Алюминий – САЙТ О МЕТАЛЛЕ
Алюминий (лат. Aluminium) — серебристо-белый металл, 13-й элемент периодической таблицы химических элементов третьего периода, с атомным номером 13. Обозначается символом Al.
Название элемента образовано от латинского alumen — квасцы.
Алюминий относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).
Простое вещество алюминий — лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.
Впервые алюминий был получен датским физиком Гансом Эрстедом в 1824 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Прошло еще полвека, прежде чем началось промышленное производство алюминия.
- Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук
До открытия промышленного способа получения алюминия этот металл был дороже золота. В 1889 году британцы, желая почтить богатым подарком великого русского химика Д.И. Менделеева, подарили ему весы из золота и алюминия.
Свойства алюминия
Лёгкость, прочность, стойкость к коррозии и широкий спектр функциональных возможностей сделали алюминий одним их главных конструкционных материалов нашего времени. Алюминий есть в наших домах, автомобилях, поездах и самолетах, в мобильных телефонах и компьютерах. Сегодня этот металл часто незаменим в дизайне интерьеров, а ведь еще 200 лет назад о нем было известно очень мало.
Алюминий – самый распространенный металл на Земле, на него приходится более 8% всей массы земной коры, и это третий по распространенности химический элемент на нашей планете после кислорода и кремния. При этом алюминий не встречается в природе в чистом виде из-за своей высокой химической активности. Чаще всего в природе алюминий встречается в составе квасцов. Это минералы, объединяющие в себе две соли серной кислоты: одну на основе щелочных металлов (лития, натрия, калия, рубидия или цезия), а другую – на основе металла третьей группы таблицы Менделеева, преимущественно алюминия. Квасцы и сегодня применяют при очистке воды, в кулинарии, медицине, косметологии, в химической и других отраслях промышленности.
Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.
Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.
Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.
Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.
Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.
Бокситы
Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.
Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.
Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца. Поэтому строят алюминиевые заводы чаще всего вблизи от мощных и возобновляемых источников энергии, обычно – гидроэлектростанций, представляющих самый мощный вид «зеленой энергетики».
Корунд
Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.
Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.
На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.
Один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.
Подготовил Евгений Лавриненко (СМ)
site-metall.com
Алюминий: свойства, получение и применение
АЛЮМИНИЙ, Al (от лат. alumen — название квасцов, применявшихся в древности как протрава при крашении и дублении * а. aluminium; н. Aluminium; ф. aluminium; и. aluminio), — химический элемент III группы периодической системы Менделеева, атомный номер 13, атомная масса 26,9815. Состоит из одного стабильного изотопа с массовым числом 27. Открыт датским учёным Х. Эрстедом в 1825.
Физические свойства алюминия
Алюминий — серебристо-белый лёгкий металл. Решётка алюминия кубическая гранцентрированная с параметром а = 0,40413 нм (4,0413 Е). Алюминий высокой чистоты (99,996%) характеризуется следующими физическими свойствами: плотность (при 20°С) 2698,9 кг/м3, t плавления 660,24°С, t кипения 2500°С, теплопроводность (при 190°С) 343 Вт/м • К, удельная теплоёмкость (при 100°С) 931,98 Дж/кг • К, электропроводность по отношению к меди (при 20°С) 65,5%, коэффициент термического расширения (от 20 до 100°С) 2,39 • 10 -5 град-1. Алюминий обладает невысокими прочностью (предел прочности при растяжении 50-60 МПа) и твёрдостью (170 МПа, по Бринеллю), но высокой пластичностью (до 50%). Алюминий хорошо полируется, анодируется и имеет высокую отражательную способность (90%). Алюминий стоек к действию различных типов природных вод, азотной и органической кислот. На воздухе алюминий покрывается тонкой прочной плёнкой, предохраняющей металл от дальнейшего окисления и коррозии.
Химические свойства алюминия
В обычных условиях алюминий проявляет степень окисления +3, при высоких температурах +1, редко +2.
Алюминий обладает большим сродством к кислороду, образуя окись Al2О3; в порошкообразном состоянии при накаливании в токе кислорода он сгорает, развивая температуру около 3000°С. Эту особенность алюминия используют в алюминотермии для восстановления некоторых металлов из их окислов. При высокой температуре алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al
Алюминий в природе
Алюминий — один из самых распространённых (после кислорода и кремния) элементов в породах земной коры — 8,8% (по массе). Максимальное содержание алюминия отмечено в осадочных породах — 10,45% (по массе), содержание в средних, основных, кислых и ультраосновных соответственно 8,85%, 8,76%, 7,7%, 0,45% (по массе). Известны сотни минералов, в которые он входит в виде главного или достаточно распространённого элемента. Основные носители алюминия — алюмосиликаты. Минералы с максимальным содержанием алюминия — корунд, гиббсит, бёмит, диаспор. Главный источник получения алюминия — бокситы. Кроме того, алюминий частично извлекают из высокоглинозёмистых щелочных пород (уртиты и др.) и алунитов.
Основной особенностью геохимического поведения алюминия в эндогенных процессах является его довольно равномерное распределение в кристаллизующихся алюмосиликатах — полевых шпатах, слюдах, амфиболах и пироксенах. Для постмагматических и гидротермальных образований он не характерен. Единственным своеобразным, но достаточно редким минералом алюминия, связанным с пегматитами, является криолит Na3AlF6. В экзогенных процессах алюминий — весьма слабый мигрант вследствие высокой гидролизуемости его солей с выпадением в осадок малорастворимой гидроокиси Al(OH)3, слабой растворимости его других соединений, высокой кристаллохимической устойчивости алюмокремнекислородных радикалов в алюмосиликатах. Главным концентратором алюминия в экзогенных процессах является каолин, образующийся как остаточный продукт в процессе выветривания кислых, средних и основных пород. Впоследствии при размыве и переотложении каолинитовых кор выветривания алюминий попадает в осадочные породы, главным образом глины. В особо контрастных условиях выветривания (влажные тропики, высокая температура среды) разложение в горных породах достигает стадии формирования остаточных (элювиальных) бокситов. Мало алюминия в живых организмах и гидросфере, хотя и известны отдельные организмы — концентраторы алюминия (плауны, некоторые виды моллюсков). Вместе с тем в почвах и в некоторых водах, богатых органическим веществом, отмечается определённая миграционная подвижность алюминия в виде органо-минеральных соединений. Особая подвижность алюминия устанавливается в некоторых вулканогенно- гидротермальных ультракислых и кислых растворах. Основные генетические типы месторождений и схемы обогащения см. в ст. Алюминиевые руды, Бокситы.
Получение
Металлический алюминий в промышленности получают электролизом раствора глинозёма в расплавленном криолите или расплаве AlCl3; А. высокой чистоты (99,996%) вырабатывают электролитическим рафинированием с помощью т.н. трёхслойного способа. Принципиально та же технология, но с использованием органических электролитов позволяет доводить чистоту рафинируемого алюминия до 99,999%.
Применение
Благодаря лёгкости, достаточной прочности, способности сплавляться со многими другими металлами и хорошей электропроводности алюминий находит широкое применение в электротехнике, а также как конструкционный материал в машиностроении, авиастроении, строительстве и др. Чистый и сверхчистый алюминий применяют в полупроводниковой технике и для покрытия разного рода зеркал. Алюминий получил применение в ядерных реакторах в связи с относительно низким сечением поглощения нейтронов. В ёмкостях и таре из алюминия транспортируют жидкие газы (метан, кислород, водород), некоторые кислоты (азотную, уксусную), хранят пищевые продукты, воду, масла. Как легирующую добавку алюминий используют в сплавах Cu, Mg, Ti, Ni, Zn, Fe. В ряде случаев алюминий идёт на изготовление взрывчатых веществ (алюминал, алюмотол и др.).
www.mining-enc.ru
Ответы@Mail.Ru: алюминий металл или неметалл
Металл конечно. Самолёты сделаны из сплавов алюминия. Слышали, когда нибудь, что они из дерева или пластмассы?
Металл. конечно. как и медь и железо и титан
Амфотерный металл
Металл и свойства хорошие. Почти золото, но стоит дешевле
В таблице Менделеева он однозначно относится к металлам, но очень сильно окисляется, поэтому в бОльшей степени проявляет неметаллические свойства. (Из-за поверхностного окисла) . Оригинально ведет себя с концентрированной азотной кислотой- типа игнорирует ее, поэтому именно в алюминиевых цистернах ее и перевозят…. но стоит хоть чуток разбавить ее водой….
раньше из дерева самолёты были
алюминий это химический элемент, то есть это не сплав металлов, а сталь это есть сплав металлов, в который МОЖЕТ входить алюминий, но это не одно и то же
Делали самолеты из фанеры. Во время первой мировой войны, правда от нескольких попаданий они разваливались, но это не важно)
Металл конечно. Самолёты сделаны из сплавов алюминия. Слышали, когда нибудь, что они из дерева или пластмассы? 3 Нравится Пожаловаться 11 ОТВЕТОВ Владимир Чумаков 6 лет назад Гуру (4381) металл 1 Нравится Пожаловаться Образование на подъеме 18+ Сразу 4 вуза РФ попали в 50 лучших по версии The Times vz.ru Играй в российскую ММОРПГ 16+ Игра запускается даже на калькуляторе. Интересный сюжет и non-target система боя. s3.gamexp.ru тема 6 лет назад Ученик (14) металл Нравится Пожаловаться Nada 6 лет назад Просветленный (49894) Металл. конечно. как и медь и железо и титан Нравится Пожаловаться Евгений Радикевич 6 лет назад Знаток (466) Амфотерный металл 1 Нравится Пожаловаться Козакевич Андрей 6 лет назад Знаток (455) Металл и свойства хорошие. Почти золото, но стоит дешевле Нравится Пожаловаться genok 6 лет назад Профи (567) Это цветмет. Нравится Пожаловаться Владимир Карлов 6 лет назад Просветленный (35423) В таблице Менделеева он однозначно относится к металлам, но очень сильно окисляется, поэтому в бОльшей степени проявляет неметаллические свойства. (Из-за поверхностного окисла) . Оригинально ведет себя с концентрированной азотной кислотой- типа игнорирует ее, поэтому именно в алюминиевых цистернах ее и перевозят…. но стоит хоть чуток разбавить ее водой…. 3 Нравится Пожаловаться Андрей Коровников 6 лет назад Ученик (177) металл Нравится Пожаловаться Сергей Л. 1 год назад Знаток (394) раньше из дерева самолёты были 1 Нравится Пожаловаться Maksim 1 год назад Знаток (258) алюминий это химический элемент, то есть это не сплав металлов, а сталь это есть сплав металлов, в который МОЖЕТ входить алюминий, но это не одно и то же Нравится Пожаловаться Михаил Петриков 8 месяцев назад Ученик (182) Делали самолеты из фанеры. Во время первой мировой войны, правда от нескольких попаданий они разваливались, но это не важно)
touch.otvet.mail.ru
Алюминий — Википедия (с комментариями)
Материал из Википедии — свободной энциклопедии
| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Свойства атома | |||||
Название, символ, номер | Алюминий / Aluminium (Al), 13 | ||||
Группа, период, блок | 13, 3, | ||||
Атомная масса (молярная масса) | 26,9815386(8)[1] а. е. м. (г/моль) | ||||
Электронная конфигурация | [Ne] 3s2 3p1 | ||||
Электроны по оболочкам | 2, 8, 3 | ||||
Радиус атома | 143 пм | ||||
Химические свойства | |||||
Ковалентный радиус | 121±4 пм | ||||
Радиус Ван-дер-Ваальса | 184 пм | ||||
Радиус иона | 51 (+3e) пм | ||||
Электроотрицательность | 1,61 (шкала Полинга) | ||||
Электродный потенциал | -1,66 В | ||||
Степени окисления | 3 | ||||
Энергия ионизации | 1‑я: 577.5 (5.984) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Термодинамическая фаза | Твёрдое вещество | ||||
Плотность (при н. у.) | 2,6989 г/см³ | ||||
Температура плавления | 660 °C, 933,5 K | ||||
Температура кипения | 2518,82 °C, 2792 K | ||||
Уд. теплота плавления | 10,75 кДж/моль | ||||
Уд. теплота испарения | 284,1 кДж/моль | ||||
Молярная теплоёмкость | 24,35[2] Дж/(K·моль) | ||||
Молярный объём | 10,0 см³/моль | ||||
Кристаллическая решётка простого вещества | |||||
Структура решётки | кубическая гранецентрированая | ||||
Параметры решётки | 4,050 Å | ||||
Температура Дебая | 394 K | ||||
Прочие характеристики | |||||
Теплопроводность | (300 K) 237 Вт/(м·К) | ||||
Скорость звука | 5200 м/с | ||||
Эмиссионный спектр | |||||
13 | Алюминий |
3s23p1 |
Алюми́ний — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), третьего периода, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).
Простое вещество алюминий (CAS-номер: [www.chemnet.com/cas/supplier.cgi?exact=dict&terms=7429-90-5 7429-90-5]) — лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.
История
Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Название элемента образовано от лат. alumen — квасцы[3].
До открытия промышленного способа получения алюминия этот металл был дороже золота. В 1889 г. британцы, желая почтить богатым подарком великого русского химика Д. И. Менделеева, подарили ему весы из золота и алюминия[4][5].
Получение
Алюминий образует прочную химическую связь с кислородом. По сравнению с другими металлами, восстановление алюминия из руды более сложно в связи с его высокой реакционной способностью и с высокой температурой плавления большинства его руд (таких, как бокситы). Прямое восстановление углеродом применяться не может, потому что восстановительная способность алюминия выше, чем у углерода. Возможно непрямое восстановление с получением промежуточного продукта Al4C3, который подвергается разложению при 1900—2000 °С с образованием алюминия. Этот способ находится в разработке, но представляется более выгодным, чем процесс Холла—Эру, так как требует меньших энергозатрат и приводит к образованию меньшего количества CO2[6].
Современный метод получения, процесс Холла—Эру[en] был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.
Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодных графитовых электродов и около 17 МВт·ч электроэнергии (~61 ГДж)[7].
Лабораторный способ получения алюминия предложил Фридрих Вёлер в 1827 году восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):
- <math>\mathsf{AlCl_3 + 3K \rightarrow 3KCl + Al}</math>
Физические свойства
- Металл серебристо-белого цвета, лёгкий
- плотность — 2,7 г/см³
- температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C
- удельная теплота плавления — 390 кДж/кг
- температура кипения — 2500 °C
- удельная теплота испарения — 10,53 МДж/кг
- удельная теплоёмкость — 880 Дж/кг·K
- временное сопротивление литого алюминия — 10—12 кг/мм², деформируемого — 18—25 кг/мм², сплавов — 38—42 кг/мм²
- Твёрдость по Бринеллю — 24…32 кгс/мм²
- высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу
- Модуль Юнга — 70 ГПа
- Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражательной способностью.
- Слабый парамагнетик.
- Температурный коэффициент линейного расширения 24,58·10−6 К−1 (20…200 °C).
- Удельное сопротивление 0,0262..0,0295 Ом·мм²/м
- Температурный коэффициент электрического сопротивления 4,3·10−3 K−1. Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина.
Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин).
Нахождение в природе
Распространённость
По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14 %[8].
Природные соединения алюминия
В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений. Некоторые из природных минералов алюминия:
- Бокситы — Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3)
- Нефелины — KNa3[AlSiO4]4
- Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3
- Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
- Корунд (сапфир, рубин, наждак) — Al2O3
- Полевые шпаты — (K,Na)2O·Al2O3·6SiO2, Ca[Al2Si2O8]
- Каолинит — Al2O3·2SiO2 · 2H2O
- Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2
- Хризоберилл (александрит) — BeAl2O4.
Тем не менее, в некоторых специфических восстановительных условиях (жерла вулканов) найдены ничтожные количества самородного металлического алюминия[9].
В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в водоёмах России колеблются от 0,001 до 10 мг/л. В морской воде его концентрация 0,01 мг/л[10].
Изотопы алюминия
Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.
Химические свойства
При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной плёнки можно, добавляя к алюминию такие металлы, как галлий, индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов[11].
Легко реагирует с простыми веществами:
- <math>\mathsf{4Al + 3O_2 \rightarrow 2Al_2O_3}</math>
- <math>\mathsf{2Al + 3Hal_2 \rightarrow 2AlHal_3 (Hal = Cl, Br, I)}</math>
- <math>\mathsf{2Al + 3F_2 \rightarrow 2AlF_3}</math>
- <math>\mathsf{2Al + 3S \rightarrow Al_2S_3}</math>
- <math>\mathsf{2Al + N_2 \rightarrow 2AlN}</math>
- <math>\mathsf{4Al + 3C \rightarrow Al_4C_3}</math>
Сульфид и карбид алюминия полностью гидролизуются:
- <math>\mathsf{Al_2S_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2S}</math>
- <math>\mathsf{Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4}</math>
Со сложными веществами:
- с водой (после удаления защитной оксидной плёнки, например, амальгамированием или растворами горячей щёлочи):
- <math>\mathsf{2Al + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2}</math>
- со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):
- <math>\mathsf{2Al + 2NaOH + 6H_2O \rightarrow 2Na[Al(OH)_4] + 3H_2}</math>
- <math>\mathsf{2Al + 6NaOH \rightarrow 2Na_3AlO_3 + 3H_2}</math>
- Легко растворяется в соляной и разбавленной серной кислотах:
- <math>\mathsf{2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2}</math>
- <math>\mathsf{2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2}</math>
- При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:
- <math>\mathsf{8Al + 15H_2SO_4 \rightarrow 4Al_2(SO_4)_3 + 3H_2S + 12H_2O}</math>
- <math>\mathsf{Al + 6HNO_3 \rightarrow Al(NO_3)_3 + 3NO_2 + 3H_2O}</math>
- <math>\mathsf{8Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe}</math>
- <math>\mathsf{2Al + Cr_2O_3 \rightarrow Al_2O_3 + 2Cr}</math>
Производство и рынок
Достоверных сведений о получении алюминия до XIX века, нет. (Встречающееся иногда со ссылкой на «Естественную историю» Плиния утверждение, что алюминий был известен при императоре Тиберии, основано на неверном толковании источника)К:Википедия:Статьи без источников (тип: не указан)[источник не указан 1494 дня].
В 1825 году, датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей плёнкой оксида алюминия.
До конца XIX века алюминий в промышленных масштабах не производился.
Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии[13][14]) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.
В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путём в период с 1854 по 1890 год.
Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозёма, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозёма внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.
Первый алюминиевый завод в России был построен в 1932 году в городе Волхов. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс. тонн алюминия, ещё 2,2 тыс. тонн импортировалось.
Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.
К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.
В 2007 году в мире было произведено 38 млн т первичного алюминия, а в 2008 — 39,7 млн т. Лидерами производства являлись:
- КНР КНР (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т)
- Россия Россия (3,96/4,20)
- Канада Канада (3,09/3,10)
- США США (2,55/2,64)
- Австралия Австралия (1,96/1,96)
- Бразилия Бразилия (1,66/1,66)
- Индия Индия (1,22/1,30)
- Норвегия Норвегия (1,30/1,10)
- ОАЭ ОАЭ (0,89/0,92)
- Бахрейн Бахрейн (0,87/0,87)
- ЮАР ЮАР (0,90/0,85)
- Исландия Исландия (0,40/0,79)
- Германия Германия (0,55/0,59)
- Венесуэла Венесуэла (0,61/0,55)
- Мозамбик Мозамбик (0,56/0,55)
- Таджикистан Таджикистан (0,42/0,42)[15]
На мировом рынке, запас 2,224 млн т., а среднесуточное производство 128,6 тыс. т. (2013.7)[16].
В России монополистом по производству алюминия является компания «Российский алюминий», на которую приходится около 13 % мирового рынка алюминия и 16 % глинозёма.[17]
Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.
Цены на алюминий (на торгах международных сырьевых бирж) с 2007 по 2015 годы составляли в среднем 1253—3291 долларов за тонну[18].
Применение
Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки. Первые же три свойства сделали алюминий основным сырьём в авиационной и авиакосмической промышленности (в последнее время медленно вытесняется композитными материалами, в первую очередь, углеволокном).
Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому для упрочнения его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).
Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле[19] за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем. Меньшую электропроводность алюминия (3,7·107 См/м) по сравнению с медью (5,84·107 См/м), для сохранения одинакового электрического сопротивления, компенсируют увеличением площади сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является образование на его поверхности прочной диэлектрической оксидной плёнки, затрудняющей пайку и за счет ухудшения контактного сопротивления вызывающей повышенное нагревание в местах электрических соединений, что, в свою очередь, отрицательно сказывается на надёжности электрического контакта и состоянии изоляции. Поэтому, в частности, 7-я редакция Правил устройства электроустановок, принятая в 2002 г., запрещает использовать алюминиевые проводники сечением менее 16 мм².
В качестве восстановителя
Сплавы на основе алюминия
В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе[20]. Обозначение серий сплавов в данной статье приведена для США (стандарт h45.1 ANSI) и согласно ГОСТ России. В России основные стандарты — это ГОСТ 1583
«Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS[en] маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.
- Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг). Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости[21]. Кроме того, эти сплавы отличаются высокой вибростойкостью.
В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система соединения Al3Mg2 c твёрдым раствором на основе алюминия. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.
Рост содержания Mg в сплаве существенно увеличивает его прочность. Каждый процент магния повышает предел прочности сплава на 30 МПа, а предел текучести — на 20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30—35 %.
Сплавы с содержанием магния до 3 % (по массе) структурно стабильны при комнатной и повышенной температуре даже в значительно нагартованном состоянии. С ростом концентрации магния в нагартованном состоянии структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.
Для улучшения прочностных характеристик сплавы системы Al-Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Попадания в сплавы этой системы меди и железа стараются избегать, поскольку они снижают их коррозионную стойкость и свариваемость.
- Алюминиево-марганцевые Al-Mn (ANSI: серия 3ххх; ГОСТ: АМц). Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.
Основными примесями в сплавах системы Al-Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.
Присутствие достаточного количества марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.
- Алюминиево-медные Al-Cu (Al-Cu-Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ). Механические свойства сплавов этой системы в термоупрочненном состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы высокотехнологичны. Однако у них есть и существенный недостаток — низкое сопротивление коррозии, что приводит к необходимости использовать защитные покрытия.
В качестве легирующих добавок могут применяться марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает пределы прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии.
Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.
- Сплавы системы Al-Zn-Mg (Al-Zn-Mg-Cu) (ANSI: серия 7ххх, 7xx.x). Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Эффект столь высокого упрочнения достигается благодаря высокой растворимости цинка (70 %) и магния (17,4 %) при повышенных температурах, резко уменьшающейся при охлаждении.
Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением. Повысить сопротивление коррозии сплавов под напряжением можно легированием медью.
Нельзя не отметить открытой в 60-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. В результате этого открытия были разработаны новые системы сплавов Al-Mg-Li, Al-Cu-Li и Al-Mg-Cu-Li.
- Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
- Комплексные сплавы на основе алюминия: авиаль.
Алюминий как добавка в другие сплавы
Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).
Ювелирные изделия
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.
В Японии алюминий используется в производстве традиционных украшений, заменяя серебро.
Столовые приборы
По приказу Наполеона III были изготовлены алюминиевые столовые приборы, которые подавались на торжественных обедах ему и самым почётным гостям. Другие гости при этом пользовались приборами из золота и серебра[22].
Затем столовые приборы из алюминия получили широкое распространение, со временем использование алюминиевой кухонной утвари существенно снизилось, но и в настоящее время их всё ещё можно увидеть лишь в некоторых заведениях общественного питания — несмотря на заявления некоторых специалистов о вредности алюминия для здоровья человекаК:Википедия:Статьи без источников (тип: не указан)[источник не указан 2229 дней]. Кроме того, такие приборы со временем теряют привлекательный вид из-за царапин и форму из-за мягкости алюминия.
Стекловарение
В стекловарении используются фторид, фосфат и оксид алюминия.
Пищевая промышленность
Алюминий зарегистрирован в качестве пищевой добавки Е173.
Военная промышленность
Дешевизна и вес металла обусловили широкое применение в производстве ручного стрелкового оружия, в частности автоматов и пистолетов[23][24].
Алюминий и его соединения в ракетной технике
Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:
Триэтилалюминий (обычно в смеси с триэтилбором) используется также для химического зажигания (как пусковое горючее) в ракетных двигателях, так как он самовоспламеняется в газообразном кислороде. Ракетные топлива на основе гидрида алюминия, в зависимости от окислителя, имеют следующие характеристики[25]:
Окислитель | Удельная тяга (Р1, с) | Температура сгорания, °С | Плотность топлива, г/см³ | Прирост скорости, ΔVид, 25, м/с | Весовое содержание горючего, % |
---|---|---|---|---|---|
Фтор | 348,4 | 5009 | 1,504 | 5328 | 25 |
Тетрафторгидразин | 327,4 | 4758 | 1,193 | 4434 | 19 |
ClF3 | 287,7 | 4402 | 1,764 | 4762 | 20 |
ClF5 | 303,7 | 4604 | 1,691 | 4922 | 20 |
Перхлорилфторид | 293,7 | 3788 | 1,589 | 4617 | 47 |
Фторид кислорода | 326,5 | 4067 | 1,511 | 5004 | 38,5 |
Кислород | 310,8 | 4028 | 1,312 | 4428 | 56 |
Пероксид водорода | 318,4 | 3561 | 1,466 | 4806 | 52 |
N2O4 | 300,5 | 3906 | 1,467 | 4537 | 47 |
Азотная кислота | 301,3 | 3720 | 1,496 | 4595 | 49 |
Алюмоэнергетика
Алюмоэнергетика использует алюминий как универсальный вторичный энергоноситель. Его применения в этом качестве:[26]
- Окисление алюминия в воде для производства водорода и тепловой энергии.
- Окисление алюминия кислородом воздуха для производства электроэнергии в воздушно-алюминиевых электрохимических генераторах.
Алюминий в мировой культуре
Поэт Андрей Вознесенский написал в 1959 году стихотворение «Осень»[27], в котором использовал алюминий в качестве художественного образа:
…А за окошком в юном инее
лежат поля из алюминия…
Виктор Цой написал песню «Алюминиевые огурцы» с припевом:
Я сажаю алюминиевые огурцы
На брезентовом поле
У ленинградской рок-группы «Народное ополчение» в альбоме «Брежнев жив» 1989 года есть песня «Алюминиевый дом».
Важную роль алюминий играет в историко-мистической трилогии Андрея Валентинова и Олди «Алюмен».
В произведениях эпохи знакомства человечества с алюминием
- В романе Н. Г. Чернышевского «Что делать?» (1862—1863) один из главных героев описывает в письме свой сон — видение будущего, в котором люди живут, отдыхают и работают в многоэтажных зданиях из стекла и алюминия; из алюминия выполнены полы, потолки и мебель (во времена Н. Г. Чернышевского алюминий ещё только начинали открывать).
- В повести Герберта Уэллса «Война миров» (1897 год) марсиане, покинув один из своих лагерей, оставили (бросили) в нём несколько листов алюминия, который получали из глины с помощью специальной установки. Теоретически, глина действительно может быть сырьём для производства алюминия.
Токсичность
К:Википедия:Статьи без источников (тип: не указан)Несмотря на широкую распространённость в природе, ни одно живое существо не использует алюминий в метаболизме — это мёртвый металл. Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела):
В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.
Норматив содержания алюминия в воде хозяйственно-питьевого использования в России составляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.
По некоторым биологическим исследованиям, поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера[28][29], но эти исследования были позже раскритикованы, и вывод о связи одного с другим опровергался[30][31][32].
Соединения алюминия также под подозрением как стимулирующие рак молочной железы.[33] при применении антиперспирантов на основе хлорида алюминия.[34] Но научных данных в пользу этого — меньше, чем против.
См. также
Напишите отзыв о статье «Алюминий»
Примечания
- ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. [iupac.org/publications/pac/85/5/1047/ Atomic weights of the elements 2011 (IUPAC Technical Report)] (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — DOI:10.1351/PAC-REP-13-03-02.
- ↑ Химическая энциклопедия. В 5 т. / Редкол.: Кнунянц И. Л. (гл. ред.). — М.: Советская энциклопедия, 1988. — Т. 1. — С. 116. — 623 с. — 100 000 экз.
- ↑ [www.etymonline.com/index.php?search=Alum&searchmode=none aluminium]. Online Etymology Dictionary. Etymonline.com. Проверено 3 мая 2010.
- ↑ Фиалков, Ю. [fialkov.multima.net/download/Devyatyj-znak.djvu Девятый знак]. — М.: Детгиз, 1963. — С. 133.
- ↑ [sites.google.com/site/himulacom/zvonok-na-urok/9-klass—vtoroj-god-obucenia/urok-no49-aluminij-polozenie-aluminia-v-periodiceskoj-sisteme-i-stroenie-ego-atoma-nahozdenie-v-prirode-fiziceskie-i-himiceskie-svojstva-aluminia Урок № 49. Алюминий].
- ↑ [books.google.com/?id=t-Jg-i0XlpcC&pg=PA198 Aluminum Recycling and Processing for Energy Conservation and Sustainability]. — ASM International, 2007. — P. 198. — ISBN 0-87170-859-0.
wiki-org.ru
Алюминий Свойства — Знаешь как
Содержание статьи
Из элементов главной подгруппы III группы мы рассмотрим лишь алюминий как элемент, имеющий наиболее важное практическое значение. Алюминий — элемент третьего периода. Заряд ядра атома +13. Электроны располагаются на трех энергетических уровнях: 2, 8, 3. Электронная конфигурация атома алюминия (1s22s22p63s23р1):
Алюминий принадлежит к семейству р-элементов.
Валентные электроны алюминия располагаются на s-оболочке и р-оболочке внешнего электронного слоя. Этих электронов три, поэтому алюминий может образовывать три валентных связи, что для него наиболее типично. Единственная степень окисления алюминия, которую он может проявлять, не считая нейтрального состояния, равна +3. Таким образом, в окислительно-восстановительных процессах алюминий ведет себя как восстановитель.
■ 73. Почему алюминий относится к р-элементам? (См. Ответ)
74. Какие степени окисления возможны для алюминия?
75. Начертите схему строения Аl+3.
76. Каково поведение алюминия в окислительно-восстановительных реакциях?(См. Ответ)
Алюминий Al — серебристо-белый металл. Его атомный вес 26,98. Плотность алюминия 2,7, температура плавления 660°, температура кипения 2060°. Алюминий принадлежит к группе легких металлов. Алюминий обладает высокой электропроводностью, равной 0,6 электропроводности меди, поэтому при большем сечении алюминиевых проводов электропроводность их равна медным, а вес гораздо меньше.
Впервые алюминий был получен в 1827 г. Велером и стоил весьма дорого, так как методы его получения еще не были разработаны и уровень развития электротехники был еще слишком низок для массового получения этого металла. В настоящее время это один из самых дешевых и широко распространенных металлов.
По химическим свойствам алюминий принадлежит к числу весьма активных металлов, обладающих амфотерньми свойствами. В ряду активности он занимает место за щелочноземельными металлами. Но в чистом виде как на воздухе, так и в воде он может храниться очень долго, так как его поверхность со временем покрывается тонким и очень прочным слоем окиси, которая предохраняет его от окисления.
Для того чтобы наблюдать окисление алюминия на воздухе, необходимо сначала освободиться от защитной пленки. Для этого алюминий сначала протирают наждачной шкуркой, а затем кипятят в щелочи. Окись алюминия, как и сам металл, проявляет амфотерные свойства, а потому растворяется в щелочи. После этого алюминий опускают в раствор какой-либо соли ртути, например нитрата ртути Hg(NO3)2. Алюминий как более активный металл вытесняет ртуть из ее соли:
2Аl + 3Hg(NO3)2 = 2Al(NO3)3 + 3Hg
Ртуть отлагается на поверхности алюминия, образуя сплав алюминия с ртутью — алюминиевую «амальгаму» (сплавы ртути с металлами называются амальгамами). Такой сплав не способен образовывать защитную пленку окиси, а алюминий в амальгаме постепенно окисляется до окиси алюминия по уравнению:
4Аl + 3O2 = 2Аl2O3
Но поскольку амальгама покрывает алюминий неравномерно, окисление идет местами и окись алюминия заметна на поверхности металла в виде пушистой щетки (рис. 80).
Интересно взаимодействие алюминия с галогенами — с бромом и йодом. Для реакции используются порошкообразный алюминий и жидкий бром, а для реакции с йодом— смесь порошка йода с алюминием (см. § 38). Во всех случаях алюминий ведет себя как восстановитель.
Рис. 80. Образование окиси алюминия на амальгированной поверхности металл.
При высокой температуре алюминий вытесняет некоторые металлы из их окислов. Это свойство нашло применение. Если смешать окись железа с алюминиевым порошком и поджечь с помощью магниевой вспышки, то произойдет реакция:
Fe2О3 + 2Аl = Аl2O3 + 2Fe.
которая сопровождается выделением большого количества тепла. За счет этого тепла образующееся свободное железо плавится и может быть выпущено из тигля, в котором происходит реакция, через находящееся внизу отверстие. Такая выплавка металлов называется алюминотермией; в технике она применяется очень широко. Некоторые металлы можно получить только алюминотермическим путем. Этот процесс был впервые осуществлен Н. Н. Бекетовым.
Алюминий является амфотерным металлом. В различных условиях он ведет себя по-разному. В растворе щелочи алюминий вытесняет из воды водород, образуя соль алюминиевой кислоты — алюминат натрия (или калия), в котором он играет роль кислотообразующего элемента:
2Аl + 2NaOH + 2Н2O = 2NaAlO2 + 3h3↑
Из кислоты алюминий вытесняет водород:
2Аl + 6НСl = 2АlСl3 + 3h3↑
В этом случае он проявляет металлические свойства.
Концентрированные азотная и серная кислоты на алюминий не действуют, так как на его поверхности образуется защитная пленка, предохраняющая металл от дальнейшего окисления. В разбавленном виде азотная кислота на алюминий также не действует, а серная действует в слабой степени.
■ 77. Перечислите химические свойства алюминия и обоснуйте свой ответ уравнениями реакций. (См. Ответ)
78. Почему ртуть называют «алюминиевым ядом»?
79. Почему бытовые изделия из алюминия служат длительное время и не подвергаются окислению?
80. Что такое алюминотермия?
81. Сухая смесь состоит из порошков алюминий, железа и угля. При обработке 6 г этой смеси соляной кислотой выделилось 4,48 л водорода, а при обработке того же количества смеси раствором едкого кали — 3,36 л водорода. Определите состав смеси в граммах.
82. Имеется 200 г пиролюзита, содержащего 87% двуокиси марганца. Сколько алюминия потребуется для восстановления из него марганца алюминотермическим путем.
83. Как следует обработать алюминий, чтобы он окислялся на воздухе?
84. В трех пробирках находятся разбавленные кислоты — соляная, серная и азотная. Как, имея кусочки алюминия, определить, в какой пробирке какая кислота?
85. Сколько алюмината натрия получится при взаимодействии со щелочью 27 г алюминия? (См. Ответ)
Соединения алюминия. Алюминий в природе
Окись и гидроокись алюминия являются ярко выраженными амфотерными соединениями. Они легко вступают во взаимодействие как со щелочами, так и с кислотами. Молекулу гидроокиси алюминия можно представить в двух формах — в форме основания Аl(ОН)3 и в форме кислоты Н3АlO3. В тех случаях, когда гидроокись алюминия попадает в кислоту, она ведет себя как основание:
Аl(ОН)3 + 3HCl = АlСl3 + 3Н2O
При взаимодействии с сильными щелочами гидроокись алюминия реагирует как кислота:
Н3АlO3 + 3NaOH = Na3AlO3 + 3Н2O
• Оба уравнения напишите в ионной форме
Получается соль трехосновной ортоалюминиевой кислоты, называемая ортоалюминатом натрия. Но такой состав у солей бывает редко. Чаще всего ортоалюминиевая кислота в щелочной среде распадается по уравнению:
Н3АlO3 = Н2O + НАlO2
образуя одноосновную метаалюминиевую кислоту НАlO3. Соли этой кислоты называются метаалюминатами, или просто алюминатами. Реакция между метаалюминиевой кислотой и щелочью выражается следующим уравнением:
НАlO2 + NaOH = NaAlO2 + Н2О
Совершенно так же ведет себя окись алюминия. В кислотах как основной окисел она образует соли алюминия:
Аl2O3 + 6НСl = 2АlСl3 + 3Н2O
в щелочах же — как кислотный окисел и образует алюминаты щелочных металлов:
Аl2O3 + 2NaOH = 2NaAlO2 + Н2O
Алюминат натрия, попадая в кислую среду, претерпевает немедленное превращение:
2NaAlO2 + h3SO4 = Na2SO4 + 2НАlO2
НАlO2 + Н2О = Аl(ОН)3
2Аl(ОН)3 + 3h3SO4 = Al2(SO4)3 + 6Н2O
Таким образом, в конечном итоге получаются следующие продукты:
2NaAlO2 + 4h3SO4 = Na2SO4 + Al2(SO4)3 + 4h3O
• Напишите приведенные уравнения реакций в ионной форме.
■ 86. Напишите уравнения реакций, с помощью которых можно осуществить превращения:
Аl → АlСl3 → Аl(ОН)3 → NaAlO2 → Al2(SO4)3 (См. Ответ)
(все уравнения записывайте в полной и сокращенной ионной форме).
87 Имеются алюминий, соляная кислота, едкий натр. Как можно получить гидроокись алюминия?
88. Какова нормальность раствора едкого натра, если на растворение 39 г гидроокиси алюминия израсходовано 200 мл этого раствора?
89. Докажите при помощи уравнений реакций, что окись и гидроокись алюминия — амфотерные соединения.
90. Получится ли алюминат натрия, и если да, то в каком количестве, если на 15 г сульфата алюминия подействовать 50 г едкого натра? (См. Ответ)
Среди соединений алюминия выделяются лишь некоторые его соли. Особенно важен хлорид алюминия АlCl3, незаменимый в промышленности органического синтеза, где он играет роль катализатора во многих процессах. Сульфат алюминия Al(SO4)3 · 18Н2О применяется как коагулянт при очистке водопроводной воды, а также в производстве бумаги. Двойная соль алюминия и калия — алюмокалиевые квасцы KAl(SO4)2 · 12Н2O обладает высокими вяжущими свойствами и применяется при дублении кожи, а также в медицинской практике как кровоостанавливающее средство.
В природе алюминий встречается очень широко и по распространенности элементов стоит на третьем месте. Вследствие высокой химической активности алюминий в природе встречается только в виде соединений. Он входит в состав алюмосиликатов — глины, слюды, полевого шпата, каолина и др. Главной алюминиевой рудой является боксит АlO3 · nН2O, из которого получают алюминий при участии другого соединения алюминия — криолита AlF3 · 3NaF.
Твердая кристаллическая окись алюминия, окрашенная примесью окиси железа в желто-бурый цвет, называется корундом. Корунд обладает высокой твердостью, поэтому применяется для изготовления шлифовальных кругов, брусков и т. д. Прозрачные кристаллы корунда, окрашенные незначительными примесями, представляют собой драгоценные камни: рубин — красного, сапфир — синего цвета.
Производство и применение алюминия
Металлический алюминий получают электролизом раствора окиси алюминия, называемой глиноземом, в расплавленном криолите. Окись алюминия добывают из боксита путем длительной очистки, а криолит получают либо из природного минерала, либо искусственным путем, причем последний способ в настоящее время даже дешевле. Процесс ведут в электрических печах при температуре около 1000°, силе тока около 50 000 а и напряжении 4—5 в (рис. 81).
Применяется алюминий главным образом в виде сплавов с другими металлами, так как он слишком мягок. Наиболее распространенными сплавами являются силумин — сплав алюминия с кремнием, дюралюминий, в состав которого, помимо алюминия, входят небольшие количества магния, железа, меди, марганца, магналий — сплав алюминия с магнием. Все эти сплавы легкие и прочные. Силумин применяется главным образом для литья, дюралюминий и магналий — в самолетостроении, машиностроении, судостроении, для изготовления посуды.
Алюминием покрывают поверхность стальных и железных изделий, что предохраняет их от коррозии. Для этого стальное изделие выдерживают некоторое время в расплавленном алюминии или нагревают в порошке алюминия, который образует на поверхности сплав с металлом.
Такие изделия не окисляются даже при высокой температуре. Этот способ предохранения металлов от окисления называется алитированием.
Рис. 81. Схема промышленной установки для получения алюминия
электролизом.
1 — крепление для анода; 2— штырь для подключения к сети угольного анода; 3 —корка застывшего электролита; 4 — наружный кожух; 5 — кирпичные стенки; 6 —графитовая обкладка; 7, 8 —катод; 9 — расплавленный алюминий; 10 — расплавленный электролит.
Алюминий широко применяется для изготовления проводов в электротехнике и алюминиевых выпрямителей, алюминиевая пыль — как краска для имитации под серебро, алюминиевый порошок —при алюминотермической сварке металлов.
■ 91. Глинозем содержит 91,8% окиси алюминия. Сколько можно получить алюминия из 2 т глинозема, если выход алюминия составляет 80% теоретического?
92. Используя материал § 104 и 106, составьте и заполните таблицу. (См. Ответ)
Свойства аллюминия | Использование алюминия, с учетом его свойств |
93. Используя материал § 105, составьте и заполните таблицу.
Формула соединения | Встречается ли в природе и в виде какого минерала | Наиболее важное свойство | ||
35
34 36
znaesh-kak.com