Алюминий магний – Сплавы алюминия с магнием

Содержание

Сплавы алюминия с магнием

Магний в алюминии

Введение в алюминий магния в количестве до 6 % в качестве главного легирующего элемента дает упрочнение твердого раствора сплава и высокую эффективность деформационного упрочнения. Это  обеспечивает сплавам серии 5ххх довольно высокие прочностные свойства – выше, чем у сплавов серии 3ххх — при сохранении хорошей формуемости.

При определенной восприимчивости к межзеренной коррозии (при содержании магния более 3 %) эти сплавы имеют хорошую коррозионную стойкость, особенно сопротивление коррозии в морской воде и морской атмосфере, которая значительно выше, чем у сплавов других серий.

Применение алюминиево-магниевых сплавов

Эти сплавы сочетают в себе хорошую формуемость, довольно высокую прочность, отличную коррозионную стойкость, хорошую анодируемость и лучшую из всех сплавов свариваемость. Поэтому эти алюминиевые сплавы применяют во многих конструкциях, подверженных суровым атмосферным воздействиям, например, в облицовочных панелях зданий, строительных лесах и, особенно, – в судостроении и конструкциях в прибрежных районах и в открытом море, включая нефтяные платформы. Сварные алюминиевые лодки и катера изготавливают исключительно из сплавов этой серии. В автомобилестроении из этих сплавов изготавливают штампованные детали корпуса и шасси благодаря хорошей комбинации прочности и формуемости.

Достижение высокой прочности за счет упрочнения твердого раствора магнием возможно потому, что магний в этой роли является очень эффективным. Кроме того, его высокая растворимость позволяет увеличивать его содержание до 5 % в наиболее легированных сплавах.

Больше магния

Однако в сплавах с высоким содержанием магния существует тенденция к образованию интерметаллидной фазы Mg5Al8 по границам зерен и в областях локализованной деформации внутри микроструктуры. Это происходит потому, что равновесная растворимость магния в алюминии всего лишь около 2 %. Выделение избыточной фазы в этом случае эквивалентно тому, что происходит в сплавах, упрочняемых старением, но с отрицательным эффектом для свойств сплава. Выделение частиц происходит медленно при комнатной температуре, но ускоряется с повышением температуры или, если сплав подвергся интенсивной холодной пластической деформации. Это явление делает сплав восприимчивым к некоторым типам межзеренной коррозии, например, коррозия под напряжением, и/или ухудшение механических свойств в ходе эксплуатации при повышенных температурах.

Роль хрома

Хром в количествах не более 0,35 % добавляют для повышения электрического сопротивления. При больших содержаниях хром имеет тенденцию образовывать очень грубые соединения с другими примесями или добавками, такими, как марганец, железо и титан. Хром обладает низкой скоростью диффузии и образует очень мелкодисперсные фазы, которые сдерживают зарождение и рост зерен. Поэтому он используется для предотвращения роста зерен. Образующиеся при этом волокнистые структуры снижают восприимчивость к коррозии под напряжением и улучшают вязкость. Хром в твердом растворе или в виде мелкодисперсных частиц способствует некоторому повышению прочности. Хром имеет тенденцию окрашивать анодное покрытие этих сплавов в желтый цвет.

Влияние марганца

Добавки марганца, также как и хрома, предназначены для снижения восприимчивости сплавов с высоким содержанием магния к различным формам межзеренной коррозии.

Серия 5ххх в европейском стандарте EN 573-3 включает 44 сплава и их модификаций, в ГОСТ 4784-97 — 13.

aluminium-guide.ru

Алюминий и магний 2019

Что такое алюминий и магний? Алюминий против магния

алюминий

Алюминиевое слово было получено после того, как квасцы назывались латинскими буквами. Металл был обнаружен Хамфри Дэви, химиком в 1808 году. Алюминий — беловатый серебристый, пластичный и немагнитный металл, присутствующий в изобилии и способствующий примерно 8% земной массы. Он довольно прочный, легкий по весу, а его символ — Al. Алюминий является ключевым металлом, используемым для различных технических продуктов; автомобили, поезда, самолеты, бытовая техника, части компьютерного оборудования, твердое ракетное топливо, ходовые столбы, термит, монеты в таких странах, как Румыния, Финляндия, Франция и Италия, строительство, краски, упаковка, полки в холодильнике и современные интерьеры. Этот металл был обнаружен около 200 лет назад. Наиболее выгодными соединениями алюминия являются оксиды и сульфаты. Алюминий никогда не встречается в элементарном состоянии.

Алюминиевый металл имеет более низкую плотность, очень мягкий, но обладает сильной податливостью. Он также обладает очень хорошей тепловой и электрической проводимостью. Алюминиевый металл можно легко перерабатывать. Различные соединения алюминия включают галогениды, оксиды и гидроксиды, карбид, нитрит, соединения органоалюминия. Все соединения алюминия бесцветны.

Алюминий связан со здоровьем. У людей токсичность алюминия может вызвать гематоэнцефалический барьер. Алюминий не так токсичен, как другие тяжелые металлы, но небольшое количество токсичности может быть вызвано, если оно потребляется более 40 мг / кг тела в день. Хотя алюминий хорошо переносится растениями. Алюминий в его металлической форме в основном производится из бокситов (AlOx (OH) 3-2x).

магниевый

Магний — самый легкий металл, найденный в мире, имеющий блестящий серый цвет с символом Mg. Это второй по численности металл, найденный в земной коре. Это примерно на тридцать четыре процента легче по объему, чем алюминий. Магний был обнаружен Джозефом Блэком в Эдинбурге в 1755 году. Магний также является обильным металлом, присутствующим в массе Земли, но он не встречается не в совокупности по своей природе. Магнезит и доломит являются минералами, которые содержат большое количество магния. В наших океанах есть триллионы тонн магния, присутствующих в них, и именно по этой причине океаны являются крупнейшим источником магния, из которых ежегодно производится 850 000 тонн.

Магний — полезный металл для производства легких изделий, таких как автомобильные сиденья, ноутбуки, сумки для багажа, камеры и электроприборы. Магний смешивается в расплавленном железе, а также для удаления серы. Магний довольно горючий, и именно по этой причине он используется во вспышках, фейерверках и бликах. Сульфат магния используется в качестве объединяющего агента для фиксации красителей. Гидроксид магния действует как ан

ru.esdifferent.com

Алюминий, магний и их сплавы

Алюминий — легкий металл серебристо-белого цвета, плотность которого составляет 2700 кг/м3, температура плавления 660° С. Алюминий хорошо проводит электрический ток и тепло, высокопластичен, достаточно прочен. Взаимодействуя с кислородом воздуха, алюминий покрывается тонкой прочной пленкой окиси алюминия, которая служит хорошей защитой от дальнейшей коррозии. В природе встречается в виде различных минералов, из которых наиболее распространены бокситы, глиноземы.

 

В зависимости от химического состава алюминий (ГОСТ 11069-74) подразделяется на алюминий особой чистоты А999, содержащий 99,999% алюминия, высокой чистоты А995, А99, А97, А95, содержащий алюминия соответственно от 99,995 до 99,95%, и технической чистоты А85, А8, А7, А7Е, А6, А5, А5Е и АО, содержащий алюминия соответственно от 99,85 до 99%.

 

В алюминии находятся примеси: железо, кремний, медь, цинк, титан и пр.В алюминий технической частоты, поставляемый в виде слитков для обработки давлением, вводится титан в количестве до 0,1% для марок А85, А8, А7 и А5 и до 0,15% для марки АО.

 

Алюминий широко используют для изготовления влектрических проводов, труб, фольги, химической аппаратуры. Чтобы улучшить те или иные свойства алюминия, к нему добавляют различные металлы (медь, магний, цинк, кремний, литий и др.). Получившиеся алюминиевые сплавы обладают высокими механическими свойствами, малой плотностью, высокой электро- и теплопроводностью и хорошей коррозионной стойкостью. В зависимости от технического использования алюминиевые сплавы разделяются на деформируемые и литейные.

 

Среди деформируемых алюминиевых сплавов (ГОСТ 4784-74) наибольшее применение находят дуралюми-ны — сплавы алюминия с медью (до 5,2%), магнием (до 2,7%) и марганцем (до 1%). Медь и магний повышают прочность сплава, марганец — коррозионную «тонкость. Дуралюмины маркируют буквой Д и числом, обозначающим номер сплава. Например, Д1, Д12, Д16 и т, д.

 

Из дуралюминов изготовляют листы, трубки, ленты, прутки, проволоку, различные профили, из которых делают детали строительных несущих конструкций и остекленных стеновых панелей. Из литейных алюминиевых сплавов (ГОСТ 2685-75) наибольшее распространение получили силумины — сплавы алюминия с кремнием (от 10 до 13%). Силумины отличаются повышенными по сравнению с алюминием механическими свойствами, хорошей обрабатываемостью резанием, коррозионной стойкостью- обладают высокими литейными свойствами.

 

Силумины и другие литейные сплавы маркируют буквами АЛ и числом, указывающим порядковый номер сплава (АЛ1, АЛ2). Силумины применяют для изготовления корпусов двигателей, приборов в авиации. Магний-очень легкий металл серебристо-белого цвета, его плотность составляет 1750 кг/м3, температура плавления 650° С, обладает низкими показателями механических свойств. Магний легко окисляется, что усложняет его плавку и разливку. В качестве легирующих элементов, повышающих некоторые свойства магния, применяют алюминии, цинк (упрочняет магниевые сплавы), марганец (повышает коррозионную стойкость).

 

Магниевые сплавы подразделяются на деформируемые (ГОСТ 14957-76), которые маркируются буквами МА, и литейные (ГОСТ 2856-68), которые маркируются буквами МЛ. После букв стоят числа, указывающие условный номер сплава. Магниевые сплавы используют в самолетостроении (для изготовления бензиновых и масляных баков), а также для производства литых и штампованных деталей.


www.inmetal.ru

АЛЮМИНИЙ, МАГНИЙ И ИХ СПЛАВЫ

А. Термические неупрочняемые

А1

АД1

99,3 А1

CB

CB

CB

cbA 97; св. A85

5,0

9,0

А1—Мп

АМц

1,3 Мп

CB

CB

ев АМц

0,7

7,0

Al—Mg

АМН

1,1 Mg

CB

CB

св. AMrl

12,0

6,0

АМг2

2,2 Mg; 0,4 Мп

HC

HC

CB

св. АМгЗ

12

6,0

АМгЗ

3,6 Mg; 0,6 Si; 0,5 Мп

CB

CB

св. АМгЗ

8,0

8,0

АМг4

4,3 Mg; 0,6 Мп; 0,06 Ті

CB

CB

CB

св. AMr4

10

7,0

АМгб

5,3 Mg; 0,6 Мп; 0,06 Ті

CB

CB

CB

св. АМгб

10

7,0

АМгб

6,3 Mg; 0,6 Мп; 0,06 Ті Б. Термически у

CB

прочняем

CB

we

CB

св. АМгб

8,0

8,0

Al—Си

Д20

6,5 Си; 0,6 Мп; 0,15 Ті

CB

CB

Д20

15

6,0

1201

6,3 Си; 0,3 Мп; 0,06 Ті; 0,17 Zr; 0,1 V

CB

CB

св. 1201

5,0

10

01205

6,3 Си; 0,6 Мп; 0,06 Ті; 0,11 Zr; 0,15 Cd

HC

HC

CB

CB. 1201

12

6,0

Al—Mg—Si

АД31

0,6 Mg; 0,5 Si

HC

HC

CB

св. AK5

15

6,0

АДЗЗ

1,1 Mg; 0,25 Си; 0,6 Si;

HC

HC

CB

св. AK5

12

6,0

АД35

0,25 Cr

1,1 Mg; 1,0 Si; 0,7 Mn;

0,25 Cr

HC

HC

CB

св. AK.5

12

6,0

АВ

0,7 Mg; 0,3 Си; 0,85 Si; 0,25 Mn

HC

HC

CB

св. AK.5

10

7,0

msd.com.ua

55. Сплавы алюминия с магнием и их свойства.

Магналии — сплавы алюминия с магнием. Магналии имеют высокую коррозионную стойкость, хорошо свариваются, имеют высокую прочность, пластичность. При сварке магналиевых сплавов сварные соединения становятся почти равнопрочными основному металлу. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания магния в сплаве существенно увеличивает его прочность. Увеличение концентрации магния на каждый процент содержания повышает предел прочности сплава. Сплавы с содержанием магния до 3 % (по массе) не изменяют кристаллическую структуру при комнатной и повышенной температуре, даже в существенно нагартованном состоянии. С ростом концентрации магния в сплаве, в нагартованном состоянии механическая структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава. Для улучшения прочностных характеристик сплавы системы Al—Mg легируют хромом, марганцем, титаном, кремнием или ванадием.

Наибольшее применение получили в технике низких температур. Также применяется в авиастроении, судостроении, машиностроении и т.д.

56.Сплавы алюминия с медью и магнием и их свойства.

В авиа — и машиностроении, при изготовлении строй конструкций, использ значительно более твердые сплавы алюминия, т.к они обладают высокими прочностными характеристиками. Один из самых известных — дуралюмины — сплавы алюминия с медью (до 5,2%), магнием (до 2,7%) и марганцем (до 1%)Дуралюмины обладают хорошим сочетанием прочности и пластичности, но имеют при этом не высокую коррозионную стойкость. Путем закалки, т.е. быстрого охлаждения в воде, эту структуру фиксируют при комнатной температуре. При этом раствор получается пересыщенным. В этом состоянии, т.е. в состоянии закалки, дюралюминий очень мягок и пластичен. Дуралюмины маркируют буквой Д и числом, обозначающим номер сплава. Например, Д1, Д12, Д16 и т, д.Типичным представителем дуралюмина является сплав Д16 содержащий 4,3% Сu.1.5%Mg.0.6% Mn. Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа.

studfiles.net

Литейные алюминиево-магниевые сплавы

Алюминиевые сплавы подразделяются на деформируемые и литейные. Легирующие элементы и в деформируемых, и в литейный одни и те же, но в деформируемых сплавах их содержание намного меньше.

Литейные алюминиевые сплавы

Основными легирующими элементами литейных алюминиевых сплавов являются магний, медь и кремний. Они дают качественное изменение природы алюминиевых сплавов. В сплавах Al-Cu, Al-Mg и Al-Mg-Si образуются интерметаллиды, а сплавах Al-Si  — эвтектика. Интерметаллиды, особенно в сочетании с эвтектикой, дают возможность применения различных методов термического упрочнения. Другие легирующие элементы — вспомогательные и модифицирующие — применяют в значительно меньших количествах для улучшения заданных механических и физических свойств сплавов.

Сплавы алюминий-магний

Алюминиево-магниевые сплавы являются однофазными бинарными сплавами с уровнем прочности от среднего до высокого и хорошими вязкими свойствами. То, что они являются однофазными, означает, что они не способны повышать свою прочность в результате термической обработки.

Главная особенность этих Al-Mg сплавов состоит в их высокой коррозионной стойкости, в том числе, в морской воде и морской атмосфере. Самая высокая коррозионная стойкость достигается при минимуме примесей – и твердых, и газообразных. Поэтому эти сплавы изготавливают из высококачественных металлов и с особенной тщательностью при его выплавке и разливке. Эти сплавы  хорошо свариваются и часто применяются в строительстве для декоративной отделки. Алюминиево-магниевые сплавы легко обрабатываются резанием и имеют привлекательный вид после анодирования.

Сплавы трудные для литья

По сравнению с алюминиево-кремниевыми сплавами все сплавы алюминия с магнием имеют значительно больше проблем при разливке. Они требуют более тщательного проектирования литейных форм и более высокие градиенты температур при затвердевании для получения хороших отливок.

При литье этих сплавов нужно учитывать их повышенную склонность к окислению при плавлении. Это важно еще и потому, что для многих изделий из этих сплавов требуется высокое качество поверхности и дефекты, связанные с оксидами, крайне нежелательны.

Влияние примесей

  • Медь и никель снижают сопротивление коррозии, а также пластичность.
  • Железо, кремний и марганец снижают прочность и пластичность.
  • Олово снижает сопротивление коррозии.

Литейные сплавы серии 5хх.х

В американской и международной классификации алюминиево-магниевые литейные сплавы образуют серию сплавов 5хх.х. Три из них представлены ниже.

Литейный алюминиевый сплав 514.0

Формула сплава: 4Mg

Химический состав:

  • медь: 0,15 % макс;
  • магний: 3,5-4,5 %;
  • марганец: 0,35 % макс.;
  • кремний: 0,35 % макс.;
  • железо: 0,50 % макс.
  • цинк: 0,15 % макс.;
  • титан: 0,25 % макс.;
  • другие: каждый 0,05 %, сумма 0,15 % макс.;
  • алюминий: остальное.

Типичные механические свойства (в состоянии поставки):

  • прочность на растяжение: 145 МПа;
  • предел текучести: 95 МПа;
  • относительное удлинение: 3 %;
  • коэффициент Пуассона: 0,33;
  • модуль упругости: 71,0 ГПа.

Физические свойства:

  • плотность: 2,65 г/см3;
  • температура ликвидус: 630 ºС;
  • температура солидус: 585 ºС.

Технологические свойства:

  • температура плавления: от 675 до 815 ºС;
  • температура разливки: от 675 до 790 ºС;
  • сплав для сварки – 4043.

Литейный алюминиевый сплав 518.0

Формула сплава: 8Mg

Химический состав:

  • медь: 0,25 % макс;
  • магний: 7,5-8,5 %;
  • марганец: 0,35 % макс.;
  • кремний: 0,35 % макс.;
  • железо: 1,8 % макс.;
  • никель: 0,15 % макс.;
  • цинк: 0,15 % макс.;
  • олово: 0,15 % макс.;
  • другие: сумма 0,25 % макс.;
  • алюминий: остальное.

Типичные механические свойства (в состоянии поставки):

  • прочность на растяжение: 310 МПа;
  • предел текучести: 190 МПа;
  • относительное удлинение: 5-8 %.

Физические свойства:

  • плотность: 2,57 г/см3;
  • температура ликвидус: 620 ºС;
  • температура солидус: 535 ºС.

Литейный алюминиевый сплав 520.0

Формула сплава: 10Mg

Химический состав:

  • медь: 0,25 % макс;
  • магний: 9,5-10,6 %;
  • марганец: 0,15 % макс.;
  • кремний: 0,25 % макс.;
  • железо: 0,30 % макс.;
  • цинк: 0,15 % макс.;
  • титан: 0,25 % макс.;
  • другие: каждый 0,05 %, сумма 0,15 % макс.;
  • алюминий: остальное.

Типичные механические свойства (в состоянии поставки):

  • прочность на растяжение: 330 МПа;
  • предел текучести: 180 МПа;
  • относительное удлинение: 16 %.

Физические свойства:

  • плотность: 2,57 г/см3;
  • температура ликвидус: 605 ºС;
  • температура солидус: 450 ºС.

Слитки магния для легирования алюминиевых сплавов

Магний — брат алюминия

Магний во многом похож на алюминий. Плотность магния при 20 °C составляет 1,74 г/см³ — он плавает в жидком алюминии (плотность жидкого алюминия — 2,4 г/см³). Температуры плавления алюминия и магния почти одинаковые: у магния — 650 °C, у алюминия 99,5 % — 657 °C. Поэтому магний прямо загружают в плавильную печь, в отличие, например, от кремния. Чистый кремний имеет высокую температуру плавления, 1415 °C. По этой причине кремний  вводят в алюминиевый расплав обычно в составе силумина с содержанием кремния около 12 %. Такой эвтектический алюминиевый сплав Al-Si плавятся при температуре всего лишь около 577 °C.

Фазовая диаграмма алюминий-магний

Источник: Aluminum and Aluminum Alloys, ASM International, 1996

aluminium-guide.ru

Магний против алюминия, или почему Samsung Galaxy S7, сделанный из магния, будет потрясающим

И вот снова это время года – время распространения слухов, спекуляций, оценок и предсказаний, касающихся того, какой будет следующая модель Samsung Galaxy. И слухи, вращающихся вокруг январского анонса Samsung Galaxy S7, уже работают на полную катушку. Насколько потрясающим будет телефон? Будут ли у него радикально улучшенные характеристики? Как это будет сделано? Будет ли он способен стрелять лазерными лучами и проектировать голограммы в воздухе? Эти вопросы сейчас у многих в голове. На них мы попробуем ответить с помощью нашей богатой коллекции слухов о Samsung Galaxy S7.

Samsung Galaxy S7

Среди множества слухов о Galaxy S7 есть один, который говорит о том, что следующий флагман от Samsung будет немного отличаться с точки зрения дизайна. Новая модель будет сделана из стекла и металла, как и Galaxy S6. Но для внешней рамки телефона вместо алюминия будет использован магниевый сплав. Материал, вероятно, будет использован и внутри устройства, как часть его внутренней структуры. Если это окажется правдой, то будет просто потрясающе, и для этого есть несколько причин, о которых мы расскажем дальше.

Содержимое статьи

Итак, что такое магний?

[the_ad_placement id=”web-mobile-inline”]

Магний – щёлочноземельный металл с атомным номером 12. Это блестящий серый твёрдый с многочисленными свойствами часто используют в тех случаях, когда требуется сияющий, прочный материал. Однако, сам по себе магний точно не подходит для использования в потребительских продуктах, так как он очень реактивный. Мы не хотим, чтобы наши гаджеты легко поддавались коррозии или внезапно воспламенялись, не так ли? Именно поэтому для создания различных наиболее практичных сплавов магний смешивают с другими элементами, в том числе с алюминием или цинком. Например, корпус некоторых премиум-ноутбуков, цифровых камер, и даже некоторых сотовых телефонов изготовлен из магниевого сплава. Детали, сделанные из такого сплава, также используются в конструкциях самолётов, ракет, высокопроизводительных и других машин, где снижение веса имеет важное значение.

Магний

Почему же магниевые сплавы лучше алюминиевых?

Есть несколько различий между магниевыми сплавами и алюминиевыми. Начнём с того, что первые более лёгкие. Корпус Galaxy S6, например, выполнен из 6013 алюминиевого сплава, который имеет плотность 2,71 г/см³ (0,0979 фунта/дюйм³). Плотность 7000-серии алюминия, используемого в iPhone 6s ещё больше. Для сравнения, магниевые сплавы имеют плотность около 1,8 г/см³ (0,065 фунта/дюйм³). Эти запутанные цифры означают, что магниевые сплавы примерно на 33% легче, чем алюминиевые аналоги. Это в значительной степени влияет на общий вес продукта, которым мы пользуемся. Большинство из нас не против более лёгкого Galaxy S7, не так ли?

Несмотря на то что магниевые сплавы легче, они похожи на (если не лучше, чем) алюминиевые с точки зрения механических характеристик. Они могут быть такими же прочными и долговечными. Они также хорошо рассеивают тепло. Такие сплавы очень хорошо переносят вибрации и удары. Они имеют меньшее влияние на передачу радиоволн. В дополнение ко всему этому, легче сделать структурные элементы, такие как корпус телефона или рамку, из магниевых сплавов, так как они имеют благоприятные механические свойства и низкую точку плавления.

Если магниевые сплавы такие потрясающие, где же они были все это время?

Камера Samsung NX1 имеет корпус, выполненный из магниевого сплава

Исторически, алюминий быстрее набрал популярность, так как этот металл отлично подходит для всего, от банки для газировки до автомобильных двигателей. Он был лёгким, прочным, подходящим для переработки, а усовершенствованные технологии сделали его ещё и дешёвым. Применение магния для коммерческих целей началось намного позже, но сейчас популярность материала находится на подъёме, так как его экономическая эффективность приближается к алюминию. С одной стороны, магниевое сырье по-прежнему намного дороже, чем алюминий, но с другой, машинам легче сделать его сплав, поэтому он экономически эффективен, как и алюминий.

Этот магний в Samsung Galaxy S7 будет потрясающим!

[the_ad_placement id=”web-mobile-inline”]

Не так быстро, ковбой! Слухи – это всего лишь слухи, и должны рассматриваться как таковые, особенно когда у нас нет никаких фактических доказательств. Тем не менее шансы на то, что мы увидим Galaxy S7, изготовленный из магниевого сплава, достаточно велики. Материал далёк от экзотики, и может быть получен в больших количествах, а его преимущества по сравнению с алюминием дадут следующему флагману Galaxy ещё одно достоинство. Кроме того, мы уже видели не так уж мало гаджетов из магния: планшеты Microsoft Surface, OnePlus 2 и Oppo R1, все имеют корпусы из магниевого сплава. Samsung тоже не привыкать к материалу, так как его цифровая камера NX1 может похвастаться крепким магниевым телом. Поэтому Samsung Galaxy S7, сделанный из магния, не станет сюрпризом. Это может стать следующим шагом в эволюции дизайна устройств линейки Galaxy. Как может выглядеть такой телефон показано на неофициальных изображениях, представленных ниже.

Шасси Samsung Galaxy S7

Шасси Samsung Galaxy S7

Шасси Samsung Galaxy S7

doitdroid.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *