2.6. Котлы-утилизаторы и энерготехнологические котлы
Рациональное использование топливно-энергетических ресурсов, охрана окружающей среды относятся к важнейшим проблемам, стоящим перед человечеством. Высокотемпературные процессы осуществляются в технологических печах (металлургическая, химическая, нефтехимическая и другие отрасли промышленности) при чрезвычайно низком коэффициенте использования органического топлива (20–40%). В итоге эти производства выбрасывают газы, температуры которых превышают иногда 1000°С, токсичные вещества, мелкодисперсную пыль применяемого сырья и другие технологические отходы, которые загрязняют окружающую среду. Поэтому переработка и эксплуатация отходов этих технологических процессов являются важной задачей, выполнение которой возможно на основе использования их теплоты в котлах-утилизаторах или при совместной организации технологического и энергетического процессов в энерготехнологических агрегатах.
Котел-утилизатор (КУ) – паровой или водогрейный котел, не имеющий собственного топочного устройства для сжигания топлива и использующий теплоту отходящих газов технологических промышленных агрегатов различного назначения.
Внешний вид котла-утилизатора П-90 на Северо-Западной ТЭЦ в Санкт-Петербурге
Важной особенностью отходящих высокотемпературных производственных газов в металлургии и в некоторых других отраслях промышленности является содержание в них полидисперсного уноса мелких частиц, находящихся в твердом, жидком или газообразном состоянии. Этот унос образуется в результате выноса газовым потоком мелких частиц шихты, окалины, расплавленного металла или шлака, а также испарения и возгонки металла в плавильных печах. Вынос жидких частиц технологического расплава наблюдается обычно в период кипения или продувки расплавленного металла.
Частичное испарение технологического материала возможно в этих же печах из-за высокого температурного уровня в них.Энергетическая реализация теплоты отходящих газов в котлах-утилизаторах приводит к существенному повышению коэффициента использования располагаемой теплоты, к снижению температуры выноса технологического сырья в виде пыли и к возможности его улавливания, исключающего или сокращающего выбросы в окружающую среду.
Первые котлы-утилизаторы в СССР были введены в эксплуатацию в 1939 году в виде котлов–охладителей газов (КОГ) с дымогарными трубами. До 1959 года они выпускались Таганрогским котельным заводом, а с 1966 года котлы–охладители газов производятся на Белгородском котельном заводе (БелЭнергомаш).
В 1947 году первый котел–охладитель газов с принудительной циркуляцией воды был установлен за мартеновской печью. Такая их установка позволила повысить коэффициент использования теплоты, увеличить производительность печей (на 5,8 – 18%) и сократить продолжительность плавки (на 6, 14,5%) за счет роста теплового форсирования печей, возможного благодаря запасу разрежения, создаваемого дымососом котлов.
Эффективность использования теплоты отходящих газов в котлах-утилизаторах зависит от температуры отходящих газов, тепловой мощности и режима поступления газов в теплоиспользующую установку. Выход отходящих газов зависит от количества сжигаемого топлива в технологической установке и выхода шихтовых газов, образующихся при термической обработке исходных технологических материалов. Большое количество шихтовых газов образуется, например, при плавке руд цветных металлов, кислородной продувке сталеплавильных конверторов для преобразования чугуна в сталь и др.
Режим поступления газов в котлы-утилизаторы является не менее значащим фактором эффективной реализации их теплоты. В ряде случаев цикличность работы технологической установки создает значительные трудности при использовании газов, как это имеет место при конверторном производстве стали, а иногда эта цикличность становится серьезным препятствием для эффективного применения газового потока.
Выпускаемые котельными заводами котлы-утилизаторы подразделяются на группы по нескольким признакам:
- По температуре продуктов сгорания на входе в котел. По этому признаку котлы-утилизаторы делятся на низкотемпературные (при температурах < 900°C) и высокотемпературные (при температурах >1000°C). Такое деление обусловлено тем, что при температурах < 900°C перенос теплоты от продуктов сгорания происходит главным образом за счет конвекции, а при температурах > 1000°C в большей степени излучением. Кроме этого, происходит изменение агрегатного состояния технологического и топливного уноса, который при температурах > 1100°C содержится в продуктах сгорания преимущественно в жидком состоянии.
- По параметрам пара: производятся котлы низких (P =1,5 МПа, t ≈ 300°С), повышенных (4,5 МПа и 450°С) и высоких (10– 14 МПа и 550°С) параметров.
- По способу организации взаимного движения воды и пара и продуктов сгорания: газотрубные и водотрубные.
- По способу организации движения воды в испарительном контуре водотрубных котлов: котлы с естественной циркуляцией и с многократной принудительной циркуляцией (МПЦ).
- По конструкторскому оформлению компоновочных решений и поверхностей нагрева. По этому признаку котлы-утилизаторы бывают П-образной формы, башенного и горизонтально-туннельного типов со змеевиковыми конвективными поверхностями нагрева в низкотемпературных котлах и радиационно-конвективными в высокотемпературных.
Газотрубные и водотрубные котлы-утилизаторы
Газотрубные котлы-утилизаторы выпускаются как с горизонтальным, так и с вертикальным их расположением и устанавливаются за нагревательными, мартеновскими, обжиговыми и другими печами относительно небольшой мощности. Отличительная особенность такого типа котлов – отсутствие топочного устройства для сжигания топлива. В качестве примера рассмотрим промышленный котелутилизатор для использования тепла газов после печи (рис. 2.16).
Газы после печи имеют температуру 1260°С и поступают в нижнюю часть подъемного газохода котла. В нем находятся экранные настенные поверхности, W-образные трубные ленты и конвективный пакет пароперегревателя.
Рис. 2.16. Схема котла-утилизатора для исползования тепла газов после печи: 1 – вертикальный газоход; 2 – ленточный трубный теплообменник; 3 – конвективный пароперегреватель; 4 – барабан; 5 – экономайзер; 6 – воздухоподогреватель; 7 – предтопок с газовой горелкой
Рис. 2.17. Принципиальная схема котла КУ-80-3: 1 – циркуляционный насос; 2 – шламоотделитель; 3 – барабан; 4 – третья испарительная секция; 5– вторая испарительная секция; 6 – пароперегреватель; 7 – первая испарительная секция; 8 – экономайзер
Газотрубные котлы-утилизаторы вне зависимости от отрасли промышленности, в которой они применяются, имеют схожее конструкторское оформление испарительной части с естественной циркуляцией воды. Однако следует иметь в виду, что используют их для охлаждения отходящих газов небольших по мощности технологических установок.
Водотрубные котлы-утилизаторы с принудительной многократной циркуляцией (МПЦ) воды в испарительных элементах получили наиболее широкое распространение в различных отраслях промышленности. Наличие многократной принудительной циркуляции позволяет придать испарительным элементам котла любую конфигурацию и ориентацию в пространстве. Это создало предпосылки к изготовлению унифицированных котлов на отходящих газах, поверхности нагрева которых могут быть представлены в виде змеевиковых пакетов. Принципиальная схема такого унифицированного котла представлена на рис. 2.17.
Котел КУ-80 имеет П-образную компоновку. Его испарительная часть состоит из трёх секций, включенных последовательно по потоку продуктов сгорания и параллельно по котловой воде, подаваемой циркуляционным насосом.
Деление испарительной системы на дветри секции, включенные по котловой воде параллельно, позволяет более чем в шесть раз снизить сопротивление испарительной части и, соответственно, мощность циркуляционных насосов.
Питательная вода поступает в котел через водяной экономайзер, после которого подается в барабан котла. Из барабана котловая вода циркуляционным насосом подается через шламоотделитель в три испарительных пакета, включенных параллельно. Пароводяная смесь из испарительных поверхностей нагрева поступает в барабан, в котором происходит отделение пара от воды (сепарация). Отсепарированный пар направляется в пароперегреватель и далее к потребителю.
В зависимости от температуры продуктов сгорания на входе в котел изменяется его паропроизводительность и другие параметры.
При необходимости установки котлаутилизатора над нагревательными печами П-образную компоновку заменяют на башенную или горизонтальную с той же последовательностью расположения поверхностей нагрева по ходу газов. В этом случае отпадает необходимость в громоздких и дорогостоящих газоходах от печи к котлу-утилизатору, в самостоятельной котельной, а кроме того, уменьшаются присосы в газовый тракт холодного воздуха и потери теплоты как в окружающую среду, так и с уходящими из котла газами.
Серия котлов-утилизаторов с параметрами пара давлением 4,5 и 1,8 МПа и температурой 375–400°С выпущена на расход продуктов сгорания от 40·103до 150·103м3/ч с температурой 650–850°С. Котлы могут работать в комплексе с испарительным охлаждением печей или только для использования физической теплоты уходящих из печей продуктов сгорания.
Котлы-утилизаторы в коксохимической промышленности
Использованию физической теплоты раскаленного кокса при его сухом тушении придается большое значение, так как общая экономия условного топлива составляет при этом 110 тыс. тонн на каждый миллион тонн произведенного чугуна.
Первая отечественная промышленная установка для этого была сооружена в 1936 году на Керченском коксохимическом заводе. Строительство опытно-промышленной установки сухого тушения кокса (УСТК) в 1960 г. на Череповецком металлургическом заводе положило начало широкому его внедрению в промышленность.
Рис. 2.18. Котёл-утилизатор типа КСТ-80:1 – экономайзер; 2 – испарительные поверхности нагрева; 3 – пароперегреватель; 4 – барабан котла
Установка сухого тушения кокса (рис. 2.18) состоит из двух основных частей – тушильной камеры и котла-утилизатора. Раскалённый кокс с температурой 1000– 1100°С скиповым подъемником загружается в тушильную камеру через бункер.
Верхняя часть бункера выполняет роль форкамеры–аккумулятора горячего кокса. Накопление кокса в форкамере необходимо
для обеспечения непрерывной работы установки в связи с периодической подачей кокса. Форкамера рассчитана на прием раскаленного кокса от одной печи. Через загруженный в бункер раскаленный кокс продувается снизу вверх инертный газ, который нагревается при этом до≈800°C. Нагретые инертные газы с мелкими частицами кокса поступают через пылеулавливающий бункер в котел-утилизатор. Газы последовательно омывают пароперегреватель, секции испарительных поверхностей нагрева с многократной принудительной циркуляцией и экономайзер. Для утилизации теплоты используются котлы-утилизаторы типа КСТ-80 с верхним подводом инертных газов, паропроизводительностью 25 т/ч пара, давлением 4 МПа и температурой 450°С. Температура уходящих газов после экономайзера~160°C.
Рис. 2.19. Котел-утилизатор типа ОКГ-100-3А: 1 – конвертор; 2 – наклонный газоход; 3 – радиационный подъемный газоход; 4 – переходный газоход; 5 – барабан; 6 – опускной газоход; 7 – испарительные конвективные поверхности нагрева; 8 – экономайзер; 9 – бункер сбора уноса
Продувка инертных газов через слой раскаленного кокса производится дымососом. Эти газы двигаются по замкнутому контуру: дымосос – тушильная камера – котелутилизатор – дымосос.
Для предварительного приготовления инертных газов достаточно заполнить тушильный бункер раскаленным коксом и включить в работу дымосос. Находящийся в газовом тракте установки воздух вызовет выгорание некоторой части кокса, а образовавшиеся при этом продукты сгорания будут выполнять в дальнейшем роль инертного теплоносителя.
Котлы-охладители конверторных газов
При продувке сталеплавильных конверторов кислородом из них удаляются продукты окисления углерода, состоящие на 90-95% из оксида углерода (СО). Эти газы характеризуются высокой температурой (≈1600°С), низким избытком воздуха (0,05–0,10), значительным содержанием конверторного уноса (до 150 г/м3) и теплотворной способностью~8,2 МДж/нм3. Выход газов циклический; газовыделение начинается через 2–4 минуты после начала продувки, быстро достигает максимума и затем снижается до нуля за 2–3 минуты до завершения продувки. Продолжительность паузы на примере работы 300-тонного конвертора – 43 минуты, а всего цикла 60 минут, то есть продувка продолжается~17 мин. Среднечасовой выход газов для этого конвертора~18·103м3/ч, а максимальный пиковый –150·103м3/ч. Выброс таких газов в атмосферу запрещен. Поэтому охладитель конверторных газов – непременный элемент кислородно-конверторного производства.
В качестве охладителей конверторных газов, применяемых на металлургических заводах Украины, используются в основном паровые радиационно-конвективные котлы с многократной принудительной циркуляцией. Они выполняются однобарабанными, вертикально-водотрубными и имеют П-образную компоновку. На рисунке 2.19 показан поперечный разрез газоходов котла-утилизатора типа ОКГ-100-3А. Этот охладитель конверторных газов рассчитан на переработку~40 тыс. м3/ч конверторных газов. Конверторные газы поступают в охладитель конверторных газов через наклонный газоход в подъемный экранированный газоход, затем поворачивают в переходный и далее в опускной конвективный, в котором размещены последовательно змеевиковые пакеты конвективной испарительной поверхности нагрева и экономайзер. После охладителей конверторных газов продукты сгорания подаются в систему газоочистки, а конверторный унос поступает в бункер под опускным газоходом.
Оксид углерода (СО), содержащийся в значительном количестве в конверторных газах, сжигается в подъемном наклонно-вертикальном газоходе. Воздух, необходимый для горения СО, засасывается дымососом через зазор между горловиной конвертора и наклонным газоходом.
Во всех ОКГ предусмотрена двухступенчатая схема испарения: экранные поверхности нагрева радиационной части котла включены в чистый отсек барабана, а конвективные испарительные поверхности – в солевой. Питательная вода через экономайзер поступает в барабан котла, откуда по трубопроводам через шламоуловители подается циркуляционными насосами в экранные и конвективные поверхности нагрева.
Полученная в этих поверхностях нагрева пароводяная смесь поступает в устройство для сепарации пара. Отсепарированный пар направляется в энергокомплекс конверторного цеха.
На всех охладителях конверторных газов в период паузы и во время продувки конвертора, когда отсутствует газовыделение, предусмотрено дополнительное сжигание газообразного или жидкого топлива (подтопка) в количестве 30–75% среднего выхода конверторных газов.
Существуют охладители конверторных газов без дожигания СО. По мере освоения новых мощностей конверторов разработаны и охладители конверторных газов нового поколения, которые характеризуются применением в поверхностях нагрева мембранных труб, сваренных в панели, обеспечивающих газовую плотность и надежность работы охладителей конверторных газов в условиях цикличности тепловых нагрузок и высокой запыленности газов.
Котлы-утилизаторы, используемые в парогазовых и когенерационных установках
Широкое развитие в последние десятилетия комбинированных парогазовых установок (ПГУ) тепловых электростанций, а также когенерационных установок, имеющих высокий коэффициент полезного действия за счет совместной выработки электрической и тепловой энергии, предопределило необходимость создания для них специальных котлов-утилизаторов.
Котлы-утилизаторы, применяемые в парогазовых установках (рис. 2.20), предназначены для получения пара среднего и высокого давления, который в последующем используется в паровой турбине. Источником энергии, утилизируемой таким котломутилизатором, являются уходящие газы газовой турбины. Конструкция котла-утилизатора парогазовой установки определяется температурой уходящих газов (450–550°С), а также мощностью паровой турбины.
Котел-утилизатор парогазовой установки представляет собой водотрубный барабанный агрегат с конвективными поверхностями нагрева и многократной принудительной циркуляцией. В зависимости от мощности паровой турбины они могут быть как одноконтурными, так и иметь два независимых контура с различными давлениями пара.
Рис. 2.20. Принципиальная схема котла-утилизатора в системе ПГУ–ТЭЦ
Рис. 2.21. Общая схема котла-утилизатора П-90 для ПГУ мощностью 450 МВт в разрезе
Барабанные котлы-утилизаторы предназначены для выработки пара высокого (8 МПа), низкого (0,65 МПа) давления и горячей воды за счет утилизации тепла выхлопных газов, поступающих после газотурбинной установки (ГТУ). Такие парогазовые установки (ПГУ) с газовой турбиной типа V-94.2 мощностью 150 МВт работают на территории России (например на Северо-Западной ТЭЦ в Санкт-Петербурге).
Котел-утилизатор выполнен однокорпусным вертикальной компоновки с принудительной циркуляцией среды в испарительных контурах высокого и низкого давления с подвеской поверхностей нагрева к собственному каркасу через промежуточные металлоконструкции (рис. 2.21).
За счет металлической обшивки котелутилизатор выполнен газоплотным. Пароводяной тракт состоит из отдельных контуров высокого и низкого давления. Контур высокого давления включает экономайзерную, испарительную и пароперегревательную поверхность, контур низкого давления – испарительную и пароперегревательную. Поверхности нагрева котла-утилизатора выполнены из труб с наружным спиральным оребрением. Паропроизводительность контура высокого давления составляет 242 т/ч, низкого – 56 т/ч.
Рабочий диапазон регулирования нагрузки котла-утилизатора составляет 100–50% номинальной.
Регулирование давления и температуры пара в котлоагрегате не предусматривается, так как он должен работать при скользящих параметрах пара, определяемых расходом и температурой газов, поступающих в котёлутилизатор от ГТУ, и паровой турбиной.
В результате путем утилизации тепла уходящих газов ГТУ вырабатывается до 30% полной мощности ПГУ, а к.п.д. установки повышается до 52–54%, а в ряде случаев и до 60%.
Котлы-утилизаторы когенерационных установок утилизируют тепло уходящих газов газовых турбин или поршневых двигателей и предназначены для получения пара, используемого для технологических нужд или подогрева сетевой воды систем теплоснабжения. Они выполняются одноконтурными с принудительной циркуляцией.
Энерготехнологические агрегаты (ЭТА) – это не простое объединение теплотехнической установки с последующим использованием теплоты, как в котлах-утилизаторах, а повышение технологической и энергетической эффективности работы установки при производстве, как минимум, двух товарных продуктов – технологического и энергетического. При создании энерготехнологических агрегатов оптимизируют, как правило, всю систему теплоиспользования начиная с технологической части. В таких установках раздельная работа технологического и энергетического элементов агрегата невозможна. В установках на базе типовых котлов за счет совместного производства двух и более продуктов на одном агрегате достигается новый качественный результат как в технологическом, так и в экономическом аспекте. ЭТА очень широко применяются в химической, целлюлозно-бумажной и металлургической промышленности. Например, производство обесфторенных фосфатов осуществляется в энерготехнологических циклонных агрегатах (ЭТА-ЦФ-7Н) на базе однобарабанного парового котла с естественной циркуляцией. При производительности агрегата по обесфторенному фосфату 150 т/сут паропроизводительность составляет 20–30 т/ч при давлении 4 МПа и температуре перегрева до 450°С. Тепловой к.п.д. энерготехнологической установки составляет 80–85%. Энерготехнологический агрегат ЭТА-ЦФ-7Н вырабатывает три товарных продукта: обесфторенный фосфат, являющийся высокоэффективным кормовым средством и фосфорным удобрением; фтористый натрий (NaF) и энергетический или технологический пар.
В 2006 году в России введен в эксплуатацию энерготехнологической агрегат, представляющий собой модернизированный паровой котел КВТС-20, для переработки бурого угля в кокс. Расчетная производительность агрегата составляет 15 т/ч по углю, 3,5 т/ч по коксу при сохранении номинальной тепловой мощности 20 Гкал/ч по горячей воде.
Промышленный энерготехнологический агрегат по переработке сланца УТТ-3000
Что такое котел утилизатор: принцип работы, конструкция, расчет
Опубликовано: 03.06.2019
Время на чтение: 5 мин
12616
Мировая индустрия сегодня потребляет огромное количество энергии. Самая большая проблема состоит в том, что половина ее тратится впустую из-за неэффективных процессов генерации. Тепло в виде пара, горячей воды или дымовых газов выбрасывается в окружающую среду практически в любом производственном цикле.
Сегодня, используя интеллектуальные современные системы утилизации, отработанное тепло можно повторно использовать для других целей, что снижает выбросы углерода в атмосферу и тепловое загрязнение окружающей среды. Статистика подтверждает, что крупными источниками теплового загрязнения являются нефтепереработка, металлургия и энергетика.
Котлы утилизаторы (КУ) — котлы для использования отработанного тепла и технологических газов от газотурбинных и дизельных установок. Температура выбросов достигает сотни и даже тысяч градусов, в связи с чем перед инженерами и исследователями стоит вопрос максимального использования этой энергии.
СодержаниеПоказать
- 1 Что такое котел утилизатор
- 2 Применение котлов утилизаторов
- 3 Принцип работы
- 4 Классификация котлов утилизаторов
- 5 Тепловой расчет утилизатора
Что такое котел утилизатор
Котлы для регенерации бросового тепла устанавливаются в промышленности, особенно на заводах по выработке этилена и аммиака, серной и азотной кислот. Котлы утилизаторы отходящих газов паросиловых установок применяются, чтобы повысить общий К.П.Д. тепловых станций.
Источник фото: hurstboiler.com
Конструкционно котел выполнен, как нечто среднее между обычным кожухотрубным теплообменником и жаротрубным котлом. Его первоначальной функцией было охлаждение высокотемпературного отработанного газа, в качестве побочного продукта, он выполнял генерацию пара низкого давления.
Сегодня аспект защиты окружающей среды приобретает все большее значение, требования к условиям эксплуатации, стали все более жесткими, поэтому выработка вторичных энергоресурсов, стала неотъемлемой частью любого нового или реконструированного проекта.
Для эффективной работы КУ применяют тепло, выбрасываемое от других производственных процессов, поэтому устройства, в большинстве случаев, не имеют камеру сгорания. Поскольку они работают в агрессивной среде и в зонах высоких температур, ремонт котлов утилизаторов проводится намного чаще, чем основного технологического котельного оборудования.
Вторичная энергия, полученная от КУ в виде пароводяной или воздушной смеси, используется при производстве электроэнергии или в когенерационных схемах. Котлы изготавливаются, как отечественными, так и зарубежными заводами и предназначены для регенерации вторичных энергоресурсов.
При всем внешнем сходстве с обычными технологическими котлами, утилизаторы обладают значительными отличиями.
Особенности оборудования:
- В конструкции отсутствует топочное устройство или камера сгорания, если использует тепло, от других тепловых процессов. Топка в таких котлах применяется, если в рабочих средах есть химический компонент тепла, который необходимо получить в процессе горения.
- Наличие микро отходов в дымовых газах (пыль, несгоревшее топливо, металлические частицы) связанных с технологией, поэтому требуется, чтобы утилизаторы имели не менее двух отсеков с газотурбинными камерами и перепускной канал с вентилем для регулирования рабочих параметров горения. Этот обход используется утилизатором, для эффективного теплообмена и сводит к минимуму аварии из-за температурных и эрозионных перенапряжений корпуса, работающего в экстремальных зонах. С этим также связано то, что рабочие элементы и расходные материалы изготавливаются из специальных марок стали.
- Корпус загерметизирован, а испарительные змеевики замкнуты в одном контуре использующий циркуляционный насос и по газовому тракту, имеющий выход в дымоход.
- Корпус выполнен из стальных листов толщиной от 15 до 20 мм, который должен надежно противостоять интенсивному рабочему процессу, в среде с высокими параметрами по давлению и температуре.
- Обычно газовые поверхности защищены от износа специальными трубными гильзами стали X17. Также конструкция КУ должна обеспечивать герметизацию установки.
- Испарительные элементы, установленные в газоходах котла создают общий циркуляционный контур.
- Уходящие газы после технологических процессов имеют в своем составе пыль и другие агрессивные вещества, которые нужно удалять до поступления в котел. Для этого используют мощные циклоны и электрофильтры, но даже они не обеспечивают полную очистку газовой среды.
- Пыль неравномерно откладывается на поверхности нагрева и снижает теплоотдачу, что вызывает перекос змеевиков из-за неравномерности нагрева, а присутствие в газах соединений Ca, Na, S способствуют образования на поверхностях нагрева твердых отложений, вызывающих коррозию в контуре испарения, влияет на проходимость сред. Поэтому современные КУ оборудуются топкой для дожигания уходящих газов.
Типичный КУ имеет:
- барабан;
- испаритель без перегревателя;
- экономайзер воды.
Эффективность теплообменника зависит от трех факторов: температуры газа на входе в котел, объема и способа доставки источника вторичных энергоресурсов.
Применение котлов утилизаторов
Котлы утилизаторы нашли широкое применение в промышленном секторе и системах жизнеобеспечения, используя энергию уходящих газов.
Поскольку устройство не подключено к системам топливоподачи или другим источникам природных энергоносителей, для эффективности схемы регенерации котел устанавливают непосредственно в точке бросовой энергии.
Устройство утилизатора. Источник фото: info.wikireading.ru
Области применения устройств для использования вторичных энергоресурсов:
- в схеме повышения эффективности работы ТЭС;
- утилизация выбросов после работы ГТУ;
- утилизация тепла в черной и цветной металлургии;
- утилизация выбросов химической промышленности и азотных удобрений;
- технологических циклах целлюлозно-бумажной отрасли;
- строительных материалов;
- нефтяной отрасли.
В России несколько заводов выпускающие подобное оборудование, их номенклатура способна удовлетворить широкий спектр использования вторичных энергоресурсов. Отличительной чертой таких КУ является их уникальность, поскольку они выпускаются индивидуально под реальные выбросы, фактически установленное оборудование и площадку для монтажа.
Виды котлов-утилизаторов в России:
- Объекты малой энергетики от 2 до 60 МВТ, водогрейный тип, с естественной циркуляцией воды, топкой или без, имеющие горизонтальное или вертикальное движение газовой среды.
- Блоки до 300 МВТ, паровые КУ, моно или дубль блоки ПГУ или дополнения к схемам существующих ЭС в паре: газотурбинная установка и котел утилизации.
- Блоки до 850 МВТ, паровые котлы в схеме ПГУ.
Основные технические данные КУ для энергетики:
- паропроизводительность от 10 до 300 т/ч;
- давление среды от 0.46 до 12.7 Мпа;
- использование температуры от 200 до 560 С.
Принцип работы
Принцип работы КУ зависит от схемы выработки вторичных энергоресурсов и движения газов – в трубном или межтрубном пространстве.
Газотрубные утилизаторы, вторичный энергоноситель движется в газовом пространстве, вертикальном или горизонтальном. Такие установки обычно устанавливаются в схеме работы мартеновских или других печей, они обладают малыми показателями энергоэффективности.
Принцип работы котлов утилизаторов:
- Горячие газы с Т = 1200 С из печи движутся во по-газовоздушному тракту на вход газохода КУ, на входе, которого на стенах расположены W- нагревающие поверхности ленточных экранов и конвективный пароперегреватель.
- Вода, получая тепло от уходящих газов нагревается и движется в виде пароводяной смеси, с помощью естественной циркуляцией, образуя пар Р до 4.5 МПа и Т 440 С.
Общая мощность таких КУ составляет до 10 МВт. Для получения стабильной нагрузки, в котлах устанавливается предтопок, работающий с газовой форсункой.
В водотрубных КУ — вторичные энергоресурсы движутся в межтрубном пространстве, а нагреваемая вода в трубах. Принцип работы котла утилизатора основан на многократной принудительной циркуляции теплоносителя в водяном контуре.
Испарительный элемент выполнен ввиде параллельных секций, что уменьшает сопротивление среды, и дает возможность использовать маломощные насосы для циркуляции воды. Схема такого КУ выполняется горизонтальной или вертикальной и определяется фактической схемой расположения оборудования.
В когенерационных установках в виде вторичных энергоресурсов используют тепло газов от турбин. Полученный пар применяется для нагревания воды в бойлерной системе отопления или на технические нужды промышленных объектов. Обычно это одноконтурные котлы с принудительной циркуляцией.
Пиролизные КУ обрабатывают отходы жилищно-коммунальной сферы и промышленности, для чего оснащены озонатором, развивающим высокотемпературный режим, что позволяет сжигать любые полимерные или бытовые отходы.
Классификация котлов утилизаторов
КУ классифицируются по таким параметрам:
- Температуре поступающих газов: низкотемпературные < 901 C и высокотемпературные >1001 С. В первом случае происходит конвекционная теплопередача, а во втором тепло передается в виде излучения, поскольку в этой среде частицы газа изменяют свое состояние.
- Давлению вырабатываемого пара от установок и представляют: низкого до 2 МПа, среднего до 5 МПа и высокого от 5 до 15 Мпа.
- По тракту движения сред: газо и водотрубные.
- По способу движения воды в нагревательном контуре: естественной и принудительной.
- По схеме исполнения и установки нагревательных пакетов: вертикальные и горизонтальные.
Тепловой расчет утилизатора
Для выполнения теплового расчета КУ потребуются данные уходящих газов от первичной установки генерации заданные параметры сред. Задача состоит в определении показателей сред, участвующих в процессах теплопередачи по конструктивным элементам утилизатора.
Например, расчет КСТ -80 с исходными данными:
- Максимальный расход газов G0=6,500 тыс.м3/ч;
- Параметры пара: Рпп=4 Мпа, tпп=430С;
- Параметры газов перед КУ 750С;
- Температура воды tпв=100С.
- Состав газовой среды: С02=7.0 %, СО=16.0 %, N2=60. 0%, h3=12.0%, SO2=1.0 %, h3O=4.0 %.
Пример расчета приведен в таблице.
Котел утилизатор принцип работы
Главная » Статьи » Котел утилизатор принцип работы
Эффективная утилизация отходов с помощью котла
Котел утилизатор — это устройство, работающее на тепловой энергии, получаемой из газов дизельного и газотурбинного оборудования, а также, сушильных барабанов, туннельных и вращающихся печей. Такие котлы используют энергию, которая в противном случае, была бы потрачена впустую, ведь на промышленных предприятиях значительная часть газов выбрасывается просто в атмосферу. Между тем, температура выходящих градусов может доходить до тысячи градусов, поэтому не использовать такую энергию было бы нерационально.
Утилизаторы позволяют задействовать тепло выходящих газов, повышая тем самым коэффициент использования топлива. Кроме того, утилизация дает возможность сократить выбросы в атмосферу вредных веществ.
Особенности оборудования
Котел утилизатор работает без собственной топочной камеры. Такой агрегат использует тепло, получаемое в ходе других технологических процессов.
Обратите внимание! Когда в составе выходящих газов имеется как физическая, так и химическая составляющая теплоты, то последнюю имеет смысл сжечь.
Одна из характерных черт функционирования промышленных утилизационных систем состоит в том, что в выходящих газах могут находиться множество небольших частиц. Они бывают в жидком, твердом или газообразном виде. Возникают частицы вследствие работы производственных установок и представляют собой осколки металла, шихты, шлака или окалины. Жидкие частицы — результат выплавки металлов. В целом, образование этих микроотходов связано с повышенными температурами, применяемыми при металлообработке.
На эффективность утилизации выходящих газов оказывает влияние тепловая мощность отопительного агрегата, режим подачи в него отходов и их температура. Объем и температура выходящих газов зависит от количества сжигаемого топлива и характера промышленного процесса. Значительный объем шихтовых газов выдается в цветной и черной металлургии — при продувании конвертеров кислородом.
Схема котла-утилизатора с принудительной циркуляцией: 1 — барабан; 2 — испарительная часть; 3 — пароперегреватель; 4 — водяной экономайзер.
Как сказано выше, на функционирование утилизатора большое влияние оказывает режим подачи в него газов. Промышленное оборудование (особенно это относится к конвертерам) часто работает циклично, что отрицательно сказывается на продуктивности котельного агрегата.
Котел утилизатор можно классифицировать по следующим параметрам:
- По температуре газа, подающегося в агрегат. По этому параметру оборудование подразделяется на: низкотемпературное (менее 900 градусов) и высокотемпературное (свыше 1000 градусов). В условиях низких температур передача тепловой энергии осуществляется благодаря конвекции, а при высоких показателях — в процессе излучения. При температурах, превышающих 1100 градусов, жидкие продукты сгорания меняют свое агрегатное состояние.
- По паровым характеристикам котел утилизатор может относиться к 3 классам: оборудования с низким давлением (1,5 МПа и 300 градусов), с повышенным давлением (4,5 МПа и 450 градусов), и с высоким (от 10 до 14 МПа и 550 градусов).
- По принципу передвижения жидкости, пара и продуктов сгорания утилизационные котлы разделяются на два типа: газотрубные и водотрубные.
- По способу передвижения жидкости в испарительном контуре утилизирующее оборудование дифференцируется на котлы с естественной и принудительной циркуляцией.
- По комплектации и нагревательным поверхностям оборудование подразделяется на такие типы: башенный, горизонтальный и туннельный. В низкотемпературных устройствах применяется змеевиковая конвективная нагревательная поверхность. В высокотемпературных модификациях — конвективно-радиационная поверхность.
Принцип работы газотрубных утилизаторов
Газотрубные агрегаты бывают двух типов: расположенные по вертикали и по горизонтали. Такое оборудование чаще всего применяется возле мартеновских, обжиговых и других печей. Газотрубные устройства характеризуются относительно незначительными показателями мощности.
Котел утилизатор газотрубной модификации работает так: разогретый газ (температура примерно 1200 градусов) покидает печь и поставляется в нижнюю область газохода агрегата. В этой части находятся W-образные настенные поверхности (в виде лент и экранов), а также, конвективный пакет пароперегревателя.
Газотрубный котел-утилизатор ТКЗ типа КУ-40. 1 — пароперегреватель; 2 — трубная поверхность; 3 — дымосос.
Под воздействием тепла вода преобразуется в пар. Далее смесь воды с паром начинает циркуляцию по настенным поверхностям. В ходе процесса котел производит пар под давлением до 4,5 МПа и температурой до 440 градусов. Это дает возможность получить высокие показатели мощностных характеристик — до 8 МВт. Для поддержания стабильного теплового потенциала, до утилизатора ставится предтопок с газовой горелкой.
Принцип работы водотрубных утилизаторов
В основу работы таких утилизаторов заложена многоразовая принудительная циркуляция, благодаря чему, испарительный элемент можно изготавливать в любой необходимой конфигурации. Испарительный элемент разделяется на ряд параллельно подключенных секций, что дает возможность сильно уменьшить сопротивление испарительной области и задействовать циркуляционные насосы небольшой мощности.
Вода, поступающая в водогрейный котел, проходит через водный экономайзер, и далее перенаправляется в барабан отопительного агрегата. Оттуда жидкость выкачивается насосом и через шламоотделитель перетекает в испарительные пакеты. Последние подключаются параллельно.
В барабане осуществляется сепарирование смеси пара и воды, в результате чего вода в водогрейном агрегате выделяется из пара. Далее пар направляется через пароперегреватель в отопительную систему. Схема котла утилизатора бывает, как П-образной, так и горизонтальной или башенной. Этот параметр определяется местом установки оборудования.
Схема работы вертикального (а) и горизонтального (б) водотрубного котла-утилизатора
Утилизаторы в когенерационном и парогазовом оборудовании
В парогазовых агрегатах применяются котлы, в которых пар имеет среднее или высокое давление. После получения пара, он задействуется в паровой турбине. Помимо пара, в парогазовой установке в качестве энергетического источника используется энергия выходящих газов.
Конструкция парогазового оборудования предусматривает водотрубные котлы с конвективными нагревательными поверхностями и многоразовой циркуляцией принудительного типа. Конструктивные данные отопительного агрегата зависят от показателя мощности паровой турбины. Разные модели имеют от одного контура до 2 независимых контуров с разными показателями парового давления.
Подобные барабанные котлы производят пар с показателями давления от 0,65 до 8 МПа. При этом, водогрейная часть выдает горячую воду, получаемую при утилизации тепловой энергии из выхлопов газовой турбины.
В когенерационных установках используется тепло выхлопов поршневых двигателей и газовых турбин. Получаемый пар применяется для нагрева воды в отопительной системе или же для технических целей. Котлы в когенерационном оборудовании производятся с одним контуром и с принудительной циркуляцией.
Принципиальная схема работы котла-утилизатора в когенерационном и парогазовом оборудовании
Пиролизные котлы
Такие котлы отличаются от обычных твердотопливных агрегатов тем, что могут работать также и с бытовыми и промышленными отходами. Пиролизные котлы оснащаются озонатором, благодаря чему достигается высокий температурный режим, позволяющий сжигать даже полимерные материалы, битум, резину и многое другое.
Пиролизное устройство функционирует с применением принципа газогенераторного горения. Его особенностью является бездымное горение при сжигании вторичных газов.
Тепловой расчет утилизатора
Имея перед собой характеристики выходящих газов ГТУ, параметры пара и зная температуру воды, можно сделать тепловой расчет котла утилизатора. Задача расчета состоит в выяснении показателей воды, пара и газа, передаваемых в отдельных областях утилизатора. Это даст возможность установить их поверхность и избрать нужные конструктивные формы.
Делая расчет, нужно принимать во внимание тот факт, что тепловая энергия поступает от горячих газов к пару или воде, а значит, температура газов всегда больше, чем температура воды или пара. Однако чем меньше разница между этими температурами (температурный напор), тем рациональнее отдается тепловая энергия в паротурбинный контур.
klivent.biz
Котел-утилизатор: характеристики, принцип работы :
Одной из главных задач оптимизации современного производства является сокращение вредных выбросов и отходов. Газовые смеси, вырабатываемые в процессе эксплуатации печей и тепловых агрегатов, составляют значительную долю продуктов сгорания, которые никак не используются, но загрязняют воздух. Поэтому даже на бытовом уровне современные бойлерные установки ориентируются на вторичное применение отходящих газов. С такими же целями на многих производствах внедряется котел-утилизатор, снижающий повышенные температуры обслуживаемых технологических смесей.
Устройство агрегата
При всей внешней схожести с обычными индустриальными котлами утилизирующее оборудование имеет существенные отличия. Преимущественно они обусловлены особенностями греющего теплоносителя, в устройстве которого делается расчет на возможность охлаждения запыленных газов. В ином случае камера теплового обмена может запылиться и утратить рабочие качества, так как будет увеличено и гидравлическое сопротивление по отношению к проходящим смесям. Типовые конструкции газовых котлов-утилизаторов предусматривают наличие двух отсеков с газотурбинными камерами. За функцию регуляции рабочих параметров сжигания отвечает перепускной газоход с шибером. Это своего рода байпас, одновременно повышающий эффективность регуляции теплообмена и минимизирующий аварии из-за механического перенапряжения корпуса. Поскольку речь идет о работе в условиях экстремальных температур, функциональные элементы и расходники выполняются из специальных марок сталей. В частности, трубы с предохранителями имеют жаропрочные покрытия и закаленную основу. Сам корпус тщательно герметизируется, а испарительные контуры замыкаются в одну циркуляционную цепь с выводом в дымоход.
Основные характеристики агрегатов
Корпус изготавливается из толстых листов стали – до 15-20 мм. Для внутренних камер сгорания может применяться и более прочный сплав, что будет зависеть от интенсивности планируемого рабочего процесса. Для циркуляционных контуров обычно используют трубы диаметром до 30 мм и толщиной стен порядка 2-3 мм. С точки зрения эксплуатационных возможностей, ключевым параметром является температурный предел. На входе это значение может составлять 300-1200 °C. После завершения технологического процесса на предприятия его печь отдает технологические газы с такими показателями. На выходе температурные характеристики котлов утилизаторов понижаются до 150-200 °C, при этом рабочее давление может составлять до 50 атм. Поэтому конструкция должна рассчитываться не только на тепловые, но и на физические нагрузки при эксплуатации под высоким давлением. В зависимости от модели утилизаторы могут выполнять и задачи подогрева воды с паром. Например, в качестве оборудования для ГВС комбинированная бойлерная установка подготавливает теплоноситель до 80-100 °C.
Принцип работы газотрубных котлов
Одна из наиболее практичных и распространенных моделей котла рассматриваемого типа, конструкция которого может быть горизонтальной и вертикальной. Газотрубные модели используют в обслуживании производственных отходов обжиговых и мартеновских печей. Рабочий же процесс основывается на том, что горячая газовая смесь с температурным режимом порядка 1200 °C переправляется из промышленной печи в газоприемный канал перерабатывающего оборудования. Эту часть котла составляют настенные поверхности W-образной формы. Как правило, это конструкции из экранов и лент. В дальнейшем принцип работы котлов-утилизаторов газотрубного типа строится на функции конвективного пароперегревателя. При нагреве горячей воды происходит образование пара. Комбинация жидкости и паровых масс формирует смесь, циркулирующую по вышеупомянутой W-образной конструкции, захватывая большую площадь температурного распределения. Данный процесс использует энергию поступающего газа, при этом образуя пар с горячей водой – ресурсы, которые могут применяться в рамках технологии производства на том же предприятии.
Принцип работы водотрубных котлов
Тоже предполагается подогрев жидкости с выделением пара, но в данном случае поступление водного носителя организуется через экономайзер. После этого он проходит в отопительный барабан, где преобразуется в пар. Процедура выработки тепла осуществляется в ходе сепарирования воды и паровых смесей в приемном резервуаре. Подключение разных технологических контуров к барабану может быть параллельным или последовательным – зависит от конструкции печного источника газовой смеси, с которым взаимодействует котел–утилизатор. Принцип работы также предусматривает прохождение воды через фильтрацию в шламоотделителе и переход в испарительные пакеты.
Особенности когенерационных и пиролизных котлов
Это два типа утилизаторов, которые напрямую не относятся к промышленным технологическим сжигателям отходов. Что касается когенерационной установки, то она принимает в качестве топлива не только газы, но и полимерные твердотельные материалы, позволяя получать на выходе и горячую воду с паром, и электроэнергию. Столь широкая функциональность достигается за счет интеграции в устройство дополнительных силовых агрегатов, которые и обеспечивают высокую производительность. Для сравнения, обычный паровой котел-утилизатор проектируется с расчетом на полную независимость от сторонних источников энергии. Его работа энергетически обеспечивается отходами промышленных печей. В свою очередь, пиролизные котлы осуществляют вторичную переработку не только в условиях производства, но и в быту. Их особенностью является универсальность с точки зрения подключения к отопительным агрегатам с разными конструкциями и рабочими характеристиками.
Комплектация котла-утилизатора
Хотя и в базовом оснащении конструкции такого оборудования получают широкий набор вспомогательных устройств, по мере расширения предприятия или в ходе его переориентации может возникнуть потребность в разного рода дополнениях. В частности, системы защиты представляют собой навесные элементы, предохранительные блоки, жаростойкие экраны и запорные клапаны. Для устройства сложных циркуляционных систем применяется сантехническая арматура, позволяющая конструировать теплообменники разного устройства. Для поддержки достаточного давления котел-утилизатор также обеспечивается насосным оборудованием и вентиляторами с функцией нагнетания воздуха.
Системы управления котлами
Самая простая схема регуляции рабочих параметров реализуется через органы ручного контроля. Корпус содержит панель с ключевыми инструментами, позволяющими устанавливать настройки по температуре, давлению, времени сгорания и т. д. В более современных модификациях котел-утилизатор снабжается электронными средствами управления. К основному реле могут подключаться датчики, контроллеры, таймер с контрольно-измерительной аппаратурой и модули дистанционного управления. Оператор с диспетчерской комнаты полностью контролирует процесс, а при необходимости программирует автономную работу оборудования на определенные режимы с заданными параметрами.
Заключение
Качество утилизации технологических продуктов переработки на предприятии зависит не только от характеристик и рабочих свойств котла, но и от условий эксплуатации. В первую очередь, для полноценного функционирования агрегата должны быть подведены все необходимые инженерные коммуникации. Далее выполняются монтажные операции. Как правило, установка котлов-утилизаторов производится на фундаментной платформе, специально подготовленной базе или высокопрочной стяжке. Затем выполняется подключение к печам, вентиляционным каналам, системе водоснабжения, каналу дымоудаления и т. д. Обслуживание преимущественно сводится к удалению отложений от газовых смесей на рабочих поверхностях. Для этого применяют методы виброочистки, абразивного пескоструйного воздействия и обмывки специальной химией.
www.syl.ru
Особенности котлов-утилизаторов
Вопрос охраны окружающей среды и рационального использования природных ресурсов всегда был и будет актуальным. На промышленных предприятиях коэффициент использования органического топлива на уровне 40%, а остальные газы выбрасываются в воздух. Часто температура отходящих газов достигает больше 1000°С.
E-система котла-утилизатора.
Использование котлов-утилизаторов решает вопрос переработки отходов и получение дополнительной теплоты за счет использования энергия отходящих газов.
Особенности работы котлов-утилизаторов Котел-утилизатор не имеет собственной топки, принцип его работы простой и эффективный, он основан на использовании теплоты, что выделяется во время технологических промышленных процессов при работе различных агрегатов или энергетических установок.
Если во время работы в составе отходящих газов есть не только физическая, но и химическая теплота (горючие составляющие), то их целесообразно сжечь. Котлы-утилизаторы имеют следующий принцип работы: они генерируют энергию в виде нагретой воды, пара или воздушного потока, она может быть использована во время работы другого оборудования для производства холода или тепла в когенерационных установках.
Одной из специфической особенностей работы промышленного оборудования является то, что в составе отходящих газов содержится много мелких частиц, которые пребывают в твердом, газообразном или жидком состоянии. Они образуются во время работы оборудования и являются частью окалины, металла, шлака, шихты. Во время процесса плавления металла, в составе отходящих газов появляется много жидких частиц. Все это получается из-за того, что печи работают при высоком температурном режиме.
Схема работы котла-утилизатора.
Котлы-утилизаторы позволяют использовать теплоту отходящих газов, что повышает коэффициент использования топлива, уменьшает температуру вынесения технологического сырья, дает возможность его улавливать.
На то, как эффективно котлы-утилизаторы будут использовать теплоту отходящих газов, влияет тепловая мощность, которую имеет котел, режим поступления в него газов, температура отходящих газов. От того, сколько будет сжигаться топлива в конкретной технологической установке и какой процесс происходит, будет напрямую зависеть температура и количество отходящих газов. Много шихтовых газов образуется во время работы оборудования, используемого для плавки руд цветных металлов и во время продувки кислородом конвертеров, что преобразуют чугун в сталь.
Еще одним важным фактором, влияющим на работу котла, является режим поступления в него газов. Многие технологические установки имеют циклический принцип, а это, в свою очередь, негативно влияет на эффективность работы котлов-утилизаторов. Часто указанные неудобства возникают на конвертерном производстве, и цикличность работы печей приводит к тому, что котел-утилизатор будет работать с низкой эффективностью. Признаки, по которым котлы-утилизаторы делятся на группы
Схема котла-утилизатора.
- В зависимости от температуры газов, что попадают в котел. По данному принципу утилизаторы делятся на низкотемпературные ( 1000°С). При низких температурах перенос тепла выполняется за счет конвекции, а при высоких температурах — за счет излучения. Если температура больше 1100°С, то продукты сгорания, что были в жидком состоянии, изменяют свое агрегатного состояние.
- По параметрам пара утилизатор может быть низкого давления (Р = 1,5 МПа, t=300°С), повышенного (4,5 МПа и 450°С) и высокого (10-14 МПа и 550°С).
- Также влияет принцип взаимного движения пара, воды и продуктов сгорания, утилизатор может быть водотрубным или газотрубным;
- В зависимости от способа движения воды в испарительном контуре, водотрубный утилизатор бывает с принудительной или естественной циркуляцией.
- В зависимости от оформления компоновки и поверхностей нагрева, утилизатор может быть горизонтального, туннельного, башенного типа. В низкотемпературных котлах используется принцип змеевиковой конвективной поверхности нагрева, а у высокотемпературных моделях — радиационно-конвективные поверхности.
Принцип действия газотрубных и водотрубных котлов
Вернуться к оглавлению
Газотрубные котлы выпускаются с горизонтальным и вертикальным их расположением, могут использоваться совместно с обжиговыми, мартеновскими и другими печами, которые имеют сравнительно небольшую мощность.
Газ, температура которого около 1200°С, выходит из печи и попадает в нижнюю часть газохода котла. Там установлены W-образные трубные ленточные и экранные настенные поверхности, конвективный пакет пароперегревателя. Тепло превращает воду в пар, и пароводяная смесь начинает циркулировать в указанных поверхностях. Во время работы утилизатор вырабатывает пар, давление которого до 4,5 МПа и температура до 440°С, что позволяет обеспечить электрическую мощность до 8 МВт. Чтобы поддерживать постоянный тепловой потенциал газов, поступающих в утилизатор, установлен предтопок с газовой горелкой.
Все газотурбинные утилизаторы имеют одинаковый принцип работы, независимо от того, в какой отрасли они используются. Они применяются для охлаждения отходящих газов, технологических установок, что имеют небольшую мощность.
Вернуться к оглавлению
Утилизаторы, имеющие многократную принудительную циркуляцию, широко используются в промышленности. То, что такой анализатор имеет принудительную циркуляцию, позволяет испарительный элемент делать любой формы и ориентации в пространстве.
В таких котлах испарительная система распределяется на несколько секций, они подключены параллельно, это позволяет значительно снизить сопротивление испарительной части и использовать циркуляционные насосы меньшей мощности.
Вода, которая питает утилизатор, поступает через водяной экономайзер, а затем в барабан котла. Отсюда при помощи насоса вода через шламоотделитель идет в испарительные пакеты, которые включены параллельно. Полученная пароводяная смесь в барабане сепарируется, и вода отделяется от пара. После чего пар через пароперегреватель идет к потребителю. В зависимости от того, где надо установить утилизатор, его компоновка может быть П-образной, башенной или горизонтальной. Котлы-утилизаторы в парогазовых и когенерационных установках
В парогазовых установках используются котлы-утилизаторы, которые рассчитаны для получения пара среднего и высокого давления для дальнейшего его использования в паровой турбине. В таком котле источником энергии также является энергия отходящих газов. Здесь используются водотрубные котлы, у которых конвективные поверхности нагрева и многократная принудительная циркуляция. От мощности паровой турбины будет зависеть конструкция котла, он может быть одноконтурным или иметь 2 независимых контура, в которых будет разное давление пара.
Такие барабанные утилизаторы вырабатывают пар, давление которого от 0,65 до 8 МПа, а также горячую воду, за счет того, что утилизируют тепло выхлопных газов от газотурбинной установки.
Если говорить о котлах-утилизаторах когенерационных установок, то они используют теплоту выхлопных газов поршневых двигателей или газовых турбин. Вырабатывают пар, который используют для подогрева воды в системе отопления или для технологических нужд. Такие котлы делают одноконтурными с принудительной циркуляцией.
1poteply.ru
Котлы утилизаторы: устройство и схема работы
Котлы утилизаторы, как правило, не оснащаются собственными топочными камерами. Для сгорания в форсуночной камере используются газы и выхлопы, которые образуются в процессе металлургического производства или работы тяжелых агрегатов, установок и ДВС.
Содержание
Характеристики котлов утилизаторов
Целесообразность применения таких котлов объясняется потребностью сжигания газов, в которых имеется составляющая топливной структуры, особенно это применимо для дизелей и двигателей внутреннего сгорания.
Работа котлов утилизаторов основана на следующих особенностях: они производят и аккумулируют энергию в виде сильно нагретой воды, потоков пара или конвекции воздуха.
Эта энергия может свободно использоваться для получения других видов энергии или механической работы.
Котел утилизатор устройство которого открывает широкие перспективы для использования энергии тепла от сгорания топлива – это значительно увеличивает коэффициент полезного действия самого топлива и установки, уменьшает температуру нагрева агрегата, позволяет улавливать вредные газы и выхлопы.
Температура газа и его объем напрямую зависят от вида производства. Статистика показывает, что самые большие отходы газов имеет нефтеперерабатывающая отрасль. Также, очень много газовых выбросов образует металлургическая промышленность.
В этом производстве образуется шихтовый газ – среда, в которой содержится металлическая окалина, которая создает хорошие условия для воспламенения и сжигания газа.
Мощность котла, как базисного элемента системы отопления, равняется теплопотере всей сети, обеспечивающей помещение с определенными габаритами и теплотехническими свойствами.
Что такое пеллетные котлы, читайте здесь.
Режим, который объясняет поступление газа в котел, является не менее важным фактором. Большинство технических установок имеет циклический характер подачи, а это не очень хорошо влияет на “питание” котла утилизатора.
Читайте также: Котлы утилизаторы
В этом случае котел работает с очень малыми объемами газа, а это значит, что их дополнительное применение нецелесообразно.
Часто такое наблюдается в цехах инверторного производства сварочных работ аргоновой сваркой, где используется замкнутый цикл без большого количества отходов.
Особенности и виды котлов-утилизаторов
- Разные характеристики, которые зависят от температуры газов, поступающих в котел. По данной температурной характеристике котлы делятся на: низкотемпературные (с T ниже 600 градусов Целься) и высокотемпературные (с T выше 1100 градусов Цельсия). Если температура газа низкая, то циркуляция происходит конвекционным типом, при высокой – излучение теплового воздуха. При температуре свыше 1300 градусов структура твердых примесей газа меняет свое состояние на газ.
- Пар, который образуется с помощью утилизатора, имеет разные значения давлений: низкое или пониженное (Р = 1,5 МПа, t=400°С), умерено-повышенное (4,5 МПа и 450°С) и высокое (10-14 МПа и 550°С).
- Водотрубные или газотрубные утилизаторы различают по способу движения всех рабочих тел: пара, воды, газа, отработки и тепла.
Деаэраторы атмосферного давления применяются в схемах приготовления питательной воды паровых котлов и подпиточной воды систем теплоснабжения и горячего водоснабжения на ТЭС и в котельных.
Что такое вакуумные деаэраторы, вы можете узнать тут.
- С принудительной или естественной циркуляцией. Котлы делят по виду перемещения жидкостей по технологическим линиям и регистрам.
- Котел утилизаторы схема которого может иметь различную компоновку и варианты монтажа: башенные, напольные с креплением к пьедесталу, настенные и подвесные. Очень часто утилизаторы с использованием газа низкой температуры выполняют в виде змеевиков с переменной конвекцией.
Утилизатор газотурбинного типа
Котлы, как правило, выпускаются в горизонтальном или вертикальном вариантах конструкции.
Они могут эффективно применяться в совокупности с мартенами и печами для обжига, которые не отличаются большими мощностными характеристиками и высокой температурой газа.
Читайте также: Котлы-утилизаторы газов
Газ с небольшой температурой выходит из печи в дымоуловительную установку и поступает в нижнюю полость утилизатора. Там находится специальное устройство-камера, которая повышает конвекционные характеристики.
Камера представляет собой пакет из металлических листов, которые отражают и направляют потоки тепла. Избыточное тепло образует пар из воды, который циркулирует в необходимых направлениях.
Пар, как правило, имеет характеристики около 400 градусов Цельсия и давлением больше 5 атмосфер – это позволяет образовать электрическую энергию чуть более 8 кВт.
Все утилизаторы оснащенные газовой турбиной имеют одинаковый принцип работы. Их часто применяют для уравновешивания температурного режима в установках большой мощности, но с малой отдачей отработанных газов. Их применение имеет экономическую целесообразность.
Утилизатор водотрубного исполнения
Газоутилизаторы, которые имеют систему принудительной циркуляции технологических жидкостей, тепла и пара, имеют очень активное применение в индустрии.
Принудительная циркуляция позволяет увеличивать показатели мощности и температуры пара с помощью использования автоматики и реле управления.
Камеры такого котла разделены на секции, которые оснащаются отдельными насосами циркуляции малой мощности.
Это позволяет аккумулировать тепловую энергию в каждой камере отдельно, а потом суммировать ее с помощью отражателей для приготовления пара и электрической энергии.
Вода для нагрева, которая необходима при парообразовании, поступает в камеры через дозирующее устройство – экономайзер.
Из камер вода поступает в специальные участки испарения, которые представляют собой замкнутые камеры с перфорацией для отвода тепла.
Настенные электрические котлы Protherm – это альтернатива газовому отоплению с целым рядом неоспоримых преимуществ!
Подробнее о деаэраторе дв, читайте здесь.
Образовавшаяся тепловая энергия снижает температуру газовой смеси за счет ее преобразования, отводит большую часть тепла от агрегатов и создает прекрасные предпосылки для энергосберегающих режимов в производстве.
Читайте также: Котлы-утилизаторы газов
Для поддержания работоспособности всем утилизаторам требуется своевременная диагностика и поточный ремонт, тогда утилизатор будет эффективен и прослужит долгое время.
Использование утилизаторов на производстве началось сравнительно недавно, но уже на первых этапах дало прекрасные предпосылки к снижению экономических затрат и повышению производительности.
Это надежный и испытанный вид техники, который используется совместно с большими и средними мощностями, дополняя их.
kotlotech.ru
Принцип работы котла утилизатора, как работают котлы утилизаторы
Что такое котел утилизатор? Это котел, который в качестве источника топлива использует теплоту уходящих газов мартеновских печей, плавилен, сушильных цехов и так далее. Разобраться, как работает котел утилизатор и какие особенности он имеет, предстоит далее.
- Зачем нужны котлы утилизаторы?
- Отличие от обыкновенных котлов
- Принцип работы
- Классификация
- Куда расходуется пар?
- Утилизаторы для дома
Зачем нужны котлы утилизаторы?
В реальной жизни человек привык к тому, что энергией называют только электричество. На деле, помимо электричества, существует еще и тепловая энергия. Причем не известно, что важнее. Тепловая энергия регулярно используется человечеством в виде тепла для приготовления пищи, горячей воды и пара, который вращает огромные турбины для получения того самого электричества.
Но технологический процесс зачастую не предусматривает утилизации остаточного тепла в уходящих газах. В особенности это касается высокотемпературных химических производств и заводов металлургии. Уходящие газы здесь достигают температуры 1200 градусов. Помимо бесполезной траты денег, выброс газов приводит к ухудшению экологической ситуации. Использование котлов-утилизаторов значительно снижает ущерб, наносимый окружающей природе.
Отличие от обыкновенных котлов
Обычный котел условно можно разделить на несколько частей:
- Топка. Здесь топливо преобразуется в тепло уходящих газов.
- Емкость с водой или барабан. Здесь находится отработанная водно-паровая смесь. Сюда же подводится питательная вода.
- Теплообменник. Грубо говоря это ряды труб на пути отвода газов. По трубам течет вода. Уходящие газы отдают тепло через стенку, превращая воду в пар.
Устройство котлов –утилизаторов немного отличается. У них топки нет. Ее роль выполняет технологический процесс производства. Часто газы перед подачей в котел пропускают через камеру сжигания частиц, чтобы отчистить уходящие газы от шлаков и других твердых загрязнений, способных повредить внутреннюю поверхности оборудования котла.
По той же причине в котлах-утилизаторах нельзя использовать обычные марки стали, все трубы выполняются из высших сортов металла, чтобы уберечь оборудование от воздействия твердых частиц.
Принцип работы
Принцип работы котла-утилизатора – это не сложный процесс. Представим себе пространство, чаще всего трубу, заполненную отсеками труб с циркулирующей в них водой. Использовать отсеки дешевле, поскольку на каждый отсек устанавливается отдельный насос, поддерживающий циркуляцию жидкости. Много малых насосов дешевле большого той же мощности. Принудительная циркуляция жидкости ускоряет парообразование.
Вода под воздействием температур делится на слои, каждый из которых обладает своей плотность. Вследствие прогревания нижних слоев и подъема их наверх, происходит перемешивание и циркуляция жидкости в трубах. Механическая циркуляция значительно ускоряет этот процесс. Использование насосов позволяет распределять тепло равномерно.
Сквозь трубы с водой проходят отработанные дымовые газы с высокими температурами. Отработанные газы служат источником тепла. Для ускорения процесса на входе в котел стоит вентилятор. Все устройство содержит в себе несколько вентиляторов, которые позволяют несколько раз прогнать дым сквозь топку для достижения максимального эффекта.
После котла пар поступает к потребителю, откуда возвращается в бак с водой. К баку происходит постоянное подмешивание подпиточной воды. Цикл не может постоянно использовать одну и ту же жидкость, потери при прохождении сети труб от котла к потребителю неизбежны.
Чтобы понять принцип работы-котла утилизатора, необходимо знать, как происходит подготовка питательной воды. Для ее подготовки используется деаэратор, который избавляет воду из общегородской сети от примесей калия и магния. Именно эти элементы отвечают за образование накипи. Без предварительной отчистки трубы в котле и на пути к потребителю быстро зарастут. В лучшем случае это ухудшит теплообмен, в худшем полностью остановит работу котла.
Перед подачей в барабан подготовленная вода подогревается, чтобы снизить теплопотери паровой смеси на нагрев внесенной жидкости. Для этого используется экономайзер. Принцип работы экономайзера не отличается от принципа работы теплообменника в самом котле: это сеть труб, через которые вода течет в барабан котла. Через эти трубы отработанный газ после теплообменников уходит в атмосферу.
Обратите внимание: через экономайзер вода не циркулирует, а протекает сразу в барабан котла по змеящемуся трубопроводу. Дым здесь так же не циркулирует, просто проходя сквозь трубы. Нагреть питательную воду отработанными газами невозможно, использование насосов и вентиляторов здесь нецелесообразно. Газ на этом этапе уже отдал максимальный запас тепла, задача экономайзера – сделать цикл еще экономичнее.
Так вкратце выглядит схема работы котла-утилизатора.
Классификация
Выделим основные виды котлов-утилизаторов:
- По конструктивному обустройству системы труб: водотрубные и газотрубные котлы.
- По температуре используемого газа: низкотемпературные и высокотемпературные.
- По параметрам пара на выходе из котла: низкого давления, повышенного давления и высокого давления.
- В зависимости от конструкции: туннельный, башенный и горизонтальный. Конструкция в основном выбирается в соответствии с особенностями помещения и используемыми газами. Туннельный тип наиболее эффективный, поскольку он подразумевает длинный путь прохождения уходящего газа.
Кроме того, выделяют котлы с естественной и вынужденной циркуляцией жидкости и газов. Но использовать естественную циркуляцию сегодня невыгодно. Это было оправдано в годы, когда насосное оборудование стоило дорого и не было возможности подобрать устройство для каждой конкретной машины. Сегодня такая возможность есть.
Использование принудительной циркуляции позволяет уменьшить габариты котла, сделать его более эффективным и экономически целесообразным. Эффективность котла измеряется в Вт, то есть единицах тепла в единицу времени. Мощность котла соотносится с теплопотребностью здания при выборе оборудования.
При подборе утилизатора учитывается так же и максимальные возможности уходящих газов по отдаче тепла. Вытянуть всю энергию не получится, это противоречит второму закону сохранения энергии.
Куда расходуется пар?
Утилизаторы устанавливаются на заводах. Завод это не только станки и плавильни, еще это сеть столовых, залы для отдыха и система отопления. Чаще всего пар используется для нужд самого завода. Этот теплоноситель бежит по трубам отопления, подогревает воду для хозяйственных целей, используется для нагрева поступающего в помещения воздуха.
Если мощности завода позволяют, то частично пар может использоваться для отопления близлежащих домов. Но это большая редкость, поскольку столь громадные предприятия в наше время убыточны, а потому не нужны.
Утилизаторы для дома
Котлы-утилизаторы для дома не используются и точка. Это огромные агрегаты промышленного назначения. Утилизировать газы, которые появляются в процессе эксплуатации дома просто нерентабельно, а значит не нужно. Поэтому для домов любых размеров, включая многоквартирные строения, утилизаторы не используются. Этот аппарат был изобретен для заводов и исключительно в промышленности используется до сих пор.
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 4 чел.
Средний рейтинг: 5 из 5.
принцип работы, расчет, схемы, установка, устройство
Вопрос охраны окружающей среды и рационального использования природных ресурсов всегда был и будет актуальным. На промышленных предприятиях коэффициент использования органического топлива на уровне 40%, а остальные газы выбрасываются в воздух. Часто температура отходящих газов достигает больше 1000°С.
E-система котла-утилизатора.
Использование котлов-утилизаторов решает вопрос переработки отходов и получение дополнительной теплоты за счет использования энергия отходящих газов.
Особенности работы котлов-утилизаторов
Котел-утилизатор не имеет собственной топки, принцип его работы простой и эффективный, он основан на использовании теплоты, что выделяется во время технологических промышленных процессов при работе различных агрегатов или энергетических установок.
Если во время работы в составе отходящих газов есть не только физическая, но и химическая теплота (горючие составляющие), то их целесообразно сжечь. Котлы-утилизаторы имеют следующий принцип работы: они генерируют энергию в виде нагретой воды, пара или воздушного потока, она может быть использована во время работы другого оборудования для производства холода или тепла в когенерационных установках.
Читайте также: Утепление стен снаружи пенополистиролом
Подробнее об узле нижнего подключения радиатора
Признаки неисправности термостата – читайте здесь.
Одной из специфической особенностей работы промышленного оборудования является то, что в составе отходящих газов содержится много мелких частиц, которые пребывают в твердом, газообразном или жидком состоянии. Они образуются во время работы оборудования и являются частью окалины, металла, шлака, шихты. Во время процесса плавления металла, в составе отходящих газов появляется много жидких частиц. Все это получается из-за того, что печи работают при высоком температурном режиме.
Схема работы котла-утилизатора.
Котлы-утилизаторы позволяют использовать теплоту отходящих газов, что повышает коэффициент использования топлива, уменьшает температуру вынесения технологического сырья, дает возможность его улавливать.
На то, как эффективно котлы-утилизаторы будут использовать теплоту отходящих газов, влияет тепловая мощность, которую имеет котел, режим поступления в него газов, температура отходящих газов. От того, сколько будет сжигаться топлива в конкретной технологической установке и какой процесс происходит, будет напрямую зависеть температура и количество отходящих газов. Много шихтовых газов образуется во время работы оборудования, используемого для плавки руд цветных металлов и во время продувки кислородом конвертеров, что преобразуют чугун в сталь.
Еще одним важным фактором, влияющим на работу котла, является режим поступления в него газов. Многие технологические установки имеют циклический принцип, а это, в свою очередь, негативно влияет на эффективность работы котлов-утилизаторов. Часто указанные неудобства возникают на конвертерном производстве, и цикличность работы печей приводит к тому, что котел-утилизатор будет работать с низкой эффективностью.
Признаки, по которым котлы-утилизаторы делятся на группы
Схема котла-утилизатора.
- В зависимости от температуры газов, что попадают в котел. По данному принципу утилизаторы делятся на низкотемпературные (<900°С) и высокотемпературные (> 1000°С). При низких температурах перенос тепла выполняется за счет конвекции, а при высоких температурах – за счет излучения. Если температура больше 1100°С, то продукты сгорания, что были в жидком состоянии, изменяют свое агрегатного состояние.
- По параметрам пара утилизатор может быть низкого давления (Р = 1,5 МПа, t=300°С), повышенного (4,5 МПа и 450°С) и высокого (10-14 МПа и 550°С).
- Также влияет принцип взаимного движения пара, воды и продуктов сгорания, утилизатор может быть водотрубным или газотрубным;
- В зависимости от способа движения воды в испарительном контуре, водотрубный утилизатор бывает с принудительной или естественной циркуляцией.
- В зависимости от оформления компоновки и поверхностей нагрева, утилизатор может быть горизонтального, туннельного, башенного типа. В низкотемпературных котлах используется принцип змеевиковой конвективной поверхности нагрева, а у высокотемпературных моделях – радиационно-конвективные поверхности.
Принцип действия газотрубных и водотрубных котлов
Вернуться к оглавлению
Газотрубный утилизатор
Газотрубные котлы выпускаются с горизонтальным и вертикальным их расположением, могут использоваться совместно с обжиговыми, мартеновскими и другими печами, которые имеют сравнительно небольшую мощность.
Газ, температура которого около 1200°С, выходит из печи и попадает в нижнюю часть газохода котла. Там установлены W-образные трубные ленточные и экранные настенные поверхности, конвективный пакет пароперегревателя. Тепло превращает воду в пар, и пароводяная смесь начинает циркулировать в указанных поверхностях. Во время работы утилизатор вырабатывает пар, давление которого до 4,5 МПа и температура до 440°С, что позволяет обеспечить электрическую мощность до 8 МВт. Чтобы поддерживать постоянный тепловой потенциал газов, поступающих в утилизатор, установлен предтопок с газовой горелкой.
Все газотурбинные утилизаторы имеют одинаковый принцип работы, независимо от того, в какой отрасли они используются. Они применяются для охлаждения отходящих газов, технологических установок, что имеют небольшую мощность.
Вернуться к оглавлению
Водотрубный утилизатор
Утилизаторы, имеющие многократную принудительную циркуляцию, широко используются в промышленности. То, что такой анализатор имеет принудительную циркуляцию, позволяет испарительный элемент делать любой формы и ориентации в пространстве.
В таких котлах испарительная система распределяется на несколько секций, они подключены параллельно, это позволяет значительно снизить сопротивление испарительной части и использовать циркуляционные насосы меньшей мощности.
Вода, которая питает утилизатор, поступает через водяной экономайзер, а затем в барабан котла. Отсюда при помощи насоса вода через шламоотделитель идет в испарительные пакеты, которые включены параллельно. Полученная пароводяная смесь в барабане сепарируется, и вода отделяется от пара. После чего пар через пароперегреватель идет к потребителю. В зависимости от того, где надо установить утилизатор, его компоновка может быть П-образной, башенной или горизонтальной.
Котлы-утилизаторы в парогазовых и когенерационных установках
В парогазовых установках используются котлы-утилизаторы, которые рассчитаны для получения пара среднего и высокого давления для дальнейшего его использования в паровой турбине. В таком котле источником энергии также является энергия отходящих газов. Здесь используются водотрубные котлы, у которых конвективные поверхности нагрева и многократная принудительная циркуляция. От мощности паровой турбины будет зависеть конструкция котла, он может быть одноконтурным или иметь 2 независимых контура, в которых будет разное давление пара.
Такие барабанные утилизаторы вырабатывают пар, давление которого от 0,65 до 8 МПа, а также горячую воду, за счет того, что утилизируют тепло выхлопных газов от газотурбинной установки.
Если говорить о котлах-утилизаторах когенерационных установок, то они используют теплоту выхлопных газов поршневых двигателей или газовых турбин. Вырабатывают пар, который используют для подогрева воды в системе отопления или для технологических нужд. Такие котлы делают одноконтурными с принудительной циркуляцией.
назначение и виды. Принцип работы
Что такое котел утилизатор
Котлы для регенерации бросового тепла устанавливаются в промышленности, особенно на заводах по выработке этилена и аммиака, серной и азотной кислот. Котлы утилизаторы отходящих газов паросиловых установок применяются, чтобы повысить общий К.П.Д. тепловых станций.
Конструкционно котел выполнен, как нечто среднее между обычным кожухотрубным теплообменником и жаротрубным котлом. Его первоначальной функцией было охлаждение высокотемпературного отработанного газа, в качестве побочного продукта, он выполнял генерацию пара низкого давления.
Сегодня аспект защиты окружающей среды приобретает все большее значение, требования к условиям эксплуатации, стали все более жесткими, поэтому выработка вторичных энергоресурсов, стала неотъемлемой частью любого нового или реконструированного проекта.
Для эффективной работы КУ применяют тепло, выбрасываемое от других производственных процессов, поэтому устройства, в большинстве случаев, не имеют камеру сгорания. Поскольку они работают в агрессивной среде и в зонах высоких температур, ремонт котлов утилизаторов проводится намного чаще, чем основного технологического котельного оборудования.
Вторичная энергия, полученная от КУ в виде пароводяной или воздушной смеси, используется при производстве электроэнергии или в когенерационных схемах. Котлы изготавливаются, как отечественными, так и зарубежными заводами и предназначены для регенерации вторичных энергоресурсов.
При всем внешнем сходстве с обычными технологическими котлами, утилизаторы обладают значительными отличиями.
Особенности оборудования:
- В конструкции отсутствует топочное устройство или камера сгорания, если использует тепло, от других тепловых процессов. Топка в таких котлах применяется, если в рабочих средах есть химический компонент тепла, который необходимо получить в процессе горения.
- Наличие микро отходов в дымовых газах (пыль, несгоревшее топливо, металлические частицы) связанных с технологией, поэтому требуется, чтобы утилизаторы имели не менее двух отсеков с газотурбинными камерами и перепускной канал с вентилем для регулирования рабочих параметров горения. Этот обход используется утилизатором, для эффективного теплообмена и сводит к минимуму аварии из-за температурных и эрозионных перенапряжений корпуса, работающего в экстремальных зонах. С этим также связано то, что рабочие элементы и расходные материалы изготавливаются из специальных марок стали.
- Корпус загерметизирован, а испарительные змеевики замкнуты в одном контуре использующий циркуляционный насос и по газовому тракту, имеющий выход в дымоход.
- Корпус выполнен из стальных листов толщиной от 15 до 20 мм, который должен надежно противостоять интенсивному рабочему процессу, в среде с высокими параметрами по давлению и температуре.
- Обычно газовые поверхности защищены от износа специальными трубными гильзами стали X17. Также конструкция КУ должна обеспечивать герметизацию установки.
- Испарительные элементы, установленные в газоходах котла создают общий циркуляционный контур.
- Уходящие газы после технологических процессов имеют в своем составе пыль и другие агрессивные вещества, которые нужно удалять до поступления в котел. Для этого используют мощные циклоны и электрофильтры, но даже они не обеспечивают полную очистку газовой среды.
- Пыль неравномерно откладывается на поверхности нагрева и снижает теплоотдачу, что вызывает перекос змеевиков из-за неравномерности нагрева, а присутствие в газах соединений Ca, Na, S способствуют образования на поверхностях нагрева твердых отложений, вызывающих коррозию в контуре испарения, влияет на проходимость сред. Поэтому современные КУ оборудуются топкой для дожигания уходящих газов.
Типичный КУ имеет:
- барабан;
- испаритель без перегревателя;
- экономайзер воды.
Эффективность теплообменника зависит от трех факторов: температуры газа на входе в котел, объема и способа доставки источника вторичных энергоресурсов.
Котлы утилизаторы: устройство и схема работы
Котлы утилизаторы, как правило, не оснащаются собственными топочными камерами. Для сгорания в форсуночной камере используются газы и выхлопы, которые образуются в процессе металлургического производства или работы тяжелых агрегатов, установок и ДВС.
Принцип работы газотрубных котлов
Одна из наиболее практичных и распространенных моделей котла рассматриваемого типа, конструкция которого может быть горизонтальной и вертикальной. Газотрубные модели используют в обслуживании производственных отходов обжиговых и мартеновских печей. Рабочий же процесс основывается на том, что горячая газовая смесь с температурным режимом порядка 1200 °C переправляется из промышленной печи в газоприемный канал перерабатывающего оборудования. Эту часть котла составляют настенные поверхности W-образной формы. Как правило, это конструкции из экранов и лент. В дальнейшем принцип работы котлов-утилизаторов газотрубного типа строится на функции конвективного пароперегревателя. При нагреве горячей воды происходит образование пара. Комбинация жидкости и паровых масс формирует смесь, циркулирующую по вышеупомянутой W-образной конструкции, захватывая большую площадь температурного распределения. Данный процесс использует энергию поступающего газа, при этом образуя пар с горячей водой – ресурсы, которые могут применяться в рамках технологии производства на том же предприятии.
Принцип работы водотрубных котлов
Тоже предполагается подогрев жидкости с выделением пара, но в данном случае поступление водного носителя организуется через экономайзер. После этого он проходит в отопительный барабан, где преобразуется в пар. Процедура выработки тепла осуществляется в ходе сепарирования воды и паровых смесей в приемном резервуаре. Подключение разных технологических контуров к барабану может быть параллельным или последовательным – зависит от конструкции печного источника газовой смеси, с которым взаимодействует котел–утилизатор. Принцип работы также предусматривает прохождение воды через фильтрацию в шламоотделителе и переход в испарительные пакеты.
Комплектация котла-утилизатора
Хотя и в базовом оснащении конструкции такого оборудования получают широкий набор вспомогательных устройств, по мере расширения предприятия или в ходе его переориентации может возникнуть потребность в разного рода дополнениях. В частности, системы защиты представляют собой навесные элементы, предохранительные блоки, жаростойкие экраны и запорные клапаны. Для устройства сложных циркуляционных систем применяется сантехническая арматура, позволяющая конструировать теплообменники разного устройства. Для поддержки достаточного давления котел-утилизатор также обеспечивается насосным оборудованием и вентиляторами с функцией нагнетания воздуха.
Технические характеристики
Использование газовых отходов в полном объеме позволяет котлам иметь высокие показатели КПД. У устройств, работающих на жидком или твердом топливе, они существенно меньше. Однако если теплообменные поверхности сильно засорены, эффективность работы агрегата снижается. Чистить эти части конструкции можно, обмывая водой или обдувая паром. Практикуется также технология виброочистки.
В разных отраслях промышленности на определенных этапах цикла производства задействуются различные типы котлов. Они отличаются числом парообразовательных регистров, параметрами мощности, используемыми циркуляционными схемами, требовательностью к качеству теплоносителя.
Насколько эффективно будет работать агрегат, зависит от типа подачи, количества газовых масс и их температуры. Объемы выбрасываемых отходов у разных видов промышленности отличаются. Наибольшее количество образуется при переработке нефти и в металлургии. Специфичным для последней является шихтовый газ. Присутствие окалины металлов благоприятно для прогорания газового топлива.
Производительность котлов-утилизаторов
Производительность котлов-утилизаторов зависит от температуры и количества дымовых газов, а на КПД котлоагрегата значительное влияние оказывает состояние поверхности теплообменников (их загрязнение примесями, содержащимися в дымовых газах, заметно снижает коэффициент полезного действия). Особенно высокого КПД удается добиться, применяя перед котлами-утилизаторами термические окислители летучих органических соединений. В случаях, когда утилизация тепловой энергии требуется только периодически, или требуется частично, то подача горячих газов на котел утилизатор может регулироваться с помощью автоматической «байпас» системы, перепускающей газы на дымовую трубу мимо КУ. Также регулировка байпаса может осуществляться с помощью внешнего аналогового сигнала, регулирующего угол закрытия перепускающей заслонки, либо с помощью сухого контакта в режимах Открыто/Закрыто.
Применение котлов утилизаторов
Котлы утилизаторы нашли широкое применение в промышленном секторе и системах жизнеобеспечения, используя энергию уходящих газов.
Поскольку устройство не подключено к системам топливоподачи или другим источникам природных энергоносителей, для эффективности схемы регенерации котел устанавливают непосредственно в точке бросовой энергии.
Устройство утилизатора. Источник фото: info.wikireading.ru
Области применения устройств для использования вторичных энергоресурсов:
- в схеме повышения эффективности работы ТЭС;
- утилизация выбросов после работы ГТУ;
- утилизация тепла в черной и цветной металлургии;
- утилизация выбросов химической промышленности и азотных удобрений;
- технологических циклах целлюлозно-бумажной отрасли;
- строительных материалов;
- нефтяной отрасли.
В России несколько заводов выпускающие подобное оборудование, их номенклатура способна удовлетворить широкий спектр использования вторичных энергоресурсов. Отличительной чертой таких КУ является их уникальность, поскольку они выпускаются индивидуально под реальные выбросы, фактически установленное оборудование и площадку для монтажа.
Виды котлов-утилизаторов в России:
- Объекты малой энергетики от 2 до 60 МВТ, водогрейный тип, с естественной циркуляцией воды, топкой или без, имеющие горизонтальное или вертикальное движение газовой среды.
- Блоки до 300 МВТ, паровые КУ, моно или дубль блоки ПГУ или дополнения к схемам существующих ЭС в паре: газотурбинная установка и котел утилизации.
- Блоки до 850 МВТ, паровые котлы в схеме ПГУ.
Основные технические данные КУ для энергетики:
- паропроизводительность от 10 до 300 т/ч;
- давление среды от 0.46 до 12.7 Мпа;
- использование температуры от 200 до 560 С.
Отличие от обыкновенных котлов
Обычный котел условно можно разделить на несколько частей:
- Топка. Здесь топливо преобразуется в тепло уходящих газов.
- Емкость с водой или барабан. Здесь находится отработанная водно-паровая смесь. Сюда же подводится питательная вода.
- Теплообменник. Грубо говоря это ряды труб на пути отвода газов. По трубам течет вода. Уходящие газы отдают тепло через стенку, превращая воду в пар.
Устройство котлов –утилизаторов немного отличается. У них топки нет. Ее роль выполняет технологический процесс производства. Часто газы перед подачей в котел пропускают через камеру сжигания частиц, чтобы отчистить уходящие газы от шлаков и других твердых загрязнений, способных повредить внутреннюю поверхности оборудования котла.
Разрез котла-утилизатора
По той же причине в котлах-утилизаторах нельзя использовать обычные марки стали, все трубы выполняются из высших сортов металла, чтобы уберечь оборудование от воздействия твердых частиц.
Котел-утилизатор: виды
Котел-утилизатор предназначен для использования в производстве тепла, которое извлекается из газов, получаемых путем работы различных промышленных агрегатов и двигателей внутреннего сгорания. Такие устройства не подключены к какой-либо топке и получают температуру исключительно из отходящего газа. Некоторые утилизаторы-котлы действуют в качестве охладителя технологических газов при производстве серной кислоты.
Обычно котел-утилизатор паровой используется в металлургической промышленности. В нем температура газов достигает +400 °С, а при работе со сталеплавильными печами – +1500 °С. Если производительность предприятия не столь высока, то довольно эффективными будет оборудование с принудительной циркуляцией. Благодаря своей конструкции, паровой котел-утилизатор практически безопасен для окружающей среды, так как выделяет в атмосферу минимум загрязняющих веществ. К тому же, он экономный, ведь расходы на газоочистку невероятно низки, и эффективно использует топливо.
Котел-утилизатор паровой обычно устанавливается на дизельных и газовых электростанциях, микротурбинах, дизельных котлах и т.д. В нефтепромышленности угарный газ, образующийся в процессе работы двигателей, сжигается для вырабатывания энергии. Полученная в результате вода превращается в пар и высвобождается наружу. Такой способ переработки газа действует и в металлургическом производстве. Пар иногда применяют в технологических нуждах на тех предприятиях, где это необходимо. Также происходит снижение затрат на горячую воду (путем ее получения из парового котла). Остатки отработанного вещества выводятся через дымовую трубу.
Конструкцию утилизаторы-котлы имеют разную. Кроме указанной выше модели, принудительной циркуляции существует модель с естественной циркуляцией. Также различают механизм с барабаном и без оного. Некоторые фирмы разрабатывают модели по индивидуальному заказу с учетом специфики места установки (например, внутри помещения или снаружи).
В зависимости от назначения, утилизаторы бывают водогрейные и паровые, имеющие дожигающее устройство, с одним, двумя или тремя уровнями давления, требующие горизонтальной или вертикальной установки и многие другие. Существует множество видов утилизаторов, отличающихся конверторами (для черной и цветной металлургии) или используемыми ресурсами (кокс, стекло, губчатое железо, сталь и другие материалы).
Стоить отметить модульный котел-утилизатор паровой, который интегрируется в установку уходящих газов легче, чем другие, и не требует больших затрат. Он надежно функционирует при частых колебаниях нагрузки, а также очень хорошо передает тепло.
Перед установкой необходимо выяснить, какую мощность потребляет тот или иной котел-утилизатор. Обычная мощность оборудования от 120 кВт до 1700 кВт. Для этого желательно обратиться к специалистам компании, устанавливающей котлы, чтобы они смогли заранее сказать, какую модель лучше приобрести. Для обслуживания утилизаторов предусмотрены лестницы и площадки.
Классификация котлов-утилизаторов
Для того чтобы котел-утилизатор работал эффективно, ему необходимо тепло, которое можно получить в ходе сжигания газов, образующихся от разных технологических процессов. Котел не предназначен для того, чтобы работать, используя собственную топочную камеру. Важно следить за составом используемых газов.
Если в состав газов, предназначенных для сжигания, входят физические и химические элементы, то последние нужно сжигать.
Характерной чертой работы промышленных систем утилизации является использование газов, в которых содержаться разнообразные мелкие частицы. Частицы могут находиться как в жидком, твердом, так и в газообразном состоянии. Появлением частиц сопряжено с работой установок, используемых на производстве. Это могут быть металлические частицы, шихт, шлак или окалин.
Что влияет на классификацию котла утилизации:
- Температура газа. Оборудование может быть низкотемпературным и высокотемпературным. При низкой температуры тепловая энергия подается путем посредством конвенции. Высокие показатели говорят об излучении. Если температура превышает 1100 градусов, то стоит ожидать сгорания жидких продуктов и их перехода в агрегатное состояние.
- Пар. Оборудование может работать при низком, повышенном и высоком давлении.
- Передвижение жидкости. Жидкости, пар и продукты сгорания движутся по котлу, который может быть газотрубным или водотрубным.
- Способ передвижения жидкости. То, как жидкость движется в контуре испарения, влияет на естественную и принудительную циркуляцию в котле.
На классификацию котлов влияет комплектация и качество нагревательных поверхностей. Оборудование может быть башенным, горизонтальным и туннельным. Если устройства работают на низких температурах, то их поверхность называется змеевиковой конвективной нагревательной поверхностью.
Схема котла-утилизатора и ее краткое описание
Котлы-утилизаторы предназначены для использования физической теплоты газообразных продуктов и отходов химических производств или теплоты экзотермических реакций окисления исходного газообразного сырья для получения энергетического либо технологического пара. Котлы-утилизаторы, использующие теплоту сгорания или теплоту экзотермических реакций окисления указанных веществ, имеют топочные устройства для сжигания или окисления этих веществ.
При высоких температурах газов (более 900оС) эти котлы снабжаются радиационными (экранными) поверхностями нагрева и имеют такую же компоновку, как и обычный паровой котел, только вместо топки – радиационная камера, в которую снизу входят газы. Воздухоподогреватель отсутствует, если горячий воздух не нужен производству. Газы сначала охлаждаются в радиационной камере как в топке «обычного» котла. Большой свободный объем этой камеры позволяет иметь повышенную толщину излучающего слоя и , как следствие, повышенную степень черноты газов. Поэтому здесь теплота в основном передается излучением.
При температуре газов ниже 900оС и котлах-утилизаторах обычно используются только конвективные поверхности нагрева. Эти агрегаты радиационной камеры не имеют, а целиком выполнены из змеевиков.
Котел-утилизатор типа КУ-16 устанавливают за нагревательными, мартеновскими, обжиговыми печами, а также используют в химической и других отраслях промышленности. Разработан для установки в закрытом помещении. Рассчитан на работу под разряжением. Сейсмичность района установки 6 баллов.
Котел – газотурбинный, с естественной циркуляцией, с горизонтальным расположением испарительных поверхностей. Внутренний диаметр барабана котла КУ-16 – 2200 мм, толщина стенки обечайки – 16, днищ – 20 мм. Материал обечайки и днищ – сталь 20К. Барабан имеет внутрибарабанное паросепарационное устройство в виде дырчатого листа и жалюзи.
Газ проходит по 239 дымогарным трубам диаметром 60×3мм (сталь 20).
К барабану котла крепится входная и выходная газовые камеры. Внутри входной газовой камеры имеется пароперегреватель с горизонтальным расположением змеевиков. Диаметр труб пароперегревателя – 32×3 мм (сталь 20).
Обмуровка входной газовой камеры – многослойная, выполнена из слоев шамотобетона, термоизоляционного бетона и матрацев из шлаковаты. Газоходы котла имеют наружную теплоизоляцию.
Для оистки поверхностей нагрева дымогарных труб котла КУ – 16 предусмотрено обдувочное устройство.
Котел снабжен необходимой арматурой, гарнитурой, устройством для отбора проб пара и воды, а также контрольно-измерительными приборами. Питание котла и сигнализация уровня воды в барабане автоматизированы.
Котел поставляется транспортабельными блоками в следующем комплекте: барабан, входная и выходная газовые камеры, внутрибарабанное устройство, арматура котла, помосты и лестницы, гарнитура и опоры барабана, обдувочное устройство, установка для отбора пара и воды, пароперегреватель, трубопровод в пределах котла.
. Котел-утилизатор КУ-16
Схема экономайзера
Экономайзеры используют тепло газов в газоходах после котла. Они снижают потери с уходящими газами. В экономайзерах подогревается питательная вода до поступления ее в барабан котла, при этом облегчается работа котла, предназначенного для испарения воды.
Водные экономайзеры предназначенные для подогрева питательной воды, обычно выполняют из стальных труб диаметром 28-38 мм, согнутых в вертикальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымового газа составляют 2-2,5 диаметра трубы, а между рядами- вдоль потока-1-1,5.
Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными на полых, изолированных со стороны горячих газов балках каркаса .В экономайзере котлов высокого давления до 20% воды может превращаться в пар. Общее число параллельно работающих труб выбирается исходя из скорости воды не ниже 0,5-1 м/с. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха способствующих коррозии, и предотвращения расслоения пароводяной смеси, которое может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере обязательно восходящее; в этом случае имеющийся в трубах после монтажа (ремонта) воздух легко вытесняется водой.
Число труб в пакете в горизонтальной плоскости выбирается исходя из скорости продуктов сгорания 6-9 м/с.Скорость эта определяется стремлением с одной стороны получить высокие коэффициенты теплопередачи, а с другой- не допустить чрезмерного золового износа.
Схема экономайзера
Принцип работы
Принцип работы котла-утилизатора – это не сложный процесс. Представим себе пространство, чаще всего трубу, заполненную отсеками труб с циркулирующей в них водой. Использовать отсеки дешевле, поскольку на каждый отсек устанавливается отдельный насос, поддерживающий циркуляцию жидкости. Много малых насосов дешевле большого той же мощности. Принудительная циркуляция жидкости ускоряет парообразование.
Вода под воздействием температур делится на слои, каждый из которых обладает своей плотность. Вследствие прогревания нижних слоев и подъема их наверх, происходит перемешивание и циркуляция жидкости в трубах. Механическая циркуляция значительно ускоряет этот процесс. Использование насосов позволяет распределять тепло равномерно.
Сквозь трубы с водой проходят отработанные дымовые газы с высокими температурами. Отработанные газы служат источником тепла. Для ускорения процесса на входе в котел стоит вентилятор. Все устройство содержит в себе несколько вентиляторов, которые позволяют несколько раз прогнать дым сквозь топку для достижения максимального эффекта.
После котла пар поступает к потребителю, откуда возвращается в бак с водой. К баку происходит постоянное подмешивание подпиточной воды. Цикл не может постоянно использовать одну и ту же жидкость, потери при прохождении сети труб от котла к потребителю неизбежны.
Чтобы понять принцип работы-котла утилизатора, необходимо знать, как происходит подготовка питательной воды. Для ее подготовки используется деаэратор, который избавляет воду из общегородской сети от примесей калия и магния. Именно эти элементы отвечают за образование накипи. Без предварительной отчистки трубы в котле и на пути к потребителю быстро зарастут. В лучшем случае это ухудшит теплообмен, в худшем полностью остановит работу котла.
Перед подачей в барабан подготовленная вода подогревается, чтобы снизить теплопотери паровой смеси на нагрев внесенной жидкости. Для этого используется экономайзер. Принцип работы экономайзера не отличается от принципа работы теплообменника в самом котле: это сеть труб, через которые вода течет в барабан котла. Через эти трубы отработанный газ после теплообменников уходит в атмосферу.
Экономайзер
Обратите внимание: через экономайзер вода не циркулирует, а протекает сразу в барабан котла по змеящемуся трубопроводу. Дым здесь так же не циркулирует, просто проходя сквозь трубы. Нагреть питательную воду отработанными газами невозможно, использование насосов и вентиляторов здесь нецелесообразно. Газ на этом этапе уже отдал максимальный запас тепла, задача экономайзера – сделать цикл еще экономичнее.
Так вкратце выглядит схема работы котла-утилизатора.
Нюансы монтажа
Монтаж начинает с выбора места под электрокотельную, при установке мощных агрегатов более 6 кВт рекомендуется отдельное помещение без доступа посторонних лиц и детей. ТЭНовые конструкции отопительного котла промышленного изготовления допускается устанавливать на кухне. ЭК располагают так, чтобы около него оставалось свободное место для обслуживания и ремонта. Минимальные просветы:
- до верхнего перекрытия помещения — 0.80 м;
- до «0» отметки в случае навесного типа — не менее 0.50 м;
- до стен — 0.05 м;
- до труб — более 0.50 м;
- перед фронтом котла — более 0.70 м.
Важное значение имеет уровень расположения корпуса – он должен быть строго горизонтальным. Установка котла зависит от типа системы отопления – при естественной циркуляции электрокотел располагается в нижней точке, с принудительной циркуляцией – в любом удобном месте.. Возможна установка не одного агрегата, а несколько, в этом случае обвязка их осуществляется параллельно, чтобы они работали с одинаковой нагрузкой
Возможна установка не одного агрегата, а несколько, в этом случае обвязка их осуществляется параллельно, чтобы они работали с одинаковой нагрузкой.
Алгоритм установки:
- Для настенной конструкции сначала устанавливают кронштейны, которые поставляются в комплекте с агрегатом.
- После крепления их на стене дюбелями или анкерами навешивают корпус.
- Напольный агрегат устанавливают на ровной подставке из диэлектрика.
- Обвязывают контуры отопления и ГВС.
- Устанавливают запорно-регулирующую арматуру на входном и выходном патрубке.
- Устанавливают грязевик датчики, манометры и термометры по рабочей схеме.
- Подключают агрегата к электросети. В качестве кабель-канала можно использовать гофрированный гибкий трубопровод.
- Если скачки напряжения в сети нередки, то подключение нужно выполнять через стабилизатор.
- Устанавливается электрозащита, мощность предохранителя выбирают выше самой большой токовой нагрузки котла в рабочем состоянии, заземление при подключении обязательно. Выполняют заземление 3- или 5- жилой в кабеле.
- Нулевой рабочий провод N присоединяют к нулевой шине щитка.
- Заземляющий РЕ провод присоединяется к своей шине «Земля».
- Для силовой линии используют марку ВВГ кабеля с количеством жил 3 или 5, с сечениями соответствующей мощности ЭК, обычно размер обозначен в паспорте изделия.
- Двухконтурный котел обвязывается через трехходовой клапан электрического типа. По сигналу термостата, он направляет поток теплоносителя на подогрев контура ГВС либо отопления.
- После окончания монтажный работ котел осматривают и убеждаются в том, что он установлен строго горизонтально и к нему подключены все коммуникации.
- Заполняют котел водой и под водопроводной водой делают опрессовку — определяют утечки в соединениях и исправность запорно-регулирующей арматуры.
- Проверяют работу электрооборудования котла и циркуляционного насоса встроенного в котел.
- Тестируют работоспособность датчиков и автоматики безопасности.
Электрические котлы с насосом это самый передовой метод отопления с возможностью современной регулировкой нагрева от 0 до 100 %, Используя систему «Умный дом» управление можно выполнять онлайн, вне стен дома. И хотя сам насос потребляет дополнительное электричество для своей работы, эти затраты окупаются быстро с учетом комфортности, автономности и безопасности услуг
Самое важное – у этой схемы большое будущее, учитывая, что в нее легко интегрируются любые вторичные энергоресурсы зеленой энергетики, в связи, с чем данный вид теплоснабжения набирает популярность во всем мире
youtube.com/embed/ozvcIgNCAF4?feature=oembed» frameborder=»0″ allowfullscreen=»allowfullscreen»>Системы управления котлами
Самая простая схема регуляции рабочих параметров реализуется через органы ручного контроля. Корпус содержит панель с ключевыми инструментами, позволяющими устанавливать настройки по температуре, давлению, времени сгорания и т. д. В более современных модификациях котел-утилизатор снабжается электронными средствами управления. К основному реле могут подключаться датчики, контроллеры, таймер с контрольно-измерительной аппаратурой и модули дистанционного управления. Оператор с диспетчерской комнаты полностью контролирует процесс, а при необходимости программирует автономную работу оборудования на определенные режимы с заданными параметрами.
Способы очистки экономайзера
Внешняя очистка агрегата осуществляется обдувочным аппаратом, а для внутренней очистки был изобретён специальный способ – «продувка водой»:
- В барабан котла подаётся горячая питательная вода, вырабатывается пар.
- Продувочная вода по трубопроводу подаётся в обмывочный аппарат.
- Аппарат в свою очередь направляет воду на внутреннюю поверхность нагрева.
- Под давлением поверхность очищается от слипшихся топливных отложений.
В заключении стоит отметить, что экономайзер водогрейного котла – это, конечно, сравнительно новое в бытовом плане устройство, но, как показывает опыт промышленного использования, именно концепция его развития является наиболее перспективой для повышения прямой теплоотдачи даже небольших котлов.
Топливные ресурсы
Пиролизный котел позволяет использовать разнообразные отходы, при этом КПД будет варьироваться от 80- 96%, согласно составу энергоносителей.
Подходят следующие виды топлива:
- дерево и отходы из него, куски ДСП, опилки, обрезки, кора, шпалы, окрашенные доски;
- резиновые отходы, покрышки от любого автомобиля, отходы от производства резиновых изделий;
- пластиковая тара, упаковочные материалы, обломки пластиковых изделий, отходы от производства пластмассы, корпусные изделия;
- кожа, дермантин, тряпочные отходы, остатки от производства швейных, обувных изделий;
- бумага, картон;
- строительные отходы, битумные куски, рубероид.
Куда расходуется пар?
Утилизаторы устанавливаются на заводах. Завод это не только станки и плавильни, еще это сеть столовых, залы для отдыха и система отопления. Чаще всего пар используется для нужд самого завода. Этот теплоноситель бежит по трубам отопления, подогревает воду для хозяйственных целей, используется для нагрева поступающего в помещения воздуха.
Если мощности завода позволяют, то частично пар может использоваться для отопления близлежащих домов. Но это большая редкость, поскольку столь громадные предприятия в наше время убыточны, а потому не нужны.
Область применения
Утилизаторы особенно востребованы в промышленности, когда выделяется много физической теплоты
Целесообразно ставить утилизаторы, если в результате некоторого процесса выделяется много физической теплоты, подлежащей дальнейшему использованию для снижения затрат топлива. Сюда относятся тушение накаленного кокса и работа газовых турбин. В последнем случае котел используют для генерации пара, идущего впоследствии на обогрев предприятия или решение технологических задач.
Существуют также модификации конвективного типа, заточенные под задачу охлаждения углеродных газов. Они применяются при плавлении стали. Конструктивные особенности этих агрегатов обеспечивают большое число циклов искусственной циркуляции и двухступенчатое испарение. Некоторые котлы предусматривают сжигание углеродного оксида. Охлаждение конверторных отходов уменьшает унос и загрязнение атмосферы.
На теплоэлектростанциях используются усовершенствованные вариации утилизаторов. Для подготовки воды, запитывающей системы отопления и горячего водоснабжения, применяют устройства деаэрации атмосферного давления. Они же задействованы при приготовлении теплоносителя для паровых котлоагрегатов. Для вакуумной деаэрации задействуются вторичные газовые массы, выделяющиеся при функционировании турбины. В результате получается пар, впоследствии снова применяемый в турбинной установке. Это позволяет сэкономить топливные ресурсы. Зачастую генерируемый пар имеет высокое давление.
Использование утилизаторов в производственном цикле приносит ряд полезных эффектов: рациональнее расходуется топливо, значительно снижается поступление во внешнюю среду тепловой энергии и вредных соединений. При работе с газами достаточной температуры агрегаты имеют очень высокий КПД.
Достоинства и недостатки
Котел-утилизатор снижает энергетические выбросы
От других типов котлоагрегатов рассматриваемые устройства отличаются отсутствием потребности в добавочном топливе. Утилизатор функционирует только на газовых отходах. Это позволяет использовать топливо значительно эффективнее, а также снизить затраты на очистку выхлопов. Кроме того, применение таких котлов на предприятиях положительно влияет на окружающую среду. Энергетические выбросы существенно понижаются. За счет снижения объемов сжигаемого топлива, содержащего углеводород, в атмосферу попадает значительно меньшее количество парниковых газов. Энергосберегающий производственный цикл снижает издержки предприятия.
Холодные детали агрегата подвергаются коррозии. Эффективность использования утилизатора зависит от того, до какой температуры нагреты вырабатываемые газы.
Источники:
- https://kotle. ru/gazovye-kotly/kotel-utilizator
- https://temlyakov.ru/kotel/utilizator-princip-raboty.html
- https://slavarod.ru/kommunikaczii/kotyol-utilizator-chto-eto-takoe
- https://odstroy.ru/kotel-utilizator-raznovidnosti-princip-raboty-harakteristiki-dostoinstva/
- https://eco-kotly.ru/kotel-utilizator-cto-eto-takoe/
- https://best-stroy.ru/statya_kotly-utilizatory_2156
- https://principraboty.ru/princip-raboty-kotla-utilizatora-kak-rabotayut-kotly-utilizatory/
- https://TeploAkkumulator.ru/tipy-otopleniya/montazh-kotla-utilizatora.html
- https://masterfibre03.ru/kotel/utilizator.html
- https://term-pro.ru/pribory/kotly-utilizatory.html
- https://lider-dveri.ru/otoplenie/naznachenie-kotla-utilizatora.html
Что такое котел-утилизатор? (с изображением)
`;
Х. Колледж
Котел-утилизатор использует тепло, образующееся в качестве побочного продукта другого процесса, тепло, которое обычно теряется, и использует его для создания пара. Пар можно использовать для привода турбин, вырабатывающих электроэнергию. В качестве альтернативы котел можно просто использовать для нагрева воды или других жидкостей. Поскольку он повторно использует часть используемой энергии, котел-утилизатор или котел-утилизатор может снизить потребление ископаемого топлива и финансовые эксплуатационные расходы системы. Это также означает, что в атмосферу выбрасывается меньше парниковых газов.
Конструкция котлов-утилизаторов включает два основных типа: жаротрубные котлы, или котлы с кожухом, и водотрубные котлы. В жаротрубных котлах стальная оболочка заключает в себе заполненное водой пространство с металлическими трубами внутри. Горячие газы, образующиеся в процессе горения, например, внутри печи, проходят вперед и назад по трубам, передавая тепло окружающей воде.
Жаротрубные котлы-утилизаторы имеют то преимущество, что они относительно просты в конструкции, установке и обслуживании. Тепловая энергия, хранящаяся в воде, может быть использована для удовлетворения краткосрочного дополнительного спроса, хотя, если используется все тепло, есть недостаток, заключающийся в том, что для восполнения потребуется много времени. Еще одним недостатком такого оборудования является то, что оно не может работать при более высоких давлениях, чем водотрубный котел.
Котел-утилизатор водотрубной конструкции способен выдерживать гораздо более высокие давления пара, чем жаротрубный котел, но сложнее в конструкции и монтаже. Внутри котла этого типа трубы более узкие, чем внутри жаротрубного котла, и в трубах вместо горячих газов находится вода. При реверсировании системы внутри жаротрубного котла отработанное тепло в виде горячих газов или пламени печи окружает трубы, заполненные водой. Для защиты труб котла от повреждения пламенем используются изоляционные материалы. Водотрубный котел-утилизатор не только выдерживает высокое давление, но и может быстро реагировать на изменения подводимой теплоты.
Котлы-утилизаторы могут использоваться на так называемых теплоэлектроцентралях или ТЭЦ. Это электростанции, где тепло, которое обычно вырабатывается как побочный продукт производства электроэнергии, используется, повышая эффективность примерно с 40 до 70 процентов. Максимальная эффективность достигается, когда тепло используется либо на месте установки, либо в непосредственной близости от него.
Котел-утилизатор — Process Combustion Corporation
Перейти к содержимомуСВЯЖИТЕСЬ С НАМИ СЕГОДНЯ
PROCESS COMBUSTION CORPORATION
Свяжитесь с нами: 412.655.0955
PROCESS COMBUSTION CORPORATION
Свяжитесь с нами: 412.655.0955
Котлы-утилизаторы восстанавливают энергию и экономят топливо.
PCC специализируется на разработке полностью интегрированных систем термического окисления. Во многих случаях это включает в себя оборудование для рекуперации тепла, расположенное ниже по потоку, а также дополнительное оборудование для борьбы с загрязнением, которое требуется для конкретного приложения по борьбе с загрязнением.
Котел-утилизатор дополнительно
рекуперирует энергию и экономит топливо за счет:
Добавление экономайзера питательной воды котла к котлу-утилизатору.
- Экономайзер питательной воды котла представляет собой газожидкостный теплообменник, расположенный после секции испарителя котла. Экономайзер также использует часть энергии, содержащейся в продуктах сгорания термического окислителя (после котла-утилизатора), для предварительного нагрева питательной воды котла перед ее поступлением в испарительную секцию котла.
Использование избыточного пара, производимого котлом-утилизатором.
- Использование избыточного пара, вырабатываемого котлом-утилизатором, для предварительного нагрева потока отходящего газа или воздуха для горения, поступающего в систему термоокислителя. Подогреватель пара отработанного газа или воздуха для горения использует избыточный пар из котла-утилизатора для предварительного нагрева этих потоков перед входом в установку термического окисления. Это снижает использование вспомогательного топлива термоокислителя и, следовательно, снижает общие эксплуатационные расходы системы.
Типичные котлы-утилизаторы, используемые для термического окислителя, включают жаротрубные котлы и водотрубные котлы.
Жаротрубные котлы
- Как правило, для небольших установок, где тепловыделение в системе термического окисления составляет менее 20 млн БТЕ/час и когда не требуется пар высокого давления.
Водотрубный котел
- Больше подходит для больших установок, где требуется пар высокого давления.
Существует множество различных технологических конфигураций для интеграции котла-утилизатора в рекуперативную систему термического окисления. Компания PCC поставила рекуперативные системы термического окисления с котлом-утилизатором в качестве первичного устройства регенерации тепла, за которым следуют несколько устройств регенерации тепла, таких как подогреватели воздуха для горения и подогреватели отработанных газов.
Тщательный анализ требований к выбросам и пару, рабочих условий процесса и целей по эксплуатационным затратам является нашим опытом. Мы здесь, чтобы помочь.
Интеграция PCC
Имея более 1000 систем, успешно работающих по всему миру, мы разработали системы по индивидуальному заказу для многих компаний из списка Fortune 500 стоимостью от 150 000 до более 15 миллионов долларов.
PCC имеет опыт работы со многими системами. Имея установки, успешно работающие в более чем 35 странах, PCC обладает знаниями и опытом для интеграции новой системы с вашей текущей операционной платформой.
Международная Сертификация Качества, ООО
Система менеджмента качества РСС сертифицирована в соответствии со стандартом ISO 9001:2015.
Приверженность PCC последовательным и предсказуемым системам является краеугольным камнем нашего многолетнего успеха.
Что говорят наши клиенты…
«PCC… Самый сокровенный секрет отрасли.»
— Rohm & Haas
«PCC работает как хорошо смазанный механизм».
— Louisiana Pigments Company
«Мы не были бы там, где мы есть сегодня, без инженерных знаний и усилий, качества строительства, профессионализма и сотрудничества вашей первоклассной организации».
— Montauk Energy Capital
«Приверженность PCC принципам безопасности и качества позволяет выполнять работы раньше срока, в рамках бюджета и безопасно».
— Toray Carbon Fibers America, Inc.
«Стремление PCC поставлять качественный продукт было очевидным на всех этапах нашего проекта, а общий опыт PCC в области сжигания газа привел к созданию прочной и надежной рабочей установки».
— FMC Corporation
«Мы очень рады, что он был введен в эксплуатацию на пять недель раньше даты завершения контракта».
— National Electric Carbon
«Компания PCC доставила наш термоокислитель абсолютно вовремя… Я был весьма впечатлен. Все блоки, которые мы купили у компании PCC, работают безупречно даже спустя 10 лет. Мы можем’ не рассчитать среднее время безотказной работы, потому что отказов не было».
— Ford Motor Company
Есть вопрос? Нужна информация?
Расскажите нам о своем запросе.
Copyright © 2017-2022, Все права защищены
Котлы-утилизаторы
Котлы-утилизаторыКотлы HKB также поставляют котлы на отработанных газах по индивидуальному заказу.
В жаротрубных котлах на выхлопных газах пар или горячая вода производятся путем рекуперации тепла дымовых газов и/или технологических газов, производимых газовыми двигателями, дизельными двигателями, газовыми турбинами или другими процессами сжигания, такими как мусоросжигательные заводы.
Котлы могут использоваться в ситуациях с дымовыми газами и/или технологическими газами с температурой примерно до 950°C и массовым расходом дымовых газов примерно 50 кг/с.
Котлы могут быть оснащены дополнительной или вспомогательной топочной горелкой для увеличения мощности котла при рабочем давлении до 50 бар(изб.).
Для повышения эффективности можно установить экономайзер. Он обеспечивает оптимальное использование отработанного тепла дымовых газов. Это приводит к значительному повышению эффективности и значительной экономии топлива (стоимости).
Жаротрубные котлы-утилизаторы также могут быть оснащены пароперегревателем, позволяющим достигать температуры пара приблизительно 440 o C в широком диапазоне регулирования.
Котлы-утилизаторы отлично подходят для использования в:
- Перерабатывающая промышленность
- Энергетика
- Бумажная промышленность
- Стальная промышленность
- Другие
В комбинированном котле-утилизаторе пар или горячая вода производятся путем рекуперации тепла дымовых газов и/или технологических газов, образующихся в газовых двигателях, дизельных двигателях, газовых турбинах или других процессах сжигания.
Эти котлы могут использоваться в ситуациях с дымовыми газами и/или технологическими газами с температурой примерно до 1250°C и массовым расходом дымовых газов примерно 50 кг/с.
Котлы с рабочим давлением, которое может достигать примерно 50 бар (изб.), могут быть оснащены горелкой для дополнительной или вспомогательной горелки.
Для повышения эффективности можно установить экономайзер. Он обеспечивает оптимальное использование отработанного тепла дымовых газов. Это приводит к значительному повышению эффективности и значительной экономии топлива (стоимости).
Комбинированные котлы-утилизаторы также могут быть оснащены пароперегревателем, позволяющим достигать температуры пара приблизительно 440 o C в широком диапазоне регулирования.
Комбинированные котлы-утилизаторы отлично подходят для использования в:
- Перерабатывающая промышленность
- Энергетика
- Бумажная промышленность
- Стальная промышленность
- Другие
Парогенератор-утилизатор на основе естественной циркуляции часто используется в больших газовых турбинах для производства перегретого пара давлением примерно до 120 бар (изб. ) и температурой до 500°C.
Эти котлы также могут быть оснащены горелкой для дополнительного сжигания топлива или блоком подачи свежего воздуха.
Для повышения эффективности можно установить экономайзер, который оптимальным образом использует отработанное тепло дымовых газов. Это приводит к значительному повышению эффективности и значительной экономии топлива (стоимости).
Водотрубные котлы-утилизаторы также могут быть оснащены пароперегревателем, позволяющим достигать температуры пара приблизительно 440 o C в широком диапазоне регулирования.
Парогенератор с рекуперацией тепла отлично подходит для использования в:
- Перерабатывающая промышленность
- Энергетика
- Бумажная промышленность
- Стальная промышленность
- Другие
Вернуться
Запасные части и послепродажное обслуживание
Являясь производителем котлов нового поколения, компания HKB Boiller Solutions прекрасно осознает важность сервисного и технического обслуживания.
Надежность в эксплуатации; это ключ. Экспертная эксплуатация системы, регулярные проверки и сертификации, а также надлежащее и своевременное техническое обслуживание имеют важное значение. Кроме того, своевременные рекомендации по дальнейшей оптимизации существующих процессов способствуют повышению их эффективности и результативности.
Читать далее
Вы неправильно заполнили контактную форму
Имя
Сообщение
Спасибо за ваше сообщение, мы свяжемся с вами в ближайшее время
По вопросам обслуживания обращайтесь круглосуточно и без выходных 365 дней в году:
Телефон: +31 77 7504000 / Электронная почта: [email protected]
По конкретным вопросам вы можете обратиться к нашим специалистам по решениям для котлов HKB:
Наши эксперты
Для получения дополнительной информации о паровых и водогрейных котлах нового поколения обращайтесь по адресу:
Посещение:
Котельные решения HKB
Ankerkade 6
5928 PL Venlo
Почтовый адрес:
HKB Ketelbouw BV
Postbus 3161
5902 RD Venlo
Телефон +31 77 7504000
Электронная почта
info@hkbboiler. com
Комплексное моделирование котлов-утилизаторов
ВведениеКотлы-утилизаторы представляют собой сложное оборудование, важное для рекуперации тепла и, в свою очередь, защиты окружающей среды. Котлы-утилизаторы необходимы при эксплуатации объектов энергетической отрасли, таких как газотурбинные установки и дизельные двигатели, а также в металлургии и других отраслях промышленности, где в технологических процессах образуется избыточное тепло высокой температуры до 1000 градусов. Котлы-утилизаторы используются для рекуперации избыточной тепловой энергии, а также для повышения общей эффективности цикла. Еще одной особенностью котлов-утилизаторов, используемых на этих установках, является защита окружающей среды – утилизация вредных выбросов.
В этой статье обсуждается точное моделирование этих сложных котлов-утилизаторов. Рассмотрим моделирование парогенератора-утилизатора (HRSG), который используется в комбинированном парогазовом цикле для утилизации отходящего тепла от газотурбинной установки и выработки перегретого пара, с использованием программ тепложидкостного сетевого подхода и комплексов оптимизации.
Котел-утилизатор имеет четыре основных теплообменника: чугунный экономайзер, стальной экономайзер кипящего типа, испаритель с сепаратором и пароперегреватель.
С одной стороны котла-утилизатора подается питательная вода из цикла, а с другой стороны подается горячий газ от газовой турбины в процессе работы. Вода предварительно нагревается и поступает в стальной экономайзер, где в трубах начинается процесс кипения. После процесса в экономайзерах вода поступает в межтрубное пространство испарителя, где происходит ее активное кипение. В сепараторе пароводяная смесь разделяется на насыщенный пар и слив. Насыщенный пар направляется в пароперегреватель, где образуется перегретый пар, который поступает в цилиндр паровой турбины. Переливная вода возвращается в парообразование. Для циркуляции и удаления газа в котле-утилизаторе используется вытяжной вентилятор. Модель HRSG также оснащена пароохладителем для охлаждения пара. Принцип действия пароохладителя следующий: питательная вода забирается из экономайзера и поступает в секцию пароперегревателя, через форсунки поступает в поток перегретого пара, мелкодисперсные капли воды смешиваются, нагреваются и испаряются, в результате чего пар охлаждается. .
Рисунок 1 – Направление потоков КУ Различные подходыПроцесс кипения происходит как в стальных трубах экономайзера, так и в межтрубном пространстве испарителя во время работы КУ. В результате формируется двухфазный поток. Кипение приводит к интенсификации процессов теплообмена, изменению структуры течения и образованию пузырьков, что необходимо точно учитывать при моделировании. Для определения гидравлических сопротивлений теплообменников и котла-утилизатора в целом, а также моделирования процессов фазового перехода использовалась программа тепложидкостной сети AxSTREAM NET™. Кроме того, программа позволяет учитывать конвективный и лучистый теплообмен. Эти комплексные методы позволяют пользователям определять все необходимые параметры газа и воды и точно моделировать коэффициенты теплопередачи.
Рисунок 2 – Схема котла-утилизатора в AxSTREAM NET™Следует отметить, что AxSTREAM NET™ может использоваться для детального моделирования каждого компонента котла-утилизатора и для неинтервального моделирования в зависимости от поставленной задачи. Каковы различия между этими двумя подходами? Давайте разберемся!
Сравнение интервального и неинтервального методовМы использовали оба этих подхода при моделировании котла-утилизатора. Интервальный метод применялся для моделирования чугунного экономайзера. В этом случае количество труб было разделено на 7 пучков по 9По 5 трубок в каждой, а длина трубок была разделена пополам. Неинтервальный метод применялся для моделирования стального экономайзера кипящего типа. Теплообменник в данном случае моделировался двумя элементами – элементом трубы для моделирования сопротивления трубного пучка, задающим общее количество труб теплообменника, и элементом для моделирования сопротивления трубы потоку в межтрубном пространстве. Следует отметить, что интервальный метод позволяет пользователю индивидуально выполнять моделирование различных схем в зависимости от поставленной задачи, а также получать более точные результаты в моделируемой установке.
Комплексное моделированиеВ настоящее время необходимо применять комплексный подход к решению любых инженерных задач, оценивающих работу всего цикла, где используются установки, и проводить точный анализ их взаимодействия. Таким образом, мы рассматриваем анализ влияния и взаимодействия параметров турбоустановки и котла-утилизатора в различных режимах работы, которые зависят от параметров окружающей среды.
Для анализа влияния параметров окружающей среды на показатели котла-утилизатора дополнительно использовались программные комплексы, разработанные SoftInWay. Это обеспечивает современный подход к реализации циклического анализа и расчета одновременно всех составляющих схемы. Таким образом, программное обеспечение 0D для анализа и расчета термодинамического цикла (AxCYCLE™) и программное обеспечение для интеграции и оптимизации (AxSTREAM ION™) использовались для автоматического согласования расчетов цикла газовой турбины для различных режимов в AxCYCLE™ с расчетами расхода, температуры и теплопередачи. коэффициенты в AxSTREAM NET™.
Рисунок 3 – Процесс исполнения через AxSTREAM ION™Не секрет, что обычно ГТ обычно не работают на расчетных режимах (T воздух =15 C;P=0,1031 МПа;Влажность=60%-ISO-2314) при по сравнению с паровой турбиной. Параметры наружного воздуха постоянно меняются. В результате изменяются основные характеристики ГТ-цикла, такие как электрическая мощность, КПД, параметры газа на выходе из турбины.
Очевидно, что эффективность газотурбинного цикла возрастает с понижением температуры наружного воздуха, что влияет на весь термодинамический цикл. В результате количество генерируемого пара уменьшается с повышением температуры окружающей среды, а температура генерируемого пара увеличивается. Кроме того, расход газа от сопротивления ГТ и котла-утилизатора увеличивается при снижении температуры окружающей среды.
Рисунок 4 – Зависимость параметров котла-утилизатора от температуры воздуха на входе ВыводыТаким образом, мы смогли выполнить сложные задачи оптимизации для расчета анализа потока и взаимодействия параметров в сложных системах (таких как комбинированные парогазовые циклы) с помощью AxSTREAM ION™ , и дают возможность использовать разные подходы к моделированию, что сокращает время анализа схемы (очень важно для каждого инженера 🙂 ). Если вам нужна дополнительная информация о сложном моделировании, свяжитесь с командой SoftInWay по телефону 9.0351 [email protected].
Котлы-утилизаторы
Паровые системы — Котлы-утилизаторы
17 сентября 2001 г.
Введение
Типы котлов
Жаротрубные котлы
Водотрубные котлы
Паровой барабан
Решетки котла
Качество питательной воды котла
Продувка котла
Байпасы котла
Выпускной клапан котла
Облицовка котла
Питательная вода котла
Введение
Котел – это сосуд, в котором вода непрерывно испаряется в пар с помощью нагревать. Основной задачей при проектировании котла является обеспечение максимально возможная эффективность поглощения тепла. Другие цели производство чистого пара и безопасная, надежная работа.
Котлы в кислотные установки — котлы-утилизаторы, охлаждающие газы серных печей, печи регенерации и между слоями катализатора.
Типы котлов
Есть в основном два типа котлов общего пользования:
1) Огнестойкая труба
2) Водопроводная труба
Жаротрубные котлы
В жаротрубных котлах горячие газы заключены в трубах, собранных в пучок внутри оболочки. Вода циркулирует снаружи этих трубок. Вода поступает в котел из парового барабана через сливные трубы. Когда вода превращается в пар, поднимается наверх котла и выходит по стоякам в паровой барабан. Жаротрубные котлы на кислотных установках, как правило, представляют собой котлы с естественной циркуляцией.
Если источник газа представляет собой серную или регенерационную печь, входной газовый вестибюль и входной патрубок трубная решетка будет защищена огнеупором, а отдельные трубы — керамическим наконечники. Кроме того, передняя часть котла будет смещена или расположена под прямым углом к печи, чтобы предотвратить прямое излучение от печи на трубная решетка.
Водотрубные котлы
В водотрубных котлах горячие газы проходят снаружи труб, а вода циркулирует внутри трубы. Водотрубные котлы, как правило, являются котлами с естественной циркуляцией. Входной вестибюль будет облицован огнеупором, если источником газа является сера. или печь регенерации. Кроме того, перед котлом будет смещены или расположены под прямым углом к печи для предотвращения прямого излучения от пламени печи на трубном банке. В водотрубном котле отдельная секция пароперегревателя может быть встроена в ту же «коробку», что и котел раздел.
Паровой барабан
Паровой барабан выполняет две основные функции:
1) Отделите пар от пароводяных смесей, которые возвращаются из котла.
2) Обеспечить запас воды для питания котлов.
В основном есть 2 стадии сепарации в паровом барабане. Первичный этап разделения – это грубый — удаление большей части воды из пара. Это достигается за счет обеспечения достаточного пространства над обычным уровнем парового барабана для разделение пара/жидкости.
Второй этап – удаление капель воды из пара. Этот этап важно, если пар должен быть перегрет и использован в турбинах. Унос из парового барабана содержит большое количество растворенных твердых веществ. Эти твердые частицы будут осаждаться в пароперегревателях, снижая теплопередачу и на лопасти турбины, что снижает эффективность. Вязаные проволочные сетки обычно используется для минимизации уноса из парового барабана.
Когда указаны котлы, чистота пара составляет 1 ppm TDS (общее количество растворенных твердых веществ). обычно указывается для обеспечения минимального переходящего остатка.
Экраны котлов
Отработанная кислота, разложенная в регенерационной печи, содержит твердые остатки широко известный как ясень. Эта зола остается расплавленной при высоких рабочих температуры печи. Когда газ поступает в котел, расплавленный зола будет осаждаться на относительно более холодной внешней поверхности труб.
Экраны котлов Особенность жаротрубных котлов. Экран котла в комплекте широко трубы в передней части котла. Большое расстояние обеспечивает газ проходы достаточно широкие, чтобы предотвратить засорение. Экран котла помогает сохранить нижний пароперегреватель и конвекционные пучки относительно свободны от отложений.
Котел для ICI/KMC Taiwan содержит 2 комплекта экранов. Расстояние между трубками в экране пучка составляет 8,75 дюйма по сравнению с 5,0 дюймами в пучке пароперегревателя и 4,38 дюйма. дюймов в конвекционных пучках. Трубки в пучке экранов находятся в в шахматном порядке, тогда как трубы в других секциях расположены в линию.
Качество питательной воды котла
Требование к качеству питательной воды котла определяется давление и конечное использование пара. В целом, чем выше операционная давление в системе, тем более высокое качество BFW требуется. Кроме того, если пар перегрет и используется в турбогенераторе, высококачественная BFW требуется для производства пара высокого качества. Приложение B содержит диаграмму перечисление рекомендуемых качеств BFW для различных рабочих давлений котла. На предыдущих работах Chemetics мы использовали высококачественную деминерализованную воду, когда пар используется в турбогенераторе.
Продувка котла
Питательная вода котла, независимо от типа используемого лечения все еще содержит измеримые концентрации примесей. Другими источниками загрязнения являются химикаты для обработки конденсата и котловой воды.
В котле, практически чистый водяной пар выходит из котла, оставляя после себя примеси, попадающие в питательную воду. Конечный результат – стабильный рост концентрации примесей в котловой воде. Поддерживать надежная работа котла концентрация каждого компонента котла вода должна быть ограничена до определенных максимумов. Это достигается продувкой спустить воду из котла.
Есть два отдельные точки продувки в каждом котле, постоянная и периодическая. Непрерывная продувка используется для регулирования уровня загрязнения в котловой воды и обычно располагается на паровом барабане. прерывистый продувка используется для удаления скопившихся осевших твердых частиц в относительно стоячих площади котельной. Обычно может быть несколько прерывистых точек расположены в нижних точках котла.
Большая продувка представляют собой большие потери энергии и высокую стоимость подготовки и обработки свежих макияж, который сконцентрирован до такой ограниченной степени. Следовательно, есть баланс между объемом продувки и стоимостью дополнительной воды лечебные процессы.
Байпасы котла
Байпас вокруг котла часто требуется для контроля выхода газа температура. Это не требование для котла в режиме регенерации. установки, так как нет необходимости контролировать температуру газа, поступающего в система очистки. Однако на заводе по сжиганию серы, где котел расположен перед слоем 1 или между слоями конвертера необходимо точно контролировать температуру газа. Где температура газа высоки, байпасы должны быть футерованы огнеупором прямо до места, где и смесь холодного газа вместе. Высокие температуры и огнеупорная футеровка создать механическую проблему при проектировании перепускного клапана с герметичным уплотнением. С технологической точки зрения, если утечка через байпас не принимается при указании котла результат может быть занижен паровой котел. Рисунок 2 иллюстрирует проблему, когда байпасирование газа не принято во внимание. Количество байпасов, которые произойдут, будет зависит от конструкции и качества изготовления перепускного клапана. А консервативная оценка общего объема газа в обход котла составляет 5%. Если обход возможен, это должно быть учтено в технологической схеме и спецификация котла.
Выпускной клапан котла
Котлы установлены в Установки для сжигания серы должны иметь перепускной клапан и клапан, расположенный на газовой выход. Выпускной клапан используется во время предварительного нагрева установки для дымовые газы через открытый байпас непосредственно в конвертерные слои. Если не установить выпускной клапан, это может привести к длительному периоду предварительного нагрева или невозможность получить желаемую температуру слоя перед обжигом серы.
Облицовка котла
Обвязка котла – это общий термин, обозначающий принадлежности, необходимые для паровой котел. К ним относятся продувочные клапаны, уровнемеры, манометры, предохранительные клапаны, преобразователи и т. д. Они обычно поставляются поставщик с котлом в комплекте.
Котел, как правило, оборудован многоуровневыми приборами. Уровень передатчик используется совместно с контроллером для контроля уровня в паровой барабан. Используется отдельный уровнемер, установленный в стояке. инициировать блокировки и отключения. Этот прибор уровня обычно серия емкостных зондов, длина которых соответствует различным уровням в паровой барабан. Третий инструмент — это, как правило, Clark-Reliance ‘Eye-Hye’. который обеспечивает индикацию уровня в виде световых индикаторов. Каждый свет соответствует определенному уровню, обычно на несколько дюймов выше или ниже уровня нормальный рабочий уровень. Индикатор обычно находится рядом с ручные продувочные клапаны, чтобы оператор мог контролировать уровень во время работы котла. сдутый. Прибор четвертого уровня, обычно устанавливаемый на паровой барабан. представляет собой смотровое стекло уровня.
Ресурс утилизации отработанного тепла Стр.
По оценкам, от 20 до 50% потребляемой промышленной энергии теряется в виде отходящего тепла в виде горячих выхлопных газов, охлаждающей воды и тепла, теряемого от горячих поверхностей оборудования и нагретых продуктов. Поскольку промышленный сектор продолжает усилия по повышению своей энергоэффективности, рекуперация потерь отходящего тепла обеспечивает экономию средств, снижает воздействие на окружающую среду и улучшает рабочий процесс и производительность.
Коммерчески доступны многочисленные технологии для утилизации отходящего тепла, и многие промышленные объекты модернизировали или повышают свою энергоэффективность за счет установки этих технологий, однако эти технологии не используются в максимально возможной степени из-за нескольких барьеров, таких как материальные ограничения и другие. затраты на техническое обслуживание.
Ниже приведены текущие ресурсы, которые AMO предоставляет в виде инструментов, обучения, технической документации и исследований и разработок, способствующих рекуперации отработанного тепла (WHR).
Инструменты и сопутствующие ресурсы
— Программный инструмент оценки технологического отопления (PHAST) определяет возможности модернизации WHR от оборудования для технологического нагрева, такого как топки, сушильные шкафы, печи для обжига, сушилки и котлы в областях теплопотерь стен, аккумулирования тепла и рекуперации тепла дымовой трубы. .
— Инструмент моделирования паровой системы (SSMT) с учебным пособием определяет возможности модернизации WHR, такие как использование тепла продувки дымовой трубы и котла для предварительного нагрева подпиточной воды котла, предварительного нагрева воздуха для горения и других процессов установки.
— Обучение, связанное с WHR, поскольку оно касается как систем технологического нагрева, так и систем пара (на площадке и за ее пределами)
— Партнерство по технической поддержке ТЭЦ
Утилизация отработанного тепла из систем технологического нагрева
— Оценка энергопотребления помогает Kaiser Aluminium экономить энергию и Повышение производительности
— Оценка технологии рекуперации отработанного тепла AMO QTR 2015
— Утилизация отработанного тепла в промышленности: потенциальные применения, доступные технологии и сквозные возможности НИОКР, Арвинд Текди (E3M Inc. ) и Сачин Нимбалкар (ORNL), ORNL/TM-2014 /622, январь 2014 г.
— Утилизация отработанного тепла: технологии и возможности в промышленности США, подробное описание состояния технологий утилизации отходящего тепла и оценка потребностей в исследованиях и разработках для улучшения этих технологий, подготовлено для DOE 2008
— Улучшение производительности системы технологического отопления: справочник для промышленности
— Использование энергии, потери и анализ возможностей: производство и добыча полезных ископаемых в США описывает промышленный сектор США и подробно описывает основные возможности для экономии энергии в промышленности, включая несколько возможностей рекуперации отработанного тепла (декабрь 2004 г.).
— Рекомендации по выбору материалов для термического технологического оборудования
— Проверка поверхностей теплообмена
— Установка систем регенерации отработанного тепла для топливных печей
— Использование отходящего тепла для внешних процессов содержит полезную информацию, необходимую для оценки использования отходов газы для обогрева вторичных процессов (2006 г. ).
— Сокращение и рекуперация отработанного тепла для повышения эффективности печи, производительности и выбросов. Подробно описаны методы повышения эффективности и производительности промышленных печей за счет методов энергосбережения оборудования и утилизации отходящего тепла (ноябрь 2004 г.).
— Производители металла и стекла сокращают расходы за счет повышения энергоэффективности систем технологического нагрева
— Семь способов оптимизации вашей системы технологического тепла
Утилизация отработанного тепла паровых систем
— Рассмотрите возможность использования паровых турбин для вращающегося оборудования
— Рассмотрите возможность установки конденсационного экономайзера
— Испарение конденсата высокого давления для регенерации пара низкого давления
— Рекуперация тепла от продувки котла
— Экономайзеры питательной воды для утилизации отработанного тепла для снижения потребности в топливе для паровых котлов за счет передачи тепла дымовых газов поступающей питательной воде (январь 2006 г. ).
— Использование низкопотенциального отработанного пара для питания абсорбционных чиллеров описывает преимущества абсорбционных чиллеров (которые могут использовать низкопотенциальное отработанное тепло) для замены механических чиллеров с приводом от двигателя (январь 2006 г.).
— Использование рекомпрессии паров для регенерации отработанного пара низкого давления
— Использование вентиляционного конденсатора для регенерации энергии мгновенного пара
— Руководство по обзору паровых систем содержит техническую информацию о нескольких основных возможностях повышения эффективности и производительности промышленных паровых систем. Руководство охватывает: профилирование паровой системы; определение свойств пара; улучшение работы котла; улучшение использования паровой системы; и определение потерь энергии в парораспределительной системе.
— Решения по теплопередаче для промышленных паровых систем В этом кратком обзоре представлен обзор соображений по выбору наилучшего оборудования для теплопередачи для различных паровых систем и областей применения
— Справочник CIBO по энергоэффективности, который поможет владельцам и операторам получить наилучшую и наиболее энергоэффективную работу своих котлов и паровых систем. властвовать.
Оценка рынка отработанного тепла в электроэнергию
AMO R&D по рекуперации отходящего тепла
— Преобразование отработанного тепла в электроэнергию в маломасштабной промышленности с использованием спирального расширителя для органического цикла Ранкина. Отработанное тепло среднего качества можно преобразовать в электроэнергию с помощью нового масштабируемого спирального детандера, имеющего эффективность изоэнтропического расширения от 75% до 80% для широкого диапазона давлений в котлах с органическим циклом Ренкина, температур конденсации и скоростей. По оценкам, система будет генерировать чистый доход через три года и обеспечит экономию энергии в стране в размере 0,9.0 ТБТЕ/год только для природного газа только для обжарки кофе.
— Полимерные композиты с высокой теплопроводностью для недорогих теплообменников Чтобы ускорить разработку пластиковых теплообменников, исследователи создадут базу данных избранных свойств теплопроводных пластиков.