Производство алюминия: Процесс производства алюминия

Содержание

Процесс производства алюминия

Как производится алюминий

Алюминий в чистом виде в природе не встречается, именно поэтому еще 200 лет назад человечество ничего не знало об этом металле. Метод получения алюминия при помощи электричества был разработан в 1886 году и применяется до сих пор. Вот как это происходит.

ДОБЫЧА БОКСИТОВ

Производство алюминия начинается с добычи бокситов. Эта горная порода богата алюминием, который содержится в ней в форме гидрооксидов. Около 90% мировых запасов бокситов сосредоточены в тропическом поясе.

ПРОИЗВОДСТВО ГЛИНОЗЕМА

Боксит дробят, высушивают и размалывают в мельницах вместе с небольшим количеством воды.

Образовавшуюся густую массу собирают в емкости и нагревают паром, чтобы отделить большую часть кремния, содержащегося в бокситах.

Руду загружают в автоклав и обрабатывают щелочью – едким натром. В получившейся щелочной раствор из руды переходит практически весь оксид алюминия, а все посторонние примеси формируют твердый осадок — красный шлам.

Раствор алюмината натрия несколько суток перемешивают в декомпозерах, в результате чего в осадок выпадает чистый глинозем – Al2O3.

ЭЛЕКТРОЛИЗ АЛЮМИНИЯ

На алюминиевом заводе глинозем засыпают в ванны с расплавленным криолитом при температуре 950 ⁰С. Через раствор пропускают электрический ток силой до 400 кА и выше – он разрывает связь между атомами алюминия и кислорода, в результате металл в жидкой форме собирается на дне ванны.

ПЕРВИЧНЫЙ АЛЮМИНИЙ

Первичный алюминий отливается в слитки и отправляется потребителям, а также используется
для дальнейшего производства алюминиевых сплавов для различных целей.

АЛЮМИНИЕВЫЕ СПЛАВЫ

Литейные алюминиевые сплавы служат для получения готовых изделий путем отливки металла в формы. При этом необходимых свойств от сплава добиваются добавлением к нему различных добавок: кремния, меди и магния. Из таких сплавов, например, производят детали автомобильных и авиационных двигателей или колесные диски.

Благодаря высокой пластичности алюминий легко прокатывается в тончайшие листы. Для этих целей соответствующие алюминиевые сплавы выливают в прямоугольные бруски, достигающие 9 метров в длину и более. Из них производят алюминиевую фольгу и банки для напитков, а также детали автомобильных кузовов и многое другое.

Путем экструзии – получения нужной формы продавливанием размягченного металла через формовое отверстие – сегодня изготавливается большинство изделий из алюминия: от оправы очков или корпуса телефона, до фюзеляжа самолета или космического корабля.

 

ПЕРЕРАБОТКА АЛЮМИНИЯ

В отличие от железа алюминий не подвержен коррозии, поэтому изделия из него можно переплавлять и использовать металл бесконечное количество раз. При этом переработка алюминия требует всего 5% энергии, затраченной на изготовление алюминия впервые.

Производство алюминия включает
несколько этапов

Алюминий в чистом виде в природе не встречается, именно поэтому еще 200 лет назад человечество ничего не знало об этом металле. Метод получения алюминия при помощи электричества был разработан в 1886 году и применяется до сих пор. Вот как это происходит.

Добыча бокситов

ДОБЫЧА БОКСИТОВ

Производство алюминия начинается с добычи бокситов. Эта горная порода богата алюминием, который содержится в ней в форме гидрооксидов. Около 90% мировых запасов бокситов сосредоточены в тропическом поясе.

Дробление

ПРОИЗВОДСТВО ГЛИНОЗЕМА

Боксит дробят, высушивают и размалывают в мельницах вместе с небольшим количеством воды. Образовавшуюся густую массу собирают в емкости и нагревают паром, чтобы отделить большую часть кремния, содержащегося в бокситах.

Выщелачивание

Руду загружают в автоклав и обрабатывают щелочью – едким натром. В получившейся щелочной раствор из руды переходит практически весь оксид алюминия, а все посторонние примеси формируют твердый осадок — красный шлам.

Декомпозиция

Раствор алюмината натрия несколько суток перемешивают в декомпозерах, в результате чего в осадок выпадает чистый глинозем – Al

2O3.

Электролиз

ЭЛЕКТРОЛИЗ АЛЮМИНИЯ

На алюминиевом заводе глинозем засыпают в ванны с расплавленным криолитом при температуре 950 ⁰С. Через раствор пропускают электрический ток силой до 400 кА и выше – он разрывает связь между атомами алюминия и кислорода, в результате металл в жидкой форме собирается на дне ванны.

Разливочная линия

ПЕРВИЧНЫЙ АЛЮМИНИЙ

Первичный алюминий отливается в слитки и отправляется потребителям, а также используется
для дальнейшего производства алюминиевых сплавов для различных целей.

Литейные сплавы

АЛЮМИНИЕВЫЕ СПЛАВЫ

Литейные алюминиевые сплавы служат для получения готовых изделий путем отливки металла в формы. При этом необходимых свойств от сплава добиваются добавлением к нему различных добавок: кремния, меди и магния. Из таких сплавов, например, производят детали автомобильных и авиационных двигателей или колесные диски.

Прокат

Благодаря высокой пластичности алюминий легко прокатывается в тончайшие листы. Для этих целей соответствующие алюминиевые сплавы выливают в прямоугольные бруски, достигающие 9 метров в длину и более. Из них производят алюминиевую фольгу и банки для напитков, а также детали автомобильных кузовов и многое другое.

Экструзия

Путем экструзии – получения нужной формы продавливанием размягченного металла через формовое отверстие – сегодня изготавливается большинство изделий из алюминия: от оправы очков или корпуса телефона, до фюзеляжа самолета или космического корабля.

Переплавка

ПЕРЕРАБОТКА АЛЮМИНИЯ

В отличие от железа алюминий не подвержен коррозии, поэтому изделия из него можно переплавлять и использовать металл бесконечное количество раз. При этом переработка алюминия требует всего 5% энергии, затраченной на изготовление алюминия впервые.

Производство алюминия

Технологический процесс производства алюминия

 


Технологический процесс производства алюминия включает три основных этапа:

 

  • 1. Создание глинозема из алюминиевых руд;
  • 2. Создание из глинозема алюминия;
  • 3. Процесс рафинирования алюминия.

 


И при этом необходимо использование такого оборудования:

 

  • оборудование для системы центральной раздачи глинозема;
  • электролизер;
  • катодная ошиновка;
  • установки сухой газоочистки;
  • монтажные, технологические и литейные краны;
  • аспирационные установки;
  • оборудование литейного цеха;
  • оборудование анодно-монтажного цеха;
  • металлоконструкции производственных корпусов.

 

 

Создание глинозема из руд — этап производства алюминия


Глинозем можно получить тремя методами: кислотным, щелочным и электролитическим. Самым популярным является щелочной метод. Суть метода заключается в том, что алюминиевые растворы очень быстро начинают разлагаться при введении гидроокиси алюминия, а раствор, который остался от разложения после выпаривания при интенсивном перемешивании при температуре 170 С, может снова растворить глинозем, который содержится в бокситах. Данный способ имеет такие главные стадии:

1. Подготовка боксита, которая подразумевает его дробление и измельчение в специальных мельницах. В мельницы отправляют едкую щелочь, боксит и немного извести. Пульпу, которая получилась, направляют на выщелачивание.

2. Выщелачивания боксита подразумевает его химическое разложение от соединения с водным раствором щелочи. При этом гидраты окиси алюминия при соединении со щелочью в раствор переходят в форме алюмината натрия, а кремнезем, который содержится в боксите, соединяясь со щелочью, в раствор переходит в форме силиката натрия. В растворе эти соединения: алюминат натрия и силикат натрия формируют нерастворимый натриевый алюмосиликат. В этот остаток переходят окислы железа и титана, которые предают остатку красный оттенок. Такой остаток – это красный шлам. Когда растворение полученного алюмината натрия завершается, его разводят водным раствором щелочи при понижении температуры до 100°С.

3. Отделение красного шлама и алюминатного раствора друг от друга происходит благодаря промывке в сгустителях. После чего красный шлам оседает, а оставшийся алюминатный раствор фильтруют.

4. Разложение алюминатного раствора. Его фильтруют и отправляют в крупные емкости с мешалками. Из данного раствора при охлаждении до 60°С и перемешивании постоянном выделяется гидроокись алюминия. Из-за того что процесс протекает неравномерно и очень медленно, а рост кристаллов гидроокиси алюминия очень важен при дальнейшей обработке, то в эти емкости с мешалками — декомпозеры ещё добавляют много твердой гидроокиси.

5. Получение гидроокиси алюминия осуществляется в вакуум-фильтрах и гидроциклонах. Большую часть гидроокиси как затравочный материал возвращают к процедуре декомпозиции. После водной промывки остаток отправляется на кальцинацию; и фильтрат тоже возвращается в процесс.

6. Обезвоживание гидроокиси алюминия — завершающая стадия производства глинозема. Она проходит в трубчатых, постоянно вращающихся печах. Сырая гидроокись алюминия, когда проходит через печь, полностью высушивается и обезвоживается.

 

 

 

 

Создание из глинозема алюминия при производстве также проходит в несколько этапов.


1. Электролиз окиси алюминия происходит при температуре в электролизере — 970°С. Электролизер имеет футерованную углеродистыми блоками ванну, к которой подключается электрический ток. Выделившийся жидкий алюминий собирается на угольном основании, и оттуда его регулярно откачивают. В электролит сверху погружены угольные аноды, сгорающие в атмосфере кислорода, который выделяется из окиси алюминия, и при этом выделяетс я окись или двуокись углерода.

2.Электролиз хлорида алюминия осуществляется путем превращения окиси алюминия в реакционном сосуде в хлорид алюминия. После чего в изолированной ванне осуществляется электролиз хлорида алюминия. Хлор, который при этом выделился, отсасывается и направляется для вторичного использования. А алюминий выпадает в осадок на катоде.

3.Восстановление марганцем хлорида алюминия, при этом освобождается алюминий. За счет управляемой конденсации выделяются загрязнения, связанные с хлором, из потока хлорида марганца. Когда происходит освобождение хлора, хлорид марганца превращается в окись марганца, которая потом восстанавливается до состояния марганца, который пригоден к вторичному использованию.

 

 

 

 

Процесс рафинирования алюминия при производстве алюминия


Рафинирующий электролиз с разложением водных солевых растворов для алюминия невозможен. Так как степень очистки промышленного алюминия, который получен путем электролиза криолитоглиноземного расплава, для некоторых целей будет недостаточна, то из отходов металла и промышленного алюминия благодаря рафинированию получают алюминий еще более чистый. Самым распространённым методом рафинирования является трехслойный электролиз.

Алюминий применяется в изготовлении взрывчатых веществ (алюмотол, аммонал). Широко используются разнообразные соединения алюминия. Производство и потребление алюминия постоянно растет, сильно опережая по темпам роста производство меди, стали, цинка, свинца.

Текст, Ян Волховский, promplace.ru

Фото с сайта drugoi.livejournal.com

 

 

Как производят алюминий

Все об алюминии

Несмотря на то, что алюминий является самым распространенным металлом на планете, чистый алюминий в природе не встречается. Атомы алюминия легко связываются с другими металлами, образуя соединения. В то же время алюминий невозможно выделить, просто расплавив соединения в печи, как, например, железо. Процесс производства алюминия намного сложнее и требует огромного количества электроэнергии. По этой причине алюминиевые заводы всегда строятся вблизи источников энергии, как правило, гидроэлектростанций, которые не загрязняют окружающую среду. Но давайте начнем с самого начала.

  • Добыча бокситов
  • Производство глинозема
  • Криолит
  • Производство алюминия
  • Литейный дом
  • Новые технологии
  • Переработка

« Ничто в природе не возникает из ничего и
Ничто не возникает готовым к использованию
».

Александр Герцен
Русский публицист и писатель

Добыча бокситов

Процесс производства алюминия можно разделить на три этапа; из земли добывают первые бокситы, содержащие алюминий. Во-вторых, бокситы перерабатываются в глинозем или оксид алюминия, и, наконец, на третьем этапе чистый алюминий производится с помощью электролитического восстановления — процесса, в котором оксид алюминия расщепляется на компоненты с помощью электрического тока. Около 4-5 тонн бокситов перерабатываются в 2 тонны глинозема, из которых можно получить около 1 тонны алюминия.

В мире существует несколько полезных ископаемых, из которых можно получить алюминий, но наиболее распространенным сырьем является боксит. Бокситы – это минералы, состоящие в основном из оксида алюминия, смешанного с некоторыми другими минералами. Бокситы считаются качественными, если они содержат более 50% оксида алюминия.

Запасы бокситов
Подтвержденные мировые запасы бокситов оцениваются в 18,6 миллиардов тонн. При нынешнем уровне добычи этого должно хватить более чем на сто лет.

Существует множество разновидностей бокситов. По структуре они могут быть сплошными и плотными или рассыпчатыми. Обычный цвет кирпично-красный, огненно-красный или коричневый из-за оксида железа. Если содержание железа низкое, бокситы могут быть серыми или белыми. Но встречаются и желтые, темно-зеленые и даже разноцветные бокситы с голубоватыми, пурпурными, красными и черными оттенками.

Около 90% мировых запасов бокситов приходится на тропические и субтропические районы, при этом 73% приходится всего на пять стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Гвинея имеет самые большие запасы бокситов, 5,3 миллиарда тонн (28,4% мировых запасов) и гвинейские бокситы очень высокого качества, содержащие минимальное количество примесей. Они также находятся очень близко к поверхности, что делает их добычу очень легкой.

Крупнейшие производители бокситов в мире, 2014 г.

Наиболее распространенным способом добычи бокситов является использование карьеров. С помощью специального оборудования с поверхности срезается один слой за другим, а затем порода транспортируется в другое место для дальнейшей обработки. Однако есть места, где алюминиевую руду приходится добывать глубоко под землей, и для ее добычи необходимо построить подземные шахты. Одна из самых глубоких шахт — Черемховская-Глубокая на Урале в России, ее стволы проходят на глубину 1550 метров.

Производство глинозема

Следующим этапом производственной цепочки является переработка бокситов в глинозем, или оксид алюминия — Al 2 O 3 , — белый порошок. Наиболее распространенным процессом производства глинозема из бокситов является процесс Байера, который был впервые обнаружен более 100 лет назад, но широко используется и сегодня. Около 90% глиноземных заводов в мире используют процесс Байера. Он очень эффективен, но его можно использовать только на высококачественных бокситах с довольно низким содержанием примесей, особенно кремния.

Принцип процесса Байера заключается в следующем: кристаллизованный гидрат алюминия, находящийся в бокситах, легко растворяется в концентрированной каустической соде (NaOH) при высоких температурах, а при понижении температуры и повторном увеличении концентрации раствора гидрат алюминия кристаллизуется, но остальные элементы, содержащиеся в боксите (так называемый балласт), либо не растворяются, либо перекристаллизовываются и оседают на дно задолго до кристаллизации гидрата алюминия. Это означает, что после растворения гидрата алюминия в едком натре балласт можно легко выделить и удалить. Этот балласт известен как красный шлам.

Красный шлам представляет собой густую красно-коричневую пасту, состоящую из соединений кремния, железа, титана и других. Его утилизируют на специальных изолированных площадках, называемых шламоотвалами. Площадки шламоотвала предназначены для предотвращения просачивания щелочи, содержащейся в шламе, в грунтовые воды. После засыпки шламоотвала территорию можно рекультивировать, засыпав ее песком, пеплом или грязью и посадив там определенные виды деревьев и растений. Хотя на полную рекультивацию могут уйти годы, в итоге территория вернется в исходное состояние.

Многие специалисты не считают красный шлам отходами, поскольку его можно использовать в качестве сырья. Например, из него можно получить скандий, а затем использовать его в алюминиево-скандиевых сплавах. Скандий придает алюминиевым сплавам особую прочность, и такие сплавы можно использовать в автомобилях, ракетах, спортивном инвентаре и в производстве электрических проводов.

Красный шлам также можно использовать в производстве чугуна, бетона и редкоземельных металлов.

Крупные частицы гидрата алюминия можно относительно легко отфильтровать из раствора. Затем их промывают водой, сушат и прокаливают, то есть нагревают для удаления воды. Выходом этого процесса является глинозем.

Нефелин
Бокситы являются наиболее распространенным сырьем для производства глинозема, но не единственным. Глинозем также можно получить из нефелина. Нефелин встречается в виде апатито-нефелиновой породы (апатит — оксид кальция и фосфора). В процессе производства глинозема из нефелина также образуются побочные продукты: сода, поташ (материал, используемый в строительстве, производстве некоторых химических веществ, пищевой промышленности и т. д.) и редкий металл галлий. Отходы производства, белый шлам, могут быть использованы для производства высококачественного цемента. Для производства 1 тонны глинозема требуется 4 тонны нефелина и 7,5 тонн известняка 9.0003

Глинозем имеет неограниченный срок годности, но его необходимо хранить в правильных условиях, так как он при первой же возможности впитает влагу, поэтому производители глинозема предпочитают отправлять его на плавильные заводы как можно скорее. Первый глинозем укладывается в штабели весом до 30 000 тонн. В итоге таким образом строится своего рода слоеный пирог высотой 10-12 метров. Затем куча разрезается и загружается в железнодорожные вагоны по 60-75 тонн в вагоне (в зависимости от типа вагона) для отправки на плавильные заводы.

Существует еще один, гораздо менее распространенный метод получения глинозема. Это называется спеканием. Идея состоит в том, чтобы делать твердые материалы из порошков при высокой температуре. Бокситы спекаются с содой и известью. Последние два элемента связывают кремнезем в нерастворимые силикаты, которые затем можно легко отделить от глинозема. Процесс спекания более энергоемкий, чем процесс Байера, но с его помощью можно получать глинозем из бокситов с высоким содержанием токсичных примесей кремнезема.

Криолит

Ивиттууит
Одно из немногих природных месторождений криолита на Земле находится в городе Ивитууит в Гренландии. Он был открыт в 1799 году. Добыча криолита прекратилась в 1987 году, когда был разработан процесс производства искусственного криолита. Позднее криолит был обнаружен в Ильменских горах на Южном Урале (в Миассе) и в Колорадо, США.

Глинозем является непосредственным источником алюминия в процессе производства алюминия, но для создания подходящей среды для электролиза необходим еще один компонент, и этим компонентом является криолит. Это редкий природный минерал фтора, который из-за его дефицита в естественной форме был получен искусственно. В современном металлургическом производстве криолит получают путем смешивания плавиковой кислоты с гидроксидом алюминия и содой.

Производство алюминия

Итак, мы добыли боксит, сделали из него глинозем и накопили криолит, и теперь все готово к последнему этапу: электролитическому восстановлению для получения алюминия. Участок восстановления — это сердце алюминиевого завода, и он сильно отличается от производственных цехов на ваших типичных сталелитейных заводах, производящих чугун или сталь. Район редукции состоит из нескольких прямоугольных зданий, длина которых иногда превышает 1 километр. Внутри сотни редукционных ячеек или котлов, расположенных рядами и подключенных к источникам питания через массивные кабели. Постоянное напряжение на электродах каждой восстановительной ячейки колеблется в пределах от 4 до 6 вольт, при этом сила тока может достигать 300, 400 кА и более. Именно электрический ток является основной производительной силой в этом процессе. В типичной зоне сокращения находится всего несколько человек, поскольку все ключевые процессы автоматизированы.

Ток для производства алюминия
Для запуска двигателя автомобиля необходим ток 300-350А в течение 30 секунд. Это в 1000 раз меньше, чем требуется одной ячейке редуктора на постоянной основе.

В каждом электролизере алюминий производится из глинозема в процессе электролитического восстановления. Вся ячейка заполнена расплавленным криолитом, создающим проводящую среду при температуре 950°С. Дно ячейки работает как катод, а роль катода играют специальные криолито-углеродные блоки длиной 1,5 метра и шириной 0,5 метра, которые опускают в ячейку. Эти блоки выглядят как массивные молотки.

Каждые тридцать минут автоматическая система подачи глинозема сбрасывает в электролизер новую порцию глинозема. Электрический ток, протекающий через ячейку, разрушает связь между алюминием и кислородом, в результате чего алюминий оседает на дно ячейки и образует слой толщиной 10-15 см, а кислород связывается с углеродом в анодных блоках с образованием углекислого газа. .

Два-четыре раза в день алюминий извлекают из электролизера специальными вакуумными ковшами. В криолитовой корке, образующейся на поверхности восстановительной камеры, пробивают отверстие, затем через отверстие опускают трубу. По этой трубе в ведро засасывается жидкий алюминий, из которого заранее откачивается весь воздух. В среднем из каждой электролизера извлекается около 1 тонны металла, а вакуумный ковш может вместить 4 тонны расплавленного алюминия. Как только ведро наполнится, его отвезут в литейный двор.

На каждую тонну произведенного алюминия выбрасывается 280 000 кубометров газа. По этой причине каждая электролизер, независимо от ее конструкции, оснащена системой газоудаления, которая улавливает выделяющиеся в процессе восстановления газы и направляет их на установку газоочистки. Современные системы очистки сухих газов используют глинозем для фильтрации токсичных соединений фтора из газов. Таким образом, прежде чем использовать в производстве алюминия, глинозем сначала используется для обработки газов, выбрасываемых при более раннем производстве алюминия. Так что в каком-то смысле это замкнутый круг.

Процесс восстановления алюминия требует огромного количества электроэнергии, поэтому важно использовать возобновляемые источники энергии, не загрязняющие окружающую среду. Наиболее распространенным возобновляемым источником энергии являются гидроэлектростанции, поскольку они могут выдавать необходимую мощность, не загрязняя атмосферу. Например, в России 95% алюминиевых заводов получают электроэнергию от гидроэлектростанций. Однако в мире есть места, где по-прежнему доминирует угольная генерация, например, в Китае, 93% производства алюминия получают энергию от электростанций, работающих на угле. При использовании гидроэлектроэнергии в атмосферу выбрасывается всего 4 тонны углекислого газа на каждую тонну произведенного алюминия, а при использовании угольной генерации выбрасывается в пять раз больше углекислого газа на каждую тонну произведенного алюминия, или 21,6 тонны. углекислый газ.

Углекислый газ

За один солнечный день один гектар леса потребляет из атмосферы 120-280 кг углекислого газа и выделяет 180-200 кг кислорода.

Литейный цех

Расплавленный алюминий транспортируется в ведрах в литейный цех плавильного завода. На этой стадии металл еще содержит много железа, кремния, меди и других элементов. Однако даже самые незначительные количества примесей могут резко повлиять на свойства алюминия, поэтому в литейном цехе все примеси удаляются путем переплавки алюминия в специальной печи при температуре 800 o С. Полученный чистый алюминий отливается в специальные формы, где он может затвердеть.

Самые маленькие алюминиевые слитки, часто называемые чушками, весят от 6 до 22,5 кг. Когда клиенты получают алюминий, доставленный им в болванках, они переплавляют его, добавляют любые необходимые компоненты, а затем перерабатывают их в форме, необходимой для их целей.

Самые крупные слитки, 30-тонные слябы длиной 11,5 метров, изготавливаются в специальных изложницах, заглубленных на глубину до 13 метров в землю. Горячий алюминий заливают в такую ​​форму в течение двух часов, при этом сляб «растет» в форме, как сосулька, только снизу вверх. По мере литья сляб охлаждается водой и, как только процесс литья завершен, сляб готов к отгрузке. Затем плиты обычно раскатывают в тонкие листы, которые затем используются при производстве фольги, банок для напитков или панелей кузова автомобиля.

Алюминиевые заготовки длиной 7 метров используются для изготовления прессований – это когда заготовка проталкивается через отверстие необходимой формы. Экструзия — это процесс, используемый для изготовления подавляющего большинства алюминиевых изделий.

В литейном цехе алюминию придают не только необходимую форму, но и необходимый химический состав. Дело в том, что чистый алюминий используется гораздо реже, чем алюминиевые сплавы.

Алюминиевые сплавы получают путем смешивания алюминия с различными другими металлами (так называемыми легирующими элементами). Одни повышают прочность алюминия, другие делают его более плотным, третьи изменяют его теплопроводные свойства и т. д. Распространенными легирующими элементами являются бор, железо, кремний, магний, марганец, медь, никель, свинец, титан, хром, цинк, цирконий, литий, скандий, серебро и другие. Кроме того, в состав алюминиевых сплавов могут входить десятки других легирующих элементов, таких как стронций, фосфор и другие, поэтому общее количество возможных сплавов весьма внушительно. Сегодня в промышленности используется более 100 алюминиевых сплавов.

Новые технологии

Производители алюминия постоянно совершенствуют свои производственные процессы, чтобы добиться максимального качества при минимальных затратах и ​​воздействии на окружающую среду. Уже разработаны электролизеры, работающие на ток 400 и 500 кА, модернизируются электролизеры старого поколения.

Одной из самых передовых технологий, над которой сегодня работают производители алюминия, является процесс инертного анода. Это уникальный революционный процесс, который может позволить производителям алюминия полностью отказаться от использования угольных анодов. Инертный анод потенциально можно использовать до бесконечности, но, что наиболее важно, процесс восстановления на основе инертного анода выбрасывает в атмосферу не углекислый газ, а чистый кислород. Один звонок инертного анода может произвести столько кислорода, сколько 70 гектаров леса. В настоящее время процесс инертного анода разрабатывается в секрете и проходит промышленные испытания, но кто знает, может быть, в ближайшем будущем он превратит алюминиевую промышленность в легкие нашей планеты.

Переработка

Одним из важных свойств алюминия является то, что он сохраняет свои свойства после обработки, что означает, что изделия из алюминия могут быть переработаны в новые изделия. Это помогает сохранить колоссальное количество энергии, которое необходимо использовать для производства первичного алюминия.

По оценкам Международного института алюминия, с 1880 года в мире было произведено почти миллиард тонн алюминия, и три четверти этого количества все еще используются сегодня. Около 35 % используется в зданиях и сооружениях, 30 % — в электрических кабелях и оборудовании и 30 % — в транспорте.

Здания и сооружения

Кабели электрические

Транспорт

Алюминиевый лом собирают по всему миру. В быту это в основном алюминиевые банки из-под напитков. Было подсчитано, что 1 кг переработанных пустых банок из-под напитков экономит 8 кг бокситов, 4 кг различных фторидов и 14 кВт/ч электроэнергии. Кроме того, переработка алюминия значительно снижает негативное воздействие постоянно расширяющихся свалок на окружающую среду. По мере того, как идея экологической ответственности набирает все большую популярность, раздельная переработка мусора становится все более популярной во всем мире.

Алюминиевые банки — один из самых перерабатываемых продуктов в мире. Примерно через 6 недель после использования алюминиевые банки снова появляются на полках магазинов

Каждый год в мире производится 220 миллиардов банок для напитков, 90% из них перерабатываются в Европе, и часто эти банки перерабатываются, а полученный из них алюминий используется для изготовления новых алюминиевых банок. Это одна из причин, по которой алюминиевые банки для напитков часто называют вечным продуктом. Но все может быть переработано: автомобильные детали, использованная алюминиевая фольга для приготовления пищи, велосипедные рамы, что угодно, если это сделано из алюминия, его можно переработать.

Фото: © Shutterstock и © Русал.

Первичное производство 101 | The Aluminium Association

Как производится алюминий

Процесс начинается

Первичное производство — это процесс, посредством которого производится новый алюминий (в отличие от вторичного производства, при котором существующий алюминий перерабатывается в чистый металл). Алюминий происходит из бокситов, руды, обычно встречающейся в верхнем слое почвы в различных тропических и субтропических регионах. После добычи алюминий из бокситовой руды химически извлекается в глинозем, соединение оксида алюминия, посредством процесса Байера. На втором этапе глинозем переплавляется в чистый металлический алюминий в процессе Холла-Эру.

Процесс Холла-Эру: как производится первичный алюминий

В процессе Холла-Эру глинозем растворяют в расплавленной криолитовой ванне внутри стального котла с углеродистой футеровкой. Углеродные аноды вставляются в верхнюю часть ванны, и через аноды и ванну проходит электрический ток. Атомы кислорода отделяются от оксида алюминия и соединяются с углеродным анодом, оставляя оставшийся расплавленный алюминий на дне котла. Расплавленный алюминий периодически откачивают и помещают в печь для выдержки. Из раздаточной печи расплавленный алюминий отливается в слиток.

История процесса Холла-Эру

Чарльз Мартин Холл, 20-летний первокурсник Оберлинского колледжа (Огайо), начал исследования по производству алюминия в 1880 году. Усилия Холла были сосредоточены на методах использования электрического тока. для извлечения чистого алюминия из оксида алюминия (оксидное соединение, содержащее алюминий и кислород). Одной из первых задач Холла было определить правильную жидкость для растворения оксида алюминия. Использование воды не дало успешных результатов; пропуская электричество через водный раствор, вода разлагалась на водород и кислород. Экспериментальный подход Холла заключался в растворении глинозема в другом минерале, криолите. 23 февраля 1886 года Холл добился своего первого успеха. После пропускания тока через его оборудование небольшое количество алюминия выпало в осадок. Процесс Холла-Эру был изобретен независимо и почти одновременно в 1886 году французским химиком Полем Эру. В 1888 году Холл открыл первый крупный завод по производству алюминия в Питтсбурге. Компания Reduction Company of Pittsburgh позже стала алюминиевой компанией Америки, а затем Alcoa.

Роль электричества в первичном производстве

Переработка алюминия стала экономически выгодной, когда стало производиться большое количество электроэнергии. Сегодня электроэнергия составляет от 20 до 40 процентов стоимости производства алюминия. В среднем по стране производство алюминия потребляет примерно 5 процентов электроэнергии, вырабатываемой в Соединенных Штатах. Хотя за более чем 110-летнюю историю обработки алюминия был достигнут постоянный прогресс в снижении количества потребляемой электроэнергии, в настоящее время нет жизнеспособных альтернатив процессу Холла-Эру.

Заглядывая вперед: Повышение энергоэффективности

С 1991 года потребление энергии, необходимой для производства первичного алюминия, сократилось на 27 процентов, а выбросы углерода при производстве первичного алюминия снизились на 49 процентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *