно то же имеет место и при окислительно-восстановительном взаимодействии, где также наблюдается яркая и скрытая , трудно и легко проявляющаяся двойственность, выражающаяся в способности одного и того же химического элемента, в зависимости от условий и сореагента, быть либо окислителем, либо восстановителем, либо и тем и другим одновременно (самоокисление — самовосстановление). [c.215]

    Химические элементы, которые при своем превращении могут давать и кислоты и основания, называются амфотерными элементами, а соединения указанного типа — амфотерными соединениями. С ионной точки зрения соединения (гидроокиси), дающие одновременно и [c.130]

    Амфотерностью называют способность различных химических соединений в зависимости от условий реакции проявлять свойства кислот или оснований. Под амфотерностью химических элементов, например Ti, Sn, Pb, понимают их способность проявлять металлические и неметаллические свойства, что зависит от их положения в периодической системе. Амфотерными могут быть окислы, галогены, нитриды, карбиды и др. [c.51]

    Для определения кислоты и основания по протолитической теории вытекает, что все атомы, характеризующиеся большой электроотрицательностью, могут образовывать кислоты, так как сильнее притягивают электроны, чем протоны. Наоборот, атомы, обладающие малой электроотрицательностью, могут образовывать основания, так как они сильнее притягивают протоны, чем электроны. Отсюда следует, что в высших валентных состояниях элементы должны образовывать соединения, обладающие свойствами кислот, так как электроотрицательность центрального комплексообразующего атома возрастает с повышением валентности химического элемента. Например, соединения Мп (П) обладают основным характером, так же как и соединения Мп (Н1). Соединения Мп (IV) являются амфотерными. Мп (VI) и Мп (VII) образуют кислоты. Аналогичные соотношения наблюдаем у Сг, V и других элементов. [c.62]

    Химические элементы, которые при своем превращении могут давать и кислоты и основания, называются амфотерными элементами, а соединения указанного типа — амфотерными соединениями. С ионной точки зрения соединения (гидроокиси), дающие одновременно и ионы водорода и ионы гидроксила, называются амфотерными. Например, [c.105]

    Зависимость свойств химических элементов от величины атомной массы — яркая иллюстрация диалектического закона перехода количества в качество, а двойственность характера элементов, дающих амфотерные окислы,— закона единства и борьбы противоположностей. [c.86]

    Параллельно изучению двойственного реагирования органических соединений происходило изучение двойственной реакционной способности и неорганических веществ. Начиная со времени работ Берцелиуса, были подробно исследованы амфотерные свойства больш

www.chem21.info

перечислите плиз все амфотерные элементы., математика

виолетта6240

07 янв. 2016 г., 23:27:40 (3 года назад)

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

BeO — оксид бериллия
FeO — оксид железа(II)

Al2O3 — оксид алюминия
Fe2O3 — оксид железа(III)

SnO — оксид олова(II)
MnO2 — оксид марганца(IV)

SnO2 — диоксид олова(IV)
ZnO — оксид цинка(II)

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто — или (и) мета — форме. Приведем примеры амфотерных гидроксидов:

Be(OH)2
— гидроксид бериллия

Al(OH)3
— гидроксид алюминия

AlO(OH)
— метагидроксид алюминия

TiO(OH)2
— дигидроксид-оксид титана

Fe(OH)2
— гидроксид железа(II)

FeO(OH)
— метагидроксид железа

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

SnO2 . nh3O
— полигидрат оксида олова(IV)

Au2O3 . nh3O
— полигидрат оксида золота(I)

Au2O3 . nh3O
— полигидрат оксида золота(III)

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента — металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента — неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа [Mn(h3O)6]2+, тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO4- . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMnVIIO4 — марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы — условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами

 

matematika.neznaka.ru

перечислите плиз все амфотерные элементы., алгебра

виолетта6240

07 янв. 2016 г., 23:27:40 (3 года назад)

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

BeO — оксид бериллия
FeO — оксид железа(II)

Al2O3 — оксид алюминия
Fe2O3 — оксид железа(III)

SnO — оксид олова(II)
MnO2 — оксид марганца(IV)

SnO2 — диоксид олова(IV)
ZnO — оксид цинка(II)

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто — или (и) мета — форме. Приведем примеры амфотерных гидроксидов:

Be(OH)2
— гидроксид бериллия

Al(OH)3
— гидроксид алюминия

AlO(OH)
— метагидроксид алюминия

TiO(OH)2
— дигидроксид-оксид титана

Fe(OH)2
— гидроксид железа(II)

FeO(OH)
— метагидроксид железа

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

SnO2 . nh3O
— полигидрат оксида олова(IV)

Au2O3 . nh3O
— полигидрат оксида золота(I)

Au2O3 . nh3O
— полигидрат оксида золота(III)

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента — металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента — неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа [Mn(h3O)6]2+, тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO4- . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMnVIIO4 — марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы — условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами

 

algebra.neznaka.ru

перечислите плиз все амфотерные элементы., физика

виолетта6240

07 янв. 2016 г., 23:27:40 (3 года назад)

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

BeO — оксид бериллия
FeO — оксид железа(II)

Al2O3 — оксид алюминия
Fe2O3 — оксид железа(III)

SnO — оксид олова(II)
MnO2 — оксид марганца(IV)

SnO2 — диоксид олова(IV)
ZnO — оксид цинка(II)

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто — или (и) мета — форме. Приведем примеры амфотерных гидроксидов:

Be(OH)2
— гидроксид бериллия

Al(OH)3
— гидроксид алюминия

AlO(OH)
— метагидроксид алюминия

TiO(OH)2
— дигидроксид-оксид титана

Fe(OH)2
— гидроксид железа(II)

FeO(OH)
— метагидроксид железа

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

SnO2 . nh3O
— полигидрат оксида олова(IV)

Au2O3 . nh3O
— полигидрат оксида золота(I)

Au2O3 . nh3O
— полигидрат оксида золота(III)

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента — металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента — неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа [Mn(h3O)6]2+, тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO4- . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMnVIIO4 — марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы — условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами

 

fizika.neznaka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *