Спирт из древесины: Страница не найдена — Рециклинг, переработка и утилизация

Содержание

Древесный спирт получение — Справочник химика 21

    Ранее метанол получали при сухой перегонке дерева (отсюда его название древесный спирт ). Он применяется как растворитель и для различных органических синтезов — получение формальдегида, некоторых красителей, фотореактивов, фармацевтических препаратов. [c.313]

    В гидролизном спирте , полученном из древесных опилок, может быть примесь метилового спирта. Эта примесь недопустима, так как метиловый спирт очень ядовит и в определенной концентрации может привести к тяжелому отравлению и слепоте. В качестве примеси в спирте могут быть дубильные вещества, если спирт хранился в дубовых бочках. [c.170]


    Метиловый спирт (метанол) в течение длительного времени получали из водного дистиллата, выделяющегося при сухой перегонке древесины (отсюда и название — древесный спирт). Выход спирта при этом зависит от породы древесины и колеблется в пределах от 3 до 6 кг на каждый кубометр сухой древесины. В 1933 г. в СССР была пущена первая установка по получению метилового спирта из синтез-газа, и в настоящее время более 90% его получают таким образом. Метиловый спирт является важным видом сырья для получения формальдегида, диметил-сульфата, антидетонационных смесей, ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется как добавка к моторному топливу и в качестве растворителя. 
[c.487]

    Гидролиз целлюлозы, иначе называемый осахариванием,—очень важное свойство целлюлозы, он позволяет получить из древесных опилок и стружек глюкозу, а сбраживанием последней — этиловый спирт. Этиловый спирт, полученный из древесины, называется гидролизным.  [c.338]

    Поэтому большинство установок для перегонки дерева получают лишь часть содержащихся в сыром древесном спирте метилового спирта и ацетона в виде чистого метилового спирта и чистого ацетона. Остальную значительную часть в виде первых и средних погонов, полученных в колонках обычным способом, т. е. без введения воды и пара, смешивают вместе и получают древесный спирт для денатурации. Отделение метилового спирта от ацетона описанным здесь способом, посредством которого это отделение происходит почти количественно, дает значительное финансовое преимущество перед прочими установками, ра- 

[c.460]

    Метиловый спирт (метанол, древесный спирт) СНзОН — бесцветная жидкость с характерным запахом, смешивается с водой в любых соотношениях, хороши растворитель многих органических веществ, горит бледным пламенем. М. с. очень ядовит, вызывая в малых дозах слепоту, в больших — смерть. В промышленности метиловый спирт получают двумя способами присухой перегонке дерева (поэтому его называют древесным спиртом) и синтетически из СО и Нг в присутствии катализатора (напр., оксид цинка ZnO), при 300—600 °С и давлении 5-10 Па (СО + Ц- 2Нг = СНзОН). М. с. применяют как сырье для получения муравьиного альдегида (формальдегида) и для синтеза других органических веществ, в производстве красителей и лаков. 

[c.82]

    Метиловый спирт (метанол) СН3ОН, носящий еще название древесного спирта (по старому способу его получения — сухой перегонкой дерева ), представляет собой бесцветную жидкость, кипящую при 64,7° С. Обладает характерным спиртовым запахом, горит бледным пламенем. Метиловый спирт сильно ядовит. При принятии внутрь вызывает тяжелое отравление, сопровождаемое потерей зрения может привести к смертельному исходу. [c.101]

    Первыми источниками получения органических веществ были животные и растительные организмы X, продукты их жизнедеятельности. Каждый живой организм представляет собой своеобразную химическую лабораторию, в которой осуществляются как процессы синтеза, так и распада. В растительных организмах из простых исходных веществ (диоксид углерода, вода) под воздействием солнечной энергии синтезируются сложные органические вещества (фотосинтез). В животных организмах, наоборот, сложные органические вещества (сахара, белки, жиры) распадаются на более простые, часть из них как бы сгорает , отдавая энергию и превращаясь в СО2 и Н2О, но в то же время в организме также синтезируются специфические белки, жиры и другие вещества. Растительный мир является главным производителем органических веществ. Особое место в этом отношении занимают деревья. Древесина и полученные из нее целлюлоза и лигнин являются ценным сырьем для химической переработки. Так, например, сухая перегонка древесины с давних времен применялась для получения органических соединений, таких, как уксусная кислота, метиловый спирт (древесный спирт), ацетон, фенолы. 

[c.13]


    До середины XIX в. практика переработки органических веществ не выходила за пределы извлечения из растительного и животного сырья содержащихся в нем ценных продуктов (например,- красителей, сахаров, дубителей и др.). Для выделения их использовались простейшие механические и тепловые процессы обработки сырья дробление, растворение, фильтрование, отжим, выпаривание, перегонка и т. д. При получении спирта, уксусной кислоты и некоторых других органических веществ использовались биохимические процессы (в частности, брожение). Некоторые органические продукты были выделены при термическом разложении природного сырья. Так, при сухой перегонке древесины наряду с древесным углем получали уксусную кислоту, древесный спирт, деготь. 
[c.119]

    Фракции сырой (неочищенной) смолы представляют собой сложные смеси, состоящие из легких и тяжелых масел, которые находят применение для пропитки древесины и медицинских целей. При перегонке смолы в остатке получают пек. Фракцию тяжелых масел перерабатывают на креозот. Основным компонентом этого продукта является гваякол, применяемый в фармацевтической промышленности как антисептическое средство. Фенольные компоненты пиролизной смолы можно также использовать при получении связующих для фанеры [168]. Древесный спирт содержит около 60 % метанола и различных примесей (см. 12.5). Его используют в качестве растворителя и для денатурации этанола. Из фракции древесного уксуса (см. 12.5) можно получить чистую уксусную кислоту и пищевой уксус. Решение вопроса о том, следует или нет получать очищенные продукты, зависит от экономических соображений и требований экологии [28]. Неконденсируемые газы, состоящие из диоксида и моноксида углерода, водорода, метана и других углеводородов (теплота сгорания около 8,9 МДж/м ), применяют для предварительной сушки древесины и в качестве газа для продувки реторт [24]. 

[c.403]

    В промышленности метиловый спирт раньше получали при сухой перегонке древесины, откуда и его название — древесный спирт. При нагревании древесины без доступа воздуха происходит разложение целлюлозы и других веществ, в частности сложного вещества, спутника целлюлозы — лигнина. В результате образуются различные газообразные, жидкие и твердые продукты, в том числе.и метиловый спирт. Полученный таким образом метиловый спирт всегда содержит примеси уксусной кислоты, ацетона и других органических веществ. 

[c.93]

    Метиловый спирт. Метиловый спирт (другие названия метанол, карбинол, древесный спирт) — простейший одноатомный спирт, бесцветная легкоподвижная жидкость. Сильный яд (прием внутрь вызывает слепоту, при больших дозах — смерть). Современный метод получения — каталитический синтез из окиси углерода и водорода (температура 300—400 С, давление 250—500 атм, катализатор — окись цинка)  [c.373]

    Метиловый спирт прежде получали деструктивной перегонкой древесины и называли его поэтому иногда древесным спиртом. Это ядовитое вещество, и употребление его приводит к слепоте и смерти. Метиловый спирт применяют в качестве растворителя, а также используют для получения других органических соединений. 

[c.236]

    В табл. 38 приведены доли спирта от всего поступившего на ректификацию, в пересчете на 100%-ный, в отг льных сортах ректификованных спиртов, полученных ректификацией необработанного спирта-сырца и обработанного перед ректификацией древесным углем, едким натром либо перманганатом калия в табл. 39 — основные характеристики полученных при этом ректификованных спиртов I сорта. В представленных таблицах столбцы, пронумерованные цифрой 1, относятся к ректификованному спирту, полученному из необработанного спирта-сырца 2 — обработанного древесным углем 3 — обработанного едким натром 4 — обработанного перманганатом калия. [c.186]

    Некоторое количество метилового спирта получается методом сухой перегонки древесины отсюда и одно из названий метанола — древесный спирт. Это наиболее старый способ его получения. [c.99]

    Летучие компоненты отделяют перегонкой с получением сырых продуктов. Так, фракция древесного спирта состоит из воды, 45 % метанола, 7 ацетона, 5 метилацетата, 3 % ацетальдегида и небольших количеств аллилового спирта, метилформиата, фурана и фурфурола. Фракция древесного уксуса содержит в основном уксусную кислоту, а также пропионовую, масляную и другие кислоты. Главными компонентами фракции смолы являются крезол, гваякол, другие фенолы и простые эфиры фенолов [9]. 

[c.271]

    Метилозый спирт образуется и при сухой перегонке дерева поэтому его называют также древесным спиртом. Применяется он как растворитель, а также для получения других органических веществ. [c.481]

    Первый представитель гомологического ряда предельных одноатомных спиртов — метиловый спирт (метанол) СН3ОН раньше часто называли древесным спиртом. Происхождение этого названия связано со старинным способом получения метилового спирта при сухой перегонке дерева. В настоящее время метанол получается исключительно синтетическим путем, при пропускании смеси окиси углерода и водорода при 350 °С и 250 атм над катализатором, состоящим из смеси цинка, хрома и других металлов  

[c.159]

    Метиловый спирт. Метило1 лй спирт (другие названия метанол, карбинол, древесный спирт) — простейший одноатомный спирт, бесцветная жидкость. Сильный яд (прием внутрь вызывает слепоту, при ббльших дозах — смерть). Сов >еменный метод получения — каталитический синтез из оксида углерэда (II) и водорода [томпература 250°С, давление 7 МПа, катализатор — смесь оксидов цинка и меди (II)] [c.372]

    При сухой перегонке древесины уксусная кислота, собирается в подсмольной воде. Для отделения уксусной кислоты от древесного спирта и ацетона ее нейтрализуют известью полученный уксуснокислый кальций, так называемый уксусный порошок , разлагают соляной кислотой или серной кислотой  [c.231]

    Кроме этих наименований некоторые спирты имеют еще эмпирические наименования, связанные с историей открытия в том или ином природном продукте, способом получения и т. д. Например, метиловый спирт часто называют древесным спиртом, т к как он получается при сухой перегонке дерева этиловый спирт называют винным спиртом, так как он был впервые обнаружен в виноградном вине, и т. д. 

[c.149]

    Метиловый спирт, или метанол, СН3ОН (также древесный спирт, или карбинол) получается любым из общих способов получения спиртов. Однако в течение многих лет единственным источником его являлись продукты сухой перегонки дерева. Водный слой, получаемый наряду с древесным дегтем при медленном нагревании дерева без доступа воздуха, содержит 1—2% метилового спирта и, кроме того, много уксусной кислоты (10%) и немного ацетона (0,5%). Уксусную кислоту отделяют обработкой известью, после чего метиловый спирт очищают дробной перегонкой и другими способами. [c.211]

    В течение длительного времени химики называли органические вещества по случайным признакам. Чаще всего эти названия отражали происхождение веществ (муравьиная, яблочная, винная кислоты, молочный сахар, винный и древесный спирты и др.), иногла— способ получения (пировиноградная кислота), а порой — имя исследователя (например, кетон Михлера). Эти случайные названия, не отражающие строения молекул органических веществ, получили название тривиальных , а система этих названий — тривиальной номенклатуры. Эти названия используются и сейчас, особенно когда речь идет о привычных и часто применяемых реактивах. [c.36]


    Метиловый спирт, метанол, древесный спирт. Бесцветная жидкость, т. кип, 64,5°, хорошо растворяется в воде. Широко применяется в лабораторной работе как растворитель, а также в ряде органических синтезов (получение формальдегида, реакция метилирования и др.). Обладает высокой токсичностью и вызывает тяжелые отравления. При постоянной работе с метиловым спиртом опасно постепенное (комулятивное) нарастание его действия. Помимо наркотического действия метиловый спирт вызывает органическое поражение зрительного нерва и сетчатки глаз, в связи с чем при отравлении метиловым спиртом может наступить полная или частичная потеря зрения. Смертельная доза при приеме внутрь метилового спирта 30 г тяжелые отравления могут наступить при приеме 5—10 г [2]. [c.109]

    Как видно из представленных данных, ректификованные спирты I сорта, полученные из обработанного и необработанного спирта-сырца, имеют одинаковые или близкие показатели по вкусу и запаху, крепости, содержанию фурфурола, альдегидов и сивушного масла. (Понятно, что к характеристикам спирта, обозначенным словами нет и следы , небходимо относиться осторожно, с пониманием того, что анализ произведен в условиях промышленного производства исследования выполнены на Бах-мачском винокуренном заводе Черниговской губернии.) Но в спиртах, полученных перегонкой спирта-сырца, обработанного древесным углем и едким натром, содержание эфиров и кислот ниже, чем у двух других спиртов. Значительно лучше у них и показатель Ланга (см. с. 216—218). Выход ректификованных [c.186]

    Основной пирогенетический процесс был выбран с получением древесного угля, который является более дефицитным и нужным продуктом, чем древесный генераторный газ. Для получения наибольшей гаммы продуктов пиролиза, образующихся при НИЗКИХ и высоких температурах, процесс разложения ведется в две стадии. Сначала древесину подвергают предварительному пиролизу в среде жидкого теплоносителя (дизельное топливо) с температурой 275° и получают основную массу кислот,, легкокипящих продуктов, входящих в так называемый древесный спирт, и смол. Образующуюся в результате предпиролиза бурую древесину (см. стр. 37) подвергают вторичному пиролизу при температуре 600—700° с твердым теплоносителем (древесный уголь) и Получают светильный газ и жижку, содержащую отстойную смолу с большим выходом низкокипящих фенолов, дополнительное количество кислот и древесный уголь. Последний отличается низким содержанием летучих и повышенной активностью. [c.138]

    Осветленный сьфой древесный спирт должен быть и оставаться щелочным, прежде чем можно приступить к его иере-гоеке. Если он не щелочной, то полученный из него чистый метиловый спирт будет желтым, часто даже после нескольких перегонок. Если очистка известковым раствор ом проведена тщательно, то выделенный при взбалтывании 1 ч. отстоявшегося древесного спирта с 2 ч. раствора едкого натра уд. в. 1,3 ацетон [c.458]

    Номенклатура. Первый член гомологического ряда предельных одноатоммых спиртов в прошлом получали путем сухой перегонки древесины, а поэтому полученный спирт называли древесным спиртом или карбинолом. Следующий член — С2Н5ОН — был назван винным спиртом еще алхимиками. [c.186]

    По вопросу получения формальдегида из метана имеется обширная патентная литература. Процесс окисления начинается здесь при повышенной температуре (500—600°), которая поддерживается далее теплотой самой реакции для ее успешного течения некоторые авторы рекомендуют применение давления, а также катализаторов (Си, Ге, N1, Со). Формальдегид находит обширное применение в качестве дезинфе цирующего вещества и антисептика в химической технологии он широко применяется для изготовления органических красок (фуксин и др.), искусственных смол (бакелит и т. п.) и т. д. Технически формальдегид получается пока окислением древесного спирта. [c.772]


Гидролизный спирт — Большая Энциклопедия Нефти и Газа, статья, страница 1

Гидролизный спирт

Cтраница 1

Гидролизный спирт получают в процессе гидролиза древесины.  [1]

Гидролизный спирт ректификованный, выпускаемый по техническим условиям СТУ-57-227-64, может быть применен без дополнительной обработки для всех аналитических работ, в том числе для анализа трансформаторных и турбинных масел.  [2]

Гидролизный спирт ( товарный продукт) содержит 93 5 — 94 % этилового спирта, до 0 1 % метилового спирта, следы фурфурола и очень небольшие количества ( тысячные доли процента) альдегидов, эфиров и сивушных масел и может применяться для тех же целей, что и полученный из пищевого сырья.  [3]

Доля гидролизного спирта в общем производстве также невелика. Высокая себестоимость препятствует дальнейшему увеличению выпуска его. Однако в настоящее время и в ближайшие годы выпуск гидролизного спирта будет сокращаться незначительно вследствие дефицита в техническом этаноле.  [4]

Производство гидролизного спирта из сельскохозяйственных отходов на южных заводах предполагается прекратить из-за его высокой стоимости.  [6]

Так называемый гидролизный спирт после ректификации содержит до 0 05 — 0 1 % метанола и относительно повышенные количества альдегидов, органических кислот и эфиров в сравнении с этанолом — ректификатом из картофеля или зерен.  [7]

Процесс получения гидролизного спирта осуществляется следующим образом. Древесные отходы ( щепа, стружки, опилки) после специальной подготовки загружаются в гидролизаппарат, футерованный кислотоупорной плиткой и бетоном. После окончания загрузки в гидролизаппарат подается нагретый до 180 — 190 С 0 5 % — ный раствор серной кислоты и перегретый пар с давлением до 10 ати. В этих условиях происходит гидролиз содержащихся в древесине полисахаридов до моносахаров — гексоз и пентоз. Серная кислота служит катализатором гидролиза.  [8]

В больших количествах гидролизный спирт идет для выработки синтетического каучука. Он применяется также для получения хлористого этила, хлороформа, этиловых эфиров различных кислот, уксусного альдегида и др. Этиловый спирт используется более чем в 150 отраслях промышленности. Он находит все большее применение в качестве компонента моторного топлива. Гидролизный спирт после дополнительной очистки может быть применен в ликеро-водочных изделиях.  [9]

Самая низкая себестоимость гидролизного спирта из древесного сырья ( 23 04 руб / дкл) была достигнута в 1958 г. на самом крупном гидролизном предприятии — Бирюсинском заводе, на котором произведено в этом году 1 24 млн. дкл спирта.  [10]

В СССР первый завод гидролизного спирта из древесины был пущен в 1938 г. В 1952 г. в Сумгаите был начат промышленный выпуск синтетического этилового спирта из этилена газов нефтепереработки.  [11]

Для производства этого количества гидролизного спирта требуется около 10000 m опилок с 45 % — ной влажностью, что может обеспечить годи чная работа одного лесопильного завода средней мощности.  [12]

В СССР первый завод гидролизного спирта из древесины был пущен в 1938 г. В 1952 г. в Сумгаите был начат промышленный выпуск синтетического этилового спирта из этилена газов нефтепереработки.  [14]

Для производства этого количества гидролизного спирта требуется около 10000 т опилок с 45 % — ной влажностью, что может обеспечить годичная работа одного лесопильного завода средней мощности.  [15]

Страницы:      1    2    3    4

Вторая жизнь гидролизной промышленности

Для России проблема переработки и дальнейшего использования отходов лесоперерабатывающей отрасли (которые, к слову сказать, составляют от 40 до 60% от заготавливаемой древесины в России) является крайне актуальной. А принимая во внимание наличие немалого количества ныне простаивающих гидролизных заводов, для которых отходы деревообработки и лесопиления являются основным сырьем, решение проблемы напрашивается само собой. Именно поэтому правительством РФ в 2012 году было принято решение наладить на базе бывших гидролизных заводов производство простых сахаров в форме, высоко усваиваемой клетками бактерий.

Немного истории

Первые опытно-промышленные заводы по получению спирта путем гидролиза древесины и растительных сельскохозяйственных отходов появились в СССР еще в 1930-х годах. В те годы строительство новых гидролизных заводов шло быстрыми темпами. Это было продиктовано все возрастающей потребностью в этиловом спирте, который, кроме всего прочего, использовался и в качестве сырья для расширяющегося производства синтетического каучука. В годы Великой Отечественной войны потребность в этиловом спирте возросла еще сильнее. Он применялся на предприятиях оборонной промышленности, в санитарных подразделениях и тыловых госпиталях. В годы острой нехватки продовольственного сырья гидролизный спирт полностью заменил спирт, производившийся из пищевого зерна. Сразу же после войны отрасль продолжала активно развиваться, были утверждены масштабные планы по строительству новых и модернизации уже существующих заводов.  В те годы в СССР насчитывалось около 40 гидролизных заводов. Вплоть до начала 1990-х гг. гидролизное производство считалось  крупной и высокорентабельной подотраслью. При этом многие гидролизные предприятия являлись градообразующими и выполняли социально значимые функции. Однако вскоре положение стало меняться. На территории России осталось всего 17 действующих заводов, а к началу 2000-х годов эта цифра сократилась еще вдвое (А.П. Суходолов, В.А. Хаматаев «Развитие отечественной гидролизной промышленности»). 
 
Наши дни

Ранее применявшаяся на гидролизных заводах технология с использованием серной кислоты влекла за собой образование большого количества шлама, борьба с которым продолжается и по сей день. А в условиях современного экологически ориентированного общества существующая технология получения этилового спирта из древесного сырья стала абсолютно неприемлемой.

К сожалению, лишь немногим заводам удалось перепрофилироваться и начать выпускать востребованную рынком продукцию. Большинство же из них пришло в упадок, а со временем было и вовсе закрыто. Прекращение деятельности биотехнологических предприятий привело к резкому падению производства не только технических спиртов и растворителей (АБЭ – ацетона, бутанола, этанола), но также микробиологического кормового дрожжевого белка. Сократилось и производство глюкозных сахаров – сырья для производства антибиотиков. И это лишь неполный перечень причин, по которым возрождение гидролизных заводов России является столь острой проблемой, требующей безотлагательного решения.

Имея положительный опыт сотрудничества с нашей компанией в реализации проекта по получению биобутанола, госкорпорация «РОСТЕХ» приняла решение вновь обратиться за помощью к ГК «БИОТЕХНО». 

«На российском рынке довольно сложно выбрать организацию, которая имеет свою собственную производственную базу и высококвалифицированный инженерный состав. Ведь наши задачи не являются типовыми, а потому для нас было важно работать с людьми, которые способны произвести оборудование, удовлетворяющее именно нашим требованиям. Предыдущий опыт работы с ГК «БИОТЕХНО» значительно облегчил нам выбор партнера в данном проекте», – говорит г-н Ачильдиев Е.Р., директор по науке РТ-Биотехпром.

Перед специалистами нашей компании стояла очень сложная и ответственная задача – адаптировать имеющуюся технологию получения биобутанола под существующие мощности гидролизных заводов. Ведь итогом нашей работы должно было стать не просто получение высокорентабельного производства, а обеспечение сотен людей рабочими местами, которые оказались не у дел после развала гидролизной промышленности. 
 

При непосредственном  участии специалистов нашей компании был осуществлен подбор производственной площадки, соответствующей всем необходимым требованиям для реализации пилотной части проекта, выполнена детальная проработка аппаратурного оформления проекта.

Особого внимания потребовал подбор оборудования для линии наработки  ферментов с усиленной β-глюкозидазной активностью для осуществления процедуры ферментативного гидролиза. Идея состояла в том, чтобы наладить собственное производство ферментов с непрерывной их подачей на линию проведения ферментативного гидролиза целлюлозосодержащего сырья, с целью создания эффективного производства, как с технологической, так и с экономической точки зрения. 

Используемые ферменты являлись уникальной разработкой российских ученых института биохимии им. А. Н. Баха РАН и до сегодняшнего дня в масштабах промышленного производства получены не были.

Специалистами ГК «БИОТЕХНО» было выполнено оснащение производственного цеха следующим оборудованием, а также произведен его монтаж и пуско-наладочные работы:

  1. Посевные ферментеры ферментной линии объемом 50 л и 500 л;
  2. Блок из двух ферментеров линии ферментативного гидролиза объемом 7,7 м3 каждый;
  3. Реакторы объемом 6,5 м3 – 2 шт;
  4. Импеллерная мельница – 1 шт;
  5. Вспомогательные емкости различного объема;
  6. Аналитическое оборудование.

Каждый из реализуемых нами проектов в своем роде уникален. Так было и здесь: нашим специалистам пришлось разработать и  применить целый ряд оригинальных технических с решений с целью размещения всего требуемого оборудования на имеющихся площадях. Но наши инженеры успешно справились со всеми трудностями, и пилотная часть проекта завершилась получением требуемого количества сиропа простых сахаров с необходимым содержанием редуцирующих веществ. Следовательно, впереди нас ждала масштабная работа по запуску опытно-промышленного производства.

В данной части проекта перед нами стояла задача переноса части смонтированного ранее оборудования на площадку, подготовленную для реализации опытно-промышленного этапа проекта, и дооснащения производственного цеха всем необходимым оборудованием. Специалистами группы компаний «БИОТЕХНО» был произведен демонтаж и транспортировка ранее установленного оборудования, подбор всех недостающих единиц оборудования с последующей поставкой, монтажом и пуско-наладкой.

Группой компаний «БИОТЕХНО» дополнительно была произведена поставка следующего оборудования в рамках этого этапа проекта:

  1. Промышленные ферментеры ферментной линии объемом 2 м3, 10 мс емкостью для приготовления и подачи стерильной питательной среды
  2. Аппарат линии ферментативного гидролиза объемом 6,3 м3 – 6 шт
  3. Сепаратор Альфа Лаваль – 1шт
  4. Система микро- ультрафильтрации (UF)
  5. Пресс-фильтр – 1 шт
  6. Импеллерная мельница – 2 шт
  7. Дизельный парогенератор – 3 шт
  8. Система водоподготовки
  9. Компрессор
  10. On-line анализатор
  11. Вспомогательные емкости различного объема

Без сомнения данный проект является одним из сложнейших комплексных проектов, успешно выполненных группой компаний «БИОТЕХНО». Благодаря знаниям и накопленному опыту, а также тесному сотрудничеству с нашими партнерами специалистам группы компаний «БИОТЕХНО» удалось воплотить в жизнь масштабный проект по получению простых сахаров из непищевого (древесного) сырья, реализуемый правительством РФ при участии госкорпорации РОСТЕХ. Разработанная промышленная технология позволяет перерабатывать отходы древесины, в основном хвойных пород, в простые сахара (глюкозу, маннозу, арабинозу, ксилозу), лигнин и смолу с последующим производством из них путем микробиологического синтеза широкого спектра коммерчески привлекательных продуктов (кормовых добавок, сырья для фармпромышленности, различных видов биотоплива и компонентов моторного топлива).

Г-н Ачильдиев Е.Р.: «Хотелось бы отметить, что работать с ГК «БИОТЕХНО» было приятно с профессиональной точки зрения, подтверждением тому является  высокое качество производимого оборудования, профессионализм инженерного состава и сервисной службы компании, а оптимальное соотношение стоимости оборудования и его качества является достойным подтверждением правильности нашего выбора».
 

  

Спирт из опилок рецепт. Спирт из древесины (гидролизный спирт)

Производство спирта из картофеля, зерна, мелассы, сахарной свеклы требует расхода больших количеств этих ценных видов сырья. Замена такого сырья более дешевым является одним из источников экономии пищевых продуктов и снижения себестоимости спирта. Поэтому в последнее время значительно увеличилось производство технического этилового спирта из непищевого сырья: древесины, сульфитных щелоков и синтетическим путем из этиленсодержащих газов.

Производство спирта из древесины

Гидролизная промышленность выпускает из растительных отходов, содержащих целлюлозу, в частности из древесных отходов, ряд продуктов: этиловый спирт, кормовые дрожжи, глюкозу и др.

На гидролизных заводах целлюлозу гидролизуют минеральными кислотами до глюкозы, которая используется для сбраживания в спирт, выращивания дрожжей и выпуска в кристаллическом виде. Существуют гидролизные заводы различного профиля: гидролизно-спиртовые, гидролизно-дрожжевые, гидролизно-глюкозные. Гидролизная промышленность имеет большое народнохозяйственное значение; оно обусловлено тем, что из малоценных растительных отходов получают ценные продукты. В частности, из 1 т абсолютно сухой хвойной древесины получают 170-200 л этилового спирта, для выработки которого потребовалось бы 0,7 т зерна или 2 т картофеля.

Гидролизная промышленность комплексно перерабатывает древесину, в результате чего на гидролизно-спиртовых заводах получают, кроме этилового спирта, и другие ценные продукты: фурфурол, лигнин, жидкую углекислоту, кормовые дрожжи.

Сырье гидролизного производства

Сырьем гидролизного производства служит древесина в виде различных отходов лесной и деревообрабатывающей промышленности: опилки, щепа, стружка и др. Влажность древесины колеблется от 40 до 60%. Опилки, перерабатываемые гидролизными заводами, обычно имеют влажность 40- 48%. В состав сухих веществ древесины входят целлюлоза, гемицеллюлозы, лигнин и органические кислоты.

Гемицеллюлозы древесины состоят из гексозанов: маннана, галактане и пентозанов: ксилана, арабана и их метилированных производных. Лигнин представляет собой сложное вещество ароматического ряда, химический состав и строение его еще не установлены.

Химический состав абсолютно сухой древесины приведен в таблице 1.

Кроме древесины, в качестве сырья для гидролизной промышленности применяются и растительные отходы сельского хозяйства: подсолнечная лузга, кукурузная кочерыжка, хлопковая шелуха, солома зерновых злаков.

Химический состав растительных отходов сельского хозяйства представлен в таблице 2.


Технологическая схема комплексной переработки древесины

Технологическая схема комплексной переработки древесины состоит из следующих стадий: гидролиз древесины, нейтрализация и очистка гидролизата; сбраживание гидролизного сусла, перегонка гидролизной бражки.

Измельченную древесину подвергают гидролизу разбавленной серной кислотой при нагревании под давлением. При гидролизе гемицеллюлозы и целлюлоза разлагаются. Гемицеллюлозы превращаются в гексозы: глюкозу, галактозу, маннозу и пентозы: ксилозу и арабинозу; целлюлоза — в глюкозу. Лигнин при гидролизе остается в виде нерастворимого остатка.

Гидролиз древесины осуществляют в гидролизном аппарате — стальном цилиндрическом сосуде. В результате гидролиза получают гидролизат, содержащий около 2-3% сбраживаемых моносахаридов и нерастворимый остаток-лигнин. Последний можно использовать непосредственно в производстве строительных плит, в кирпичном производстве, при помоле цемента, в качестве топлива; после соответствующей обработки лигнин может применяться в производстве пластмасс, резиновой промышленности и др.

Полученный гидролизат направляют в испаритель, где пар отделяется от жидкости. Выделяющийся пар конденсируют и используют для выделения из него фурфурола, скипидара и метилового спирта. Затем гидролизат охлаждают до 75-80°С, нейтрализуют в нейтрализаторе известковым молоком до pH 4-4,3 и добавляют питательные соли для дрожжей (сернокислый аммоний, суперфосфат). Полученный нейтрализат отстаивают для освобождения от выпавшего осадка сернокислого кальция и других взвешенных частиц. Осевший осадок сернокислого кальция отделяют, сушат, обжигают и получают алебастр, используемый в строительной технике. Нейтрализат охлаждают до 30-32°С и направляют на брожение. Подготовленный таким образом к брожению гидролизат называется суслом. Брожение гидролизного сусла производят непрерывным способом в бродильных чанах. При этом дрожжи непрерывно циркулируют в системе; дрожжи отделяют от бражки на сепараторах. Выделяющийся при брожении углекислый газ используют для выпуска жидкой или твердой углекислоты. Зрелую бражку, содержащую 1,0-1,5% спирта, направляют для перегонки и ректификации на брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Барда, полученная после перегонки, содержит пентозы и ее используют для выращивания кормовых дрожжей.


При переработке по указанной схеме из 1 т абсолютно сухой хвойной древесины можно получить следующие количества товарных продуктов:

  • Спирта этилового, л ………………….. 187
  • Жидкой углекислоты, кг …………….. 70
  • или твердой углекислоты, кг ……… 40
  • Дрожжей кормовых, кг…………….. .. 40
  • Фурфурола, кг …………………………….9,4
  • Скипидара, кг ……………………………0,8
  • Термоизоляционных и строительных лигно-плит, м 2 …. 75
  • Алебастра строительного, кг ……..225
  • Сивушного масла, к г ………………..0,3

Производство спирта из сульфитных щелоков

При производстве целлюлозы из древесины по сульфитному способу в качестве отхода получают сульфитный щелок — коричневую жидкость с запахом сернистого газа. Химический состав сульфитного щелока (%): вода — 90, сухие вещества — 10, в том числе производные лигнина — лигносульфонаты — 6, гексозы — 2, пентозы -1 , летучие кислоты, фурфурол и другие вещества — около 1. Длительное время сульфитные щелока спускали в реки, они загрязняли воду и уничтожали рыбу в водоемах. В настоящее время у нас имеется ряд заводов по комплексной переработке сульфитного щелока на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты. Производство спирта из сульфитных щелоков состоит из следующих стадий: подготовка сульфитного щелока к брожению, сбраживание сульфитнощелокового сусла, перегонка зрелой сульфитной бражки.

Подготовку сульфитного щелока к сбраживанию осуществляют по непрерывной схеме. Щелок продувают воздухом для удаления летучих кислот и фурфурола, задерживающих процесс брожения. Продутый щелок нейтрализуют известковым молоком и затем выдерживают для укрупнения выпавших кристаллов сернокислого и сернистокислого кальция; при этом добавляют питательные соли для дрожжей (сернокислый аммоний и суперфосфат). Затем щелок отстаивают. Осевший осадок- шлам — спускают в канализацию, а осветленный щелок охлаждают до 30-32°С. Подготовленный таким образом щелок называется суслом. Сусло направляют в бродильное отделение и сбраживают так же, как гидролизаты древесины, или применяют метод с подвижной насадкой. Подвижной насадкой называются волокна целлюлозы, остающиеся в щелоке. Метод брожения с подвижной насадкой основан на свойстве некоторых рас дрожжей сорбироваться на поверхности целлюлозных волокон и образовывать хлопья волокнисто-дрожжевой массы, которая в зрелой бражке быстро и полно оседает на дно чана. Брожение проводят в бродильной батарее, которая состоит из головного и хвостового чанов. В бродящем сусле волокна целлюлозы с сорбированными дрожжами находятся в непрерывном движении под влиянием выделяющегося углекислого газа. Отбродившая бражка поступает из головного чана в хвостовой, где заканчивается процесс брожения, и волокна с дрожжами оседают на дно. Осевшую дрожжеволокнистую массу насосом возвращают в головной чан, куда одновременно подают сусло, а зрелую бражку, содержащую 0,5-1% спирта, направляют в брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Полученная после перегонки барда содержит пентозы и служит питательной средой для выращивания кормовых дрожжей, которые затем отделяют, высушивают и выпускают в виде сухих дрожжей. Барду после отделения дрожжей, содержащую лигносульфонаты, упаривают до содержания сухих веществ 50-80%. Полученный продукт называется сульфитно-бардяным концентратом и применяется в производстве пластических масс, строительных материалов, синтетических дубителей для получения кожи, в литейном производстве и дорожном строительстве.

Из сульфитно-бардяных концентратов можно получить ценное ароматическое вещество — ванилин.

Технологическая схема комплексной переработки сульфитных щелоков на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты показана на рисунке 2.

При переработке сульфитных щелоков получают в пересчете на 1т еловой древесины:

  • Спирта этилового, л ……………….. 30-50
  • Спирта метилового, л …………………… 1
  • Жидкой углекислоты, л ………….. 19-25
  • Сухих кормовых дрожжей, кг …. 15
  • Сульфитно-бардяных концентратов влажностью 20%, кг …. 475

Производство спирта синтетическим методом

Сырьем для производства синтетического этилового спирта служат газы нефтеперерабатывающих заводов, которые содержат этилен. Кроме того, можно использовать и другие этиленсодержащие газы: коксовый газ, получаемый при коксовании угля, и попутные нефтяные газы.

В настоящее время синтетический этиловый спирт получают двумя способами: сернокислотной гидратацией и прямой гидратацией этилена.

Сернокислая гидратация этилена

Производство этилового спирта этим способом состоит из следующих процессов: взаимодействия этилена с серной кислотой, при котором образуются этилсерная кислота и диэтилсульфат; гидролиз полученных продуктов с образованием спирта; отделение спирта от серной кислоты и очистка его.

Сырьем для сернокислой гидратации служат газы, содержащие 47-50% вес. этилена, а также газы с меньшим содержанием этилена. Процесс осуществляется по схеме, приведенной ниже.


Этилен взаимодействует с серной кислотой в реакционной колонне, представляющей собой вертикальный цилиндр. Внутри колонны находятся колпачковые тарелки с переливными стаканами. В нижнюю часть колонны компрессором подают этиленосодержащий газ, сверху в колонну подводят для орошения 97-98%-ная серная кислота. Газ, поднимаясь вверх, на каждой тарелке барботирует через слой жидкости. Этилен с серной кислотой взаимодействует по реакциям:

Из реакционной колонны непрерывно вытекает смесь этилсерной кислоты, диэтилсульфата и непрореагировавшей серной кислоты. Эту смесь охлаждают в холодильнике до 50°С и направляют на гидролиз, при котором протекают такие реакции:

Моноэтилсульфат, полученный в результате второй реакции, подвергают дальнейшему разложению с образованием еще одной молекулы спирта.

Прямая гидратация этилена

Технологическая схема производства этилового спирта способом прямой гидратации этилена представлена ниже.


Сырьем для способа прямой гидратации служит газ с высоким содержанием этилена (94-96%). Этилен сжимают компрессором до 8-9 КПа. Сжатый этилен смешивают с водяным паром в определённых соотношениях. Взаимодействие этилена с водяным паром производят в контактном аппарате — гидрататоре, представляющим собой вертикальную стальную полую цилиндрическую колонну, в которой находится катализатор (фосфорная кислота, нанесенная на алюмосиликат).

Смесь этилена и водяного пара при 280-300°С под давлением около 8,0 КПа подают в гидрататор, в котором поддерживают такие же параметры. При взаимодействии этилена с водяным паром, кроме основной реакции образования этилового спирта, протекают побочные реакции, в результате которых получаются диэтиловый эфир, уксусный альдегид и продукты полимеризации этилена. Продукты синтеза уносят из гидрататора небольшое количество фосфорной кислоты, которая может в дальнейшем оказывать коррозийное действие на аппаратуру и трубопроводы. Чтобы избежать этого, кислоту, содержащуюся в продуктах синтеза, нейтрализуют щелочью. Продукты синтеза после нейтрализации пропускают через солеотделитель, а затем охлаждают в теплообменнике и производят конденсацию водно-спиртовых паров. Получают смесь водно-спиртовой жидкости и непрореагировавшего этилена. Непрореагировавший этилен отделяют от жидкости в сепараторе. Он представляет собой вертикальный цилиндр, в котором установлены перегородки, резко изменяющие скорость и направление газового потока. Этилен из сепаратора отводят во всасывающую линию циркуляционного компрессора и направляют на смешение со свежим этиленом. Водно-спиртовой раствор, вытекающий из сепаратора, содержит 18,5-19% об. спирта. Его концентрируют в отпарной колонне и в виде паров направляют для очистки в ректификационную колонну. Спирт получают крепостью 90,5% об. На заводах синтетического спирта применяется способ прямой гидратации этилена.

Производство синтетического спирта, независимо от способа его получения, значительно более эффективно, чем производство спирта из пищевого сырья. Для получения 1 т этилового спирта из картофеля или зерна необходимо затратить 160-200 чел -дней, из газов нефтепереработки только 10 чел -дней. Себестоимость синтетического спирта примерно в четыре раза меньше себестоимости спирта из пищевого сырья.

Статьи Рисунки Таблицы О сайте English     Ранее метанол получали при сухой перегонке дерева (отсюда его название древесный спирт). Он применяется как растворитель и для различных органических синтезов — получение формальдегида, некоторых красителей, фотореактивов, фармацевтических препаратов. 

В гидролизном спирте, полученном из древесных опилок, может быть примесь метилового спирта. Эта примесь недопустима, так как метиловый спирт очень ядовит и в определенной концентрации может привести к тяжелому отравлению и слепоте. В качестве примеси в спирте могут быть дубильные вещества, если спирт хранился в дубовых бочках. 


    Метиловый спирт (метанол) в течение длительного времени получали из водного дистиллата, выделяющегося при сухой перегонке древесины (отсюда и название — древесный спирт). Выход спирта при этом зависит от породы древесины и колеблется в пределах от 3 до 6 кг на каждый кубометр сухой древесины. В 1933 г. в СССР была пущена первая установка по получению метилового спирта из синтез-газа, и в настоящее время более 90% его получают таким образом. Метиловый спирт является важным видом сырья для получения формальдегида, диметил-сульфата, антидетонационных смесей, ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется как добавка к моторному топливу и в качестве растворителя. 

Гидролиз целлюлозы, иначе называемый осахариванием,-очень важное свойство целлюлозы, он позволяет получить из древесных опилок и стружек глюкозу, а сбраживанием последней — этиловый спирт. Этиловый спирт, полученный из древесины, называется гидролизным.  

Поэтому большинство установок для перегонки дерева получают лишь часть содержащихся в сыром древесном спирте метилового спирта и ацетона в виде чистого метилового спирта и чистого ацетона. Остальную значительную часть в виде первых и средних погонов, полученных в колонках обычным способом, т. е. без введения воды и пара, смешивают вместе и получают древесный спирт для денатурации. Отделение метилового спирта от ацетона описанным здесь способом, посредством которого это отделение происходит почти количественно, дает значительное финансовое преимущество перед прочими установками, ра- 

Метиловый спирт (метанол, древесный спирт) СНзОН — бесцветная жидкость с характерным запахом, смешивается с водой в любых соотношениях, хороши растворитель многих органических веществ, горит бледным пламенем. М. с. очень ядовит, вызывая в малых дозах слепоту, в больших — смерть. В промышленности метиловый спирт получают двумя способами присухой перегонке дерева (поэтому его называют древесным спиртом) и синтетически из СО и Нг в присутствии катализатора (напр., оксид цинка ZnO), при 300-600 °С и давлении 5-10 Па (СО + Ц- 2Нг = СНзОН). М. с. применяют как сырье для получения муравьиного альдегида (формальдегида) и для синтеза других органических веществ, в производстве красителей и лаков. 

Метиловый спирт (метанол) СН3ОН, носящий еще название древесного спирта (по старому способу его получения — сухой перегонкой дерева), представляет собой бесцветную жидкость, кипящую при 64,7° С. Обладает характерным спиртовым запахом, горит бледным пламенем. Метиловый спирт сильно ядовит. При принятии внутрь вызывает тяжелое отравление, сопровождаемое потерей зрения может привести к смертельному исходу. 

Первыми источниками получения органических веществ были животные и растительные организмы X, продукты их жизнедеятельности. Каждый живой организм представляет собой своеобразную химическую лабораторию, в которой осуществляются как процессы синтеза, так и распада. В растительных организмах из простых исходных веществ (диоксид углерода, вода) под воздействием солнечной энергии синтезируются сложные органические вещества (фотосинтез). В животных организмах, наоборот, сложные органические вещества (сахара, белки, жиры) распадаются на более простые, часть из них как бы сгорает, отдавая энергию и превращаясь в СО2 и Н2О, но в то же время в организме также синтезируются специфические белки, жиры и другие вещества. Растительный мир является главным производителем органических веществ. Особое место в этом отношении занимают деревья. Древесина и полученные из нее целлюлоза и лигнин являются ценным сырьем для химической переработки. Так, например, сухая перегонка древесины с давних времен применялась для получения органических соединений, таких, как уксусная кислота, метиловый спирт (древесный спирт), ацетон, фенолы. 


    До середины XIX в. практика переработки органических веществ не выходила за пределы извлечения из растительного и животного сырья содержащихся в нем ценных продуктов (например,- красителей, сахаров, дубителей и др.). Для выделения их использовались простейшие механические и тепловые процессы обработки сырья дробление, растворение, фильтрование, отжим, выпаривание, перегонка и т. д. При получении спирта, уксусной кислоты и некоторых других органических веществ использовались биохимические процессы (в частности, брожение). Некоторые органические продукты были выделены при термическом разложении природного сырья. Так, при сухой перегонке древесины наряду с древесным углем получали уксусную кислоту, древесный спирт, деготь. 

Фракции сырой (неочищенной) смолы представляют собой сложные смеси, состоящие из легких и тяжелых масел, которые находят применение для пропитки древесины и медицинских целей. При перегонке смолы в остатке получают пек. Фракцию тяжелых масел перерабатывают на креозот. Основным компонентом этого продукта является гваякол, применяемый в фармацевтической промышленности как антисептическое средство. Фенольные компоненты пиролизной смолы можно также использовать при получении связующих для фанеры . Древесный спирт содержит около 60 % метанола и различных примесей (см. 12.5). Его используют в качестве растворителя и для денатурации этанола. Из фракции древесного уксуса (см. 12.5) можно получить чистую уксусную кислоту и пищевой уксус. Решение вопроса о том, следует или нет получать очищенные продукты, зависит от экономических соображений и требований экологии . Неконденсируемые газы, состоящие из диоксида и моноксида углерода, водорода, метана и других углеводородов (теплота сгорания около 8,9 МДж/м), применяют для предварительной сушки древесины и в качестве газа для продувки реторт . 

В промышленности метиловый спирт раньше получали при сухой перегонке древесины, откуда и его название — древесный спирт. При нагревании древесины без доступа воздуха происходит разложение целлюлозы и других веществ, в частности сложного вещества, спутника целлюлозы — лигнина. В результате образуются различные газообразные, жидкие и твердые продукты, в том числе.и метиловый спирт. Полученный таким образом метиловый спирт всегда содержит примеси уксусной кислоты, ацетона и других органических веществ. 

Метиловый спирт. Метиловый спирт (другие названия метанол, карбинол, древесный спирт) — простейший одноатомный спирт, бесцветная легкоподвижная жидкость. Сильный яд (прием внутрь вызывает слепоту, при больших дозах — смерть). Современный метод получения — каталитический синтез из окиси углерода и водорода (температура 300-400 С, давление 250-500 атм, катализатор — окись цинка)  

Метиловый спирт прежде получали деструктивной перегонкой древесины и называли его поэтому иногда древесным спиртом. Это ядовитое вещество, и употребление его приводит к слепоте и смерти. Метиловый спирт применяют в качестве растворителя, а также используют для получения других органических соединений. 

В табл. 38 приведены доли спирта от всего поступившего на ректификацию, в пересчете на 100%-ный, в отг льных сортах ректификованных спиртов, полученных ректификацией необработанного спирта-сырца и обработанного перед ректификацией древесным углем, едким натром либо перманганатом калия в табл. 39 — основные характеристики полученных при этом ректификованных спиртов I сорта. В представленных таблицах столбцы, пронумерованные цифрой 1, относятся к ректификованному спирту, полученному из необработанного спирта-сырца 2 — обработанного древесным углем 3 — обработанного едким натром 4 — обработанного перманганатом калия. 

Некоторое количество метилового спирта получается методом сухой перегонки древесины отсюда и одно из названий метанола — древесный спирт. Это наиболее старый способ его получения. 

Летучие компоненты отделяют перегонкой с получением сырых продуктов. Так, фракция древесного спирта состоит из воды, 45 % метанола, 7 ацетона, 5 метилацетата, 3 % ацетальдегида и небольших количеств аллилового спирта, метилформиата, фурана и фурфурола. Фракция древесного уксуса содержит в основном уксусную кислоту, а также пропионовую, масляную и другие кислоты. Главными компонентами фракции смолы являются крезол, гваякол, другие фенолы и простые эфиры фенолов . 

Метилозый спирт образуется и при сухой перегонке дерева поэтому его называют также древесным спиртом. Применяется он как растворитель, а также для получения других органических веществ. 

Первый представитель гомологического ряда предельных одноатомных спиртов — метиловый спирт (метанол) СН3ОН раньше часто называли древесным спиртом. Происхождение этого названия связано со старинным способом получения метилового спирта при сухой перегонке дерева. В настоящее время метанол получается исключительно синтетическим путем, при пропускании смеси окиси углерода и водорода при 350 °С и 250 атм над катализатором, состоящим из смеси цинка, хрома и других металлов  

Метиловый спирт. Метило1 лй спирт (другие названия метанол, карбинол, древесный спирт) — простейший одноатомный спирт, бесцветная жидкость. Сильный яд (прием внутрь вызывает слепоту, при ббльших дозах — смерть). Сов >еменный метод получения — каталитический синтез из оксида углерэда (II) и водорода [томпература 250°С, давление 7 МПа, катализатор — смесь оксидов цинка и меди (II)] 

При сухой перегонке древесины уксусная кислота, собирается в подсмольной воде. Для отделения уксусной кислоты от древесного спирта и ацетона ее нейтрализуют известью полученный уксуснокислый кальций, так называемый уксусный порошок, разлагают соляной кислотой или серной кислотой  

Кроме этих наименований некоторые спирты имеют еще эмпирические наименования, связанные с историей открытия в том или ином природном продукте, способом получения и т. д. Например, метиловый спирт часто называют древесным спиртом, т к как он получается при сухой перегонке дерева этиловый спирт называют винным спиртом, так как он был впервые обнаружен в виноградном вине, и т. д. 

Метиловый спирт, или метанол, СН3ОН (также древесный спирт, или карбинол) получается любым из общих способов получения спиртов. Однако в течение многих лет единственным источником его являлись продукты сухой перегонки дерева. Водный слой, получаемый наряду с древесным дегтем при медленном нагревании дерева без доступа воздуха, содержит 1-2% метилового спирта и, кроме того, много уксусной кислоты (10%) и немного ацетона (0,5%). Уксусную кислоту отделяют обработкой известью, после чего метиловый спирт очищают дробной перегонкой и другими способами. 

В течение длительного времени химики называли органические вещества по случайным признакам. Чаще всего эти названия отражали происхождение веществ (муравьиная, яблочная, винная кислоты, молочный сахар, винный и древесный спирты и др.), иногла- способ получения (пировиноградная кислота), а порой — имя исследователя (например, кетон Михлера). Эти случайные названия, не отражающие строения молекул органических веществ, получили название тривиальных, а система этих названий — тривиальной номенклатуры. Эти названия используются и сейчас, особенно когда речь идет о привычных и часто применяемых реактивах. 

Метиловый спирт, метанол, древесный спирт. Бесцветная жидкость, т. кип, 64,5°, хорошо растворяется в воде. Широко применяется в лабораторной работе как растворитель, а также в ряде органических синтезов (получение формальдегида, реакция метилирования и др.). Обладает высокой токсичностью и вызывает тяжелые отравления. При постоянной работе с метиловым спиртом опасно постепенное (комулятивное) нарастание его действия. Помимо наркотического действия метиловый спирт вызывает органическое поражение зрительного нерва и сетчатки глаз, в связи с чем при отравлении метиловым спиртом может наступить полная или частичная потеря зрения. Смертельная доза при приеме внутрь метилового спирта 30 г тяжелые отравления могут наступить при приеме 5-10 г . 

Как видно из представленных данных, ректификованные спирты I сорта, полученные из обработанного и необработанного спирта-сырца, имеют одинаковые или близкие показатели по вкусу и запаху, крепости, содержанию фурфурола, альдегидов и сивушного масла. (Понятно, что к характеристикам спирта, обозначенным словами нет и следы, небходимо относиться осторожно, с пониманием того, что анализ произведен в условиях промышленного производства исследования выполнены на Бах-мачском винокуренном заводе Черниговской губернии.) Но в спиртах, полученных перегонкой спирта-сырца, обработанного древесным углем и едким натром, содержание эфиров и кислот ниже, чем у двух других спиртов. Значительно лучше у них и показатель Ланга (см. с. 216-218). Выход ректификованных 

Основной пирогенетический процесс был выбран с получением древесного угля, который является более дефицитным и нужным продуктом, чем древесный генераторный газ. Для получения наибольшей гаммы продуктов пиролиза, образующихся при НИЗКИХ и высоких температурах, процесс разложения ведется в две стадии. Сначала древесину подвергают предварительному пиролизу в среде жидкого теплоносителя (дизельное топливо) с температурой 275° и получают основную массу кислот, легкокипящих продуктов, входящих в так называемый древесный спирт, и смол. Образующуюся в результате предпиролиза бурую древесину (см. стр. 37) подвергают вторичному пиролизу при температуре 600-700° с твердым теплоносителем (древесный уголь) и Получают светильный газ и жижку, содержащую отстойную смолу с большим выходом низкокипящих фенолов, дополнительное количество кислот и древесный уголь. Последний отличается низким содержанием летучих и повышенной активностью. 

Осветленный сьфой древесный спирт должен быть и оставаться щелочным, прежде чем можно приступить к его иере-гоеке. Если он не щелочной, то полученный из него чистый метиловый спирт будет желтым, часто даже после нескольких перегонок. Если очистка известковым раствор ом проведена тщательно, то выделенный при взбалтывании 1 ч. отстоявшегося древесного спирта с 2 ч. раствора едкого натра уд. в. 1,3 ацетон 

Номенклатура. Первый член гомологического ряда предельных одноатоммых спиртов в прошлом получали путем сухой перегонки древесины, а поэтому полученный спирт называли древесным спиртом или карбинолом. Следующий член — С2Н5ОН — был назван винным спиртом еще алхимиками. 

По вопросу получения формальдегида из метана имеется обширная патентная литература. Процесс окисления начинается здесь при повышенной температуре (500-600°), которая поддерживается далее теплотой самой реакции для ее успешного течения некоторые авторы рекомендуют применение давления, а также катализаторов (Си, Ге, N1, Со). Формальдегид находит обширное применение в качестве дезинфе цирующего вещества и антисептика в химической технологии он широко применяется для изготовления органических красок (фуксин и др.), искусственных смол (бакелит и т. п.) и т. д. Технически формальдегид получается пока окислением древесного спирта. 

Смотреть страницы где упоминается термин Древесный спирт получение :                               Начала органической химии Кн 1 Издание 2 (1975) — [

Общая схема получения этилового спирта из гидролизной «черной патоки» такова. Сырье в измельченном виде загружают в многометровую стальную гидролизную колонну, изнутри облицованную химически стойкой керамикой. Туда подают под давлением горячий раствор соляной кислоты. В результате химической реакции из целлюлозы получается продукт, содержащий сахар, так называемая «черная патока». Этот продукт нейтрализуют известью и туда добавляют дрожжи — сбраживают патоку. После чего опять нагревают, и выделяющиеся пары конденсируются в виде этилового спирта (называть его «винным», не хочется).
Гидролизный способ — самый экономный способ производства этилового спирта. Если традиционным биохимическим способом сбраживания из одной тонны зерна можно получить 50 литров спирта, то из одной тонны древесных опилок, гидролизным способом преобразованных в «черную патоку», выгоняется 200 литров спирта. Как говориться: «Почувствуйте выгоду!» Весь вопрос, можно ли «черную патоку» как осаха-ренную целлюлозу называть «пищевым продуктом», наравне с зерном, картофелем и свеклой. Лица, заинтересованные в производстве дешевого этилового спирта, считают так: « А чё, почему нельзя? Ведь барда, как остаток «черной патоки», после ее перегонки идет на корм скоту, значит, она тоже пищевой продукт». Как тут не вспомнить слова Ф.М.Достоевского: «Образованный человек, когда это ему нужно, может словесно оправдать любую мерзость».
В 30-х годах прошлого века в осетинском поселке Беслан был построен крупнейший в Европе крахмалопа-точный комбинат, который с тех пор выпускает миллионы литров этилового спирта. Потом мощные заводы по производству этилового спирта были построены по всей стране, в том числе при Соликамском и Архангельском целлюлозо-бумажных комбинатах. И.В. Сталин, поздравляя строителей гидролизных заводов, которые во время войны, несмотря на трудности военного времени, досрочно ввели их в эксплуатацию, отметил, что это «дает возможность сэкономить государству миллионы пудов хлеба» (Газета «Правда» от 27 мая 1944 г.).
Этиловый спирт, полученный из «черной патоки», а, по сути, из древесины (целлюлозы), осахаренной гидролизным способом, если, конечно, он хорошо очищен, не отличить от спирта, полученного из зерна или картофеля. По действующим стандартам такой спирт бывает «высшей очистки», «экстра» и «люкс», последний — самый лучший, то есть имеет самую высокую степень очистки. Водкой, приготовленной на основе такого спирта, не отравишься. На вкус такой спирт нейтрален, то есть «никакой» — безвкусный, в нем лишь одни «градусы», он только обжигает слизистую оболочку рта. Внешне распознать водку, сделанную на основе этилового спирта гидролизного происхождения, довольно трудно, а различные ароматизаторы, добавляемые к таким «водкам», придают им некоторое отличие друг от друга.
Однако не все так хорошо, как кажется на первый взгляд. Генетики провели исследования: одной партии подопытных мышей в рацион добавляли настоящую (зерновую) водку, другой — гидролизную, из древесины. Мыши, которые употребляли «сучок» умирали гораздо быстрее, а их потомство вырождалось. Но результаты этих исследований не остановили выпуск псевдорусских водок. Это как в популярной песне: «Ведь если водку гнать не из опилок, то что б нам было с пяти бутылок…»

Растёт спрос на биотоплива — горючие жидкости, изготовленные из возобновляемых биологических ресурсов. Один из них — древесина. Можно ли из древесины получать топливо, не уступающее нефтяному?

Первое, что нужно уяснить — это то, что именно бензина или керосина из дерева сделать нельзя. Оно не поддаётся разложению на углеводороды с прямой цепью, из которых главным образом состоят нефтепродукты. Однако это не означает, что из него нельзя получать вещества, способные заменить нефтепродукты.

Некоторые любят табуретовку

Первый в списке, конечно же, спирт. Из древесины можно получать два различных вида спирта. Первый, который так и называется древесным — по-научному метиловый спирт. Это вещество очень похоже на привычный этиловый спирт, как по горючести, так и по запаху и вкусу. Однако метиловый спирт отличается тем, что весьма ядовит, и приём его внутрь может привести к смертельному отравлению. Вместе с тем он является высококачественным моторным топливом, его октановое число даже выше, чем у этилового спирта, и намного выше, чем у обыкновенного бензина.

Технология получения метилового спирта из древесины очень проста. Он получается путём сухой перегонки, или пиролиза. Точнее, он является одной из составных частей жижки — смеси кислородсодержащих органических веществ, отделяющихся от свежевыгнанной древесной смолы. Однако выход полученного таким образом спирта слишком мал, чтобы он мог использоваться в качестве топлива. Это делает подобную технологию получения топлива бесперспективной.

Однако из древесины можно получить и этиловый спирт, в намного больших количествах. Этот спирт — так называемый гидролизный — получается при разложении целлюлозы, основного компонента древесины, с помощью серной кислоты. Вернее, при разложении целлюлозы получаются сахара, которые в свою очередь могут быть переработаны в спирт обычным путём. Этот способ получения этилового спирта весьма распространён в промышленности, именно гидролизным способом получают практически весь технический спирт, применяемый в непищевых целях.

Этиловый спирт может быть использован как непосредственно вместо бензина, так и в качестве присадки к бензину. Путём таких присадок получаются различные сорта биотоплива, популярные, в частности, в таких странах, как Бразилия.

Получение этилового спирта путём гидролиза древесины экономически несколько менее выгодно, чем получение его из различных сельскохозяйственных культур. Однако выгодной стороной такого способа получения биотоплива является то, что он не требует отведения сельскохозяйственных площадей под «топливные» культуры, не дающие пищевых продуктов, а позволяет использовать для его производства территории, задействованные в лесном хозяйстве. Это делает получение биотопливного этанола из древесины достаточно практичной технологией.

И терпентин на что-нибудь полезен

Недостатком этанола как топлива является его низкая теплота сгорания. При использовании в двигателях в чистом виде он даёт или меньшую мощность, или больший расход, чем бензин. Решить эту проблему помогает смешивание спирта с веществами с высокой теплотой сгорания. И не обязательно это продукты из нефти: в качестве такой присадки вполне годится скипидар, или терпентин.

Скипидар — тоже продукт переработки древесины, а если конкретно — хвойной: сосен, елей, лиственниц и других. Он достаточно широко применяется как растворитель, а наиболее очищенные его сорта находят применение в медицине. Однако лесоперерабатывающая промышленность в качестве побочного продукта производит большое количество так называемого сульфатного скипидара — низшего сорта, содержащего ядовитые примеси, не только неприменимого в медицине, но и находит весьма ограниченное применение в химической и лакокрасочной промышленности.

Вместе с тем скипидар из всех продуктов переработки древесины более всего похож на нефтепродукт, точнее — на керосин. Он отличается весьма высокой теплотой сгорания, может использоваться как горючее в керосиновых примусах, лампах, керогазах. Пригоден он и в качестве моторного топлива, правда, непродолжительное время: если его заливать в баки в чистом виде, двигатели вскоре выходят из строя из-за засмоления.

Однако скипидар можно использовать в качестве топлива не в чистом виде, а в качестве присадки к этанолу. Такая присадка не сильно снижает октановое число этилового спирта, но повышает теплоту его сгорания. Ещё одна положительная сторона такой технологии изготовления биотоплива в том, что скипидар денатурирует спирт, делает его непригодным для употребления внутрь в качестве алкоголя. А социальные последствия широкого внедрения неденатурированного спирта в качестве топлива могут стать весьма тяжелыми.

Лигниновые отходы — в доходы!

Такой компонент древесины, как лигнин, считается малополезным. Его применение в промышленности значительно менее широкое, нежели у целлюлозы. Несмотря на то, что он находит применение в производстве строительных материалов и в химической промышленности, чаще его просто сжигают прямо на лесохимпроизводстве. Однако, как выясняется, при пиролизе лигнина можно получить более разнообразные продукты, чем при пиролизе целлюлозы.

Лигнин состоит главным образом из ароматических циклов и коротких прямых углеводородных цепей. Соответственно, при его пиролизе получаются преимущественно углеводороды. Однако, в зависимости от технологии пиролиза, можно получать как продукт с высоким содержанием фенола и родственных ему веществ, так и жидкость, напоминающую нефтепродукты. Эта жидкость также пригодна в качестве присадки к этиловому спирту для получения биотоплива.

Разработаны технологии и установки для пиролиза, которые могут потреблять как лигнин из отвалов, так и неразделённые на лигнин и целлюлозу отходы древесины. Более высокие результаты получаются при смешивании лигнина или древесных отходов с мусором, состоящим из выброшенного пластика или резины: пиролизная жидкость получается более нефтеподобной.

Мирный атом и опилки

Ещё одна технология получения биотоплива из древесины разработана совсем недавно российскими учёными. Она относится к области радиохимии, то есть химических процессов, протекающих под воздействием радиоактивного излучения. В опытах учёных из ИФХЭ им. Фрумкина опилки и другие отходы древесины подвергались одновременному воздействию сильного бета-излучения и сухой перегонки, причём нагревание древесины проводилось именно с помощью сверхсильной радиации. Удивительно, но под воздействием радиации состав продуктов, получаемых при пиролизе, изменился.

В пиролизной жидкости, полученной «радиоактивным» способом, было обнаружено высокое содержание алканов и циклоалканов, то есть углеводородов, содержащихся главным образом в нефти. Эта жидкость получилась значительно легче нефти, сравнимой, скорее, с газоконденсатом. Причём экспертиза подтвердила пригодность этой жидкости для использования в качестве моторного топлива или переработки в высококачественные топлива, такие, как автомобильный бензин. Думаем, что это не заслуживает особого упоминания, но проясним ради успокоения страхов радиофобов: бета-излучение не способно вызывать наведённую радиоактивность, поэтому топливо, получаемое этим способом, безопасно и не проявляет радиоактивных свойств само.

Что пускать в переработку

Понятно, что предпочтительнее использовать для производства биотоплива не цельные стволы деревьев, а отходы переработки древесины, такие, как опилки, щепу, веточки, кору, да и тот же лигнин, который идёт в отвалы и печи. Выход этих отходов с гектара поваленного леса, конечно же, ниже, чем древесины в целом, но не следует забывать, что они получаются в качестве побочного продукта в производственных процессах, которые уже идут на многих предприятиях страны, соответственно, отходы производства дешевы и для их получения не нужно вырубать или засаживать под вырубку дополнительные площади леса.

В любом случае, древесина является ресурсом возобновляемым. Способы восстановления лесных площадей давно известны, а во многих регионах страны наблюдается даже и неконтролируемое зарастание лесом заброшенных сельскохозяйственных земель. Так или иначе, Российская Федерация не относится к странам, где к сбережению леса следует относиться со всем тщанием; площадей нашего леса и его потенциала к самовосстановлению вполне достаточно, чтобы загрузить полностью и лесоперерабатывающую промышленность, и производство биотоплив, и многие другие производства.

Гидролиз полисахаридов растительной ткани в холодной воде практически не наблюдается. При повышении температуры воды выше 100° гидролиз полисахаридов протекает, но настолько мед­ленно, что практического значения такой процесс не имеет. Удо­влетворительные результаты получаются только при при­менении катализаторов, из которых производственное значение имеют лишь сильные минеральные кислоты: серная и реже со­ляная. Чем выше концентрация сильной кислоты в растворе и температура реакции, тем быстрее протекает гидролиз поли­сахаридов до моносахаридов. Однако присутствие таких ката­лизаторов имеет и отрицательную сторону, так как они одно­временно с реакцией гидролиза полисахаридов ускоряют и реак­ции распада моносахаридов, соответственно снижая этим их выход.

При распаде гексоз в этих условиях вначале образуется окси — метилфурфурол, который быстро разлагается далее с образова­нием конечных продуктов: левулиновой и муравьиной кислот. Пентозы в этих условиях превращаются в фурфурол.

В связи с этим, чтобы получить из полисахаридов расти­тельной ткани моносахариды, необходимо обеспечить наиболее благоприятные условия для реакции гидролиза и максимально сократить возможности дальнейшего распада образующихся моносахаридов.

В этом заключается задача, которую решают исследователи и производственники при выборе оптимальных режимов гид­ролиза.

Из большого числа возможных вариантов концентрации кис­лоты и температуры реакции в настоящее время практически применяются только два: гидролиз разбавленными кислотами и гидролиз концентрированными кислотами. При гидролизе раз­бавленными кислотами температура реакции обычно составляет 160-190° и концентрация катализатора в водном растворе ко­леблется от 0,3 до 0,7% (h3S04, НС1).

Реакцию проводят в автоклавах под давлением 10-15 атм. При гидролизе концентрированными кислотами концентрация серной кислоты обычно составляет 70-80%, а соляной 37-42%. Температура реакции в этих условиях 15-40°.

Снизить потери моносахаридов легче при гидролизе концен­трированными кислотами, вследствие чего выход сахара при этом методе может достигать почти теоретически возможного, т, е. 650-750 кг из 1 т абсолютно сухого растительного сырья.

При гидролизе разбавленными кислотами снизить потери моносахаридов вследствие их разложения значительно труднее и поэтому практически выход моносахаридов в этом случае обычно не превышает 450-500 кг из 1 г сухого сырья.

Ввиду малых потерь сахара при гидролизе концентрирован­ными кислотами получающиеся водные растворы моносахари­дов — гидролизаты отличаются повышенной чистотой, что имеет большое значение при их последующей переработке.

Серьезным недостатком методов гидролиза концентрирован­ными кислотами до последнего времени был большой расход минеральной кислоты на тонну получаемого сахара, что приво дило к необходимости регенерации части кислоты или использо­вания ее в других производствах; это осложняло и удорожало строительство и эксплуатацию таких заводов.

Большие трудности возникали также при подборе для аппа­ратуры материалов, стойких в агрессивных средах. По этой при­чине основная масса действующих в настоящее время гидролиз­ных заводов была построена по методу гидролиза разбавленной серной кислотой.

Первый опытный гидролизно-спиртовый завод в СССР был пущен в январе 1934 г. в г. Череповце. Исходные показатели и технический проект этого завода были разработаны кафедрой гидролизных производств Ленинградской лесотехнической ака­демии в 1931 -1933 гг. На основе данных эксплуатации опытного завода было начато строительство в СССР промышленных гид — ролизно-спиртовых заводов. Первый промышленный гидролизно — спиртовый завод был пущен в Ленинграде в декабре 1935 г. Вслед за этим заводом в период 1936-1938 гг. вошли в строй Бобруйский, Хорский и Архангельский гидролизно-спиртовые заводы. Во время второй мировой войны и после нее было по­строено много больших заводов в Сибири и на Урале. В настоя­щее время проектная мощность этих заводов в результате со­вершенствования технологии перекрыта в 1,5-2 раза.

Основным сырьем для этих заводов является хвойная дре­весина в виде опилок и щепы, поступающая с соседних лесопиль­ных заводов, где ее получают путем измельчения в рубительных машинах отходов лесопиления — горбыля и рейки. В отдельных случаях измельчают и хвойные дрова.

Схема получения моносахаридов на таких заводах представ­лена на рис. 76.

Измельченная хвойная древесина со склада сырья по транс­портеру 1 поступает в направляющую воронку 2 и далее в горло-

Вину гидролизаппарата 3. Это вертикальный стальной цилиндр с верхним и нижним конусами и горловинами. Внутреннюю по­верхность такого гидролизаппарата покрывают кислотоупорны­ми керамическими или графитовыми плитками или кирпичом, укрепленным на слое бетона толщиной 80-100 мм. Швы между плитками заполняются кислотоупорной замазкой. Верхняя и ниж­няя горловины гидролизаппарата с внутренней стороны защи­щены от действия горячей разбавленной серной кислоты слоем кислотоупорной бронзы. Полезный объем таких гидролизаппа — ратов обычно составляет 30-37 At3, но иногда применяются так­же гидролизаппараты объемом 18, 50 и 70 м3. Внутренний диа­метр таких гидролизаппаратов составляет около 1,5, а высота 7-13 м. В верхний конус гидролизаппарата во время гидролиза по трубе 5 подается нагретая до 160-200° разбавленная серная кислота.

В нижнем конусе установлен фильтр 4 для отбора получен­ного гидролизата. Гидролиз в таких аппаратах производится пе­риодически.

Как уже указывалось выше, гидролизаппарат загружают измельченным сырьем через направляющую воронку. При за­грузке сырья через трубу 5 поступает нагретая до 70-90° раз­бавленная серная кислота, которая смачивает сырье, способ­ствуя его уплотнению. При таком методе загрузки в 1 м3 гид­ролизаппарата помещается около 135 кг опилок или 145-155 кг Щепы, в пересчете на абсолютно сухую древесину. По окончании загрузки содержимое гидролизаппарата подогревается острым паром, поступающим в нижний конус его. Как только будет достигнута температура 150-170°, в гидролизаппарат по тру­бе 5 начинает поступать 0,5-0,7’%-пая серная кислота, нагретая до 170-200°. Одновременно образующийся гидролизат через фильтр 4 начинает выводиться в испаритель б. Реакция гидро­лиза в гидролизаппарате продолжается от 1 до 3 часов. Чем короче время гидролиза, тем выше температура и давление в гидролизаппарате.

В процессе гидролиза полисахариды древесины переходят в соответствующие моносахариды, растворяющиеся в горячей разбавленной кислоте. Для предохранения этих моносахаридов от разложения при высокой температуре содержащий их гидро­лизат непрерывно в течение всей варки выводят через фильтр 4 И быстро охлаждают в испарителе 6. Так как по условиям про­цесса гидролизуемое растительное сырье. в гидролизаппарат» все время должно быть залито жидкостью, заданный уровень е поддерживается горячей кислотой, поступающей по трубе 5,

Такой метод работы носит название перколяция. Чем быст рее идет перколяция, т. е. чем быстрее через гидролизаппарат протекает горячая кислота, тем быстрее образующийся сахар выводится из реакционного пространства и тем меньше он раз­лагается. С другой стороны, чем быстрее идет перколяция, тем больше расходуется на варку горячей кислоты и тем меньше получается концентрация сахара в гидролизате и соответственно больше расход пара и кислоты на варку.

Практически для получения достаточно высоких выходов сахара (при экономически приемлемой концентрации его в гид­ролизате) приходится выбирать некоторые средние условия пер — коляции. Обычно останавливаются на выходе сахара в 45-50% от веса абсолютно сухой древесины при концентрации сахара в гидролизате 3,5-3,7 % — Эти оптимальные условия реакции соответствуют отбору через нижний фильтр из гидролизаппара — та 12-15 м3 гидролизата на 1 т абсолютно сухой древесины, загруженной в гидролизаппарат. Количество гидролизата, отби­раемого за варку на каждую тонну гидролизуемого сырья, назы­вают гидромодулем вытекания, и он является одним из основных показателей примененного на заводе режима гидролиза. бе 21. Для этой цели быстро открывают клапан 20, соединяю­щий внутреннее пространство гидролизаппарата с циклоном 22. Благодаря быстрому снижению давления между кусочками лиг­нина содержащаяся в нем перегретая вода мгновенно вскипает, образуя большие объемы пара. Последний рвет лигнин и увле­кает его в виде взвеси по трубе 21 в циклон 22. Труба 21 подхо­дит к циклону по касательной, благодаря чему струя пара с лигнином, врываясь в циклон, движется вдоль стенок, совер — шая вращательное движение. Лигнин центробежной силой от­брасывается к боковым стенкам и, теряя скорость, падает на дно циклона. Освобожденный от лигнина пар через центральную трубу 23 выбрасывается в атмосферу.

Циклон 22 обычно представляет собой вертикальный сталь-‘ ной цилиндр объемом около 100 м3, снабженный боковой двер­цей 31 и вращающейся мешалкой 25, которая помогает при вы­грузке лигнина со дна циклона на ленточный или скребковый транспортер 24.

Для предохранения от коррозии внутренняя поверхность циклонов иногда защищается слоем кислотоупорного бетона Как уже указывалось выше, в процессе перколяции в верхний конус гидролизаппарата подается нагретая разбавленная серная кислота. Ее приготовляют путем смешивания в кислотоупорном смесителе 17 перегретой воды, подаваемой по трубе 28, с холод­ной концентрированной серной кислотой, поступающей из мер­ного бачка 19 через поршневой кислотный насос 18.

Поскольку холодная концентрированная серная кислота слабо корродирует железо и чугун, эти металлы широко исполь­зуют для изготовления баков, насосов и трубопроводов, предна­значенных для ее хранения и транспортировки к смесителю. Ана­логичные материалы применяются и для подвода перегретой йоды к смесителю. Для защиты стенок смесителя от коррозии Применяют фосфористую бронзу, графит или пластическую мас­су — фторопласт 4. Последние два используются для внутренней футеровки смесителей и дают наилучшие результаты.

Готовый гндролизат из гидролизаппарата поступает в испа­ритель 6 высокого давления. Это — стальной сосуд, работающий под давлением и футерованный внутри керамическими плитка­ми, как и гидролизаппарат. В верхней части испарителя ем­костью 6-8 ж3 имеется крышка. В испарителе поддерживается давление на 4-5 атм ниже, чем в гидролизаппарате. Благодаря этому попадающий в него гидролизат мгновенно вскипает, час­тично испаряясь, и охлаждается до 130-140°. Образующийся пар отделяется от капель гидролизата и по трубе 10 поступает в решофер (теплообменник) 11, где конденсируется. Частично охлажденный гидролизат из испарителя 6 по трубе 7 поступает в испаритель 8 низкого давления, где охлаждается до 105-110° в результате вскипания при более низком давлении, обычно не превышающем одной атмосферы. Образующийся в этом испари­теле пар по трубе 14 подается во второй решофер 13, где также конденсируется. Конденсаты из решоферов 11 и 13 содержат 0,2-0,3% фурфурола и используются для его выделения на спе­циальных установках, которые будут рассмотрены ниже.

Тепло, содержащееся в паре, который выходит из испарите­лей 6 и 8, используется для нагрева воды, поступающей в сме­ситель 17. Для этой цели из бака 16 оборотной воды насосомТеплую воду, полученную из ректификационного отделения гид­ролизного завода, подают в решофер низкого давления 13, где она нагревается с 60-80° до 100-110°. Затем по трубе 12 подо­гретая вода проходит решофер высокого давления 11, где паром при температуре 130-140° подогревается до 120-130°. Дальше температуру воды повышают до 180-200° в водогрейной колон­не 27. Последняя представляет собой вертикальный стальной ци­линдр с дном и верхней крышкой, рассчитанными на рабочее давление 13-15 атм.

Пар в водогрейную колонку подают по вертикальной тру­бе 26, на конце которой укреплены 30 горизонтальных дисков 2Ь. Пар из трубы 26 проходит через щели между отдельными диска­ми в колонну, заполненную водой. Последняя непрерывно по­дается в колонну через нижний штуцер, смешивается с паром, нагревается до заданной температуры и по трубе 28 поступает в смеситель 17.

Гидролизаппараты устанавливают на специальном фундамен­те в ряд по 5-8 шт. На больших заводах число их удваивают и устанавливают их в два ряда. Трубопроводы для гидролизата изготовляют из красной меди или латуни. Арматура, состоящая из вентилей и клапанов, изготовляется из фосфористой или паспортной бронзы.

Описанный выше способ гидролиза является периодическим. В настоящее время испытываются новые конструкции гидролпз — аппаратов непрерывного действия, в которые при помощи спе­циальных питателей непрерывно подается измельченная древе­сина, непрерывно удаляется лигнин и гидролизат.

Ведутся также работы по автоматизации гидролизаппаратов периодического действия. Это мероприятие позволяет более точ­но соблюдать заданный режим варки и одновременно облегчает труд варщиков.

Кислый гидролизат из испарителя низкого давления 8 (рис. 76) по трубе 9 подают в аппаратуру для его последующей пере­работки. Температура такого гидролизата 95-98°. В нем содержится (в %):

Серной кислоты. . . ……………………………………………………………………………………………….. 0,5 -0,7:

Гексоз (глюкоза, манноза, галактоза)………………………………………………………….. 2,5 -2,8;

Пентоз (ксилоза, арабиноза)…………………………………………………………………………. 0,8 -1,0;

Летучих органических кислот (муравьиная, уксус­ная) …………………………….. 0,24-0,30;

Нелетучих органических кислот (левулиновая) . . 0,2 -0,3;

Фурфурола………………………………………………………………………………………………………. 0,03-0,05;

Оксиметилфурфурола……………………………………………………………………………………. 0,13-0,16;

Метанола. ……………………………………………………………………………………………………….. 0,02-0,03

В гидролизатах присутствуют также коллоидные вещества (лигнин, декстрины), зольные вещества, терпены, смолы и т. д. Содержание моносахаридов в растительных гидролизатах при точных химических исследованиях устанавливают путем коли­чественной бумажной хроматографии.

В заводских лабораториях при массовых экспрессных опре­делениях Сахаров используется способность их в щелочной среде восстанавливать комплексные соединения окиси меди с образо­ванием закиси меди:

2 Си (ОН)2 Си5 О + 2 Н2 О + 02.

По количеству образующейся закиси меди вычисляется со — i-фжание моносахаридов в растворе.

Такой метод определения Сахаров является условным, так Как одновременно с моносахаридами окись меди восстанавли­вают в закись также фурфурол, оксиметилфурфурол, декстрины, коллоидный лигнин. Эти примеси мешают определению истинно­го содержания сахара в гидролизатах. Общая ошибка здесь до­стигает 5-8%. Поскольку поправка на эти примеси требует большой затраты труда, ее обычно не делают, а полученные сахара в отличие от моносахаридов называют редуцирующими веществами или сокращено РВ. В заводских условиях учет ко­личества вырабатываемого сахара в гидролизате учитывают в тоннах РВ.

Для получения этилового спирта гексозы (глюкоза, манноза и галактоза) сбраживают спиртообразующими дрожжами — са­харомицетами или шизосахаромицетами.

Суммарное уравнение спиртового брожения гексоз

C(i Hf, 06 — 2 С2 НГ) ОН + 2 С02 Гексоза этиловый спирт

Показывает, что при этом процессе теоретически на каждые 100 кг сахара должно получаться 51,14 кг, или около 64 л 100%-ного этилового спирта и около 49 кг углекислоты.

Таким образом, при спиртовом брожении гексоз получается почти в равных количествах два основных продукта: этанол и углекислота. Для осуществления этого процесса горячий кис­лый гидролизат должен быть подвергнут следующей обработке.:

1) нейтрализации; 2) освобождению от взвешенных твердых частиц; 3) охлаждению до 30°; 4) обогащению гидролизата не­обходимыми для жизнедеятельности дрожжей питательными веществами.

Кислый гидролизат имеет рН=1 -1,2. Среда, пригодная для брожения, должна иметь рН = 4,6-5,2. Чтобы придать гидро — лизату необходимую кислотность, содержащиеся в нем свобод­ную серную и значительную часть органических кислот необ­ходимо нейтрализовать. Если все кислоты, содержащиеся в гидролизате, условно выразить в серной кислоте, то ее концен­трация составит около 1%. Остаточная кислотность гидролизата при рН = 4,6-5,2 составляет около 0,15%.

Поэтому для получения в гидролизате необходимой концен­трации ионов водорода, в нем должно быть нейтрализовано 0,85% кислот. При этом полностью нейтрализуется свободная серная, муравьиная и часть уксусной. Остаются свободными левулиновая кислота и небольшая часть уксусной.

Нейтрализуют гидролизат известковым молоком, т. е. суспен­зией гидрата окиси кальция в воде с концентрацией 150-200 г СаО в литре.

Схема приготовления известкового молока представлена нм рис. 77.

Негашеную известь СаО непрерывно подают в загрузочную воронку вращающегося известегасительного барабана 34. Одно­временно в барабан подают необходимое количество воды. При вращении барабана негашеная известь, связывая воду, перехо­дит в гидрат окиси кальция. Последний диспергируется в воде, образуя суспензию. Не прореагировавшие куски извести отде­ляются в конце барабана от известкового молока и сбрасыва­ются в вагонетку. Известковое молоко вместе с песком протекает по трубе в отделитель песка 35. Последний представляет собой горизонтально расположенное железное корыто с поперечными перегородками и продольным валом с лопастями.

Известковое молоко в этом аппарате медленно течет справа налево и далее по трубе 36 сливается в сборник 2.

Песок медленно оседает между перегородками отделителя песка и при помощи медленно вращающихся лопаток удаляется из аппарата. Перед поступлением известкового молока в нейтра­лизатор его смешивают с заданным количеством сернокислого аммония, раствор которого поступает из бачка 37. При смеше­нии известкового молока с сернокислым аммонием протекает реакция

Са (ОН)3 + (Nh5)2 S04-> CaS04 + 2 NH, ОН, в результате которой часть извести связывается серной кислотой сернокислого аммония и образуются кристаллы плохо раствори­мого двухводного сернокислого кальция CaS04-2h30. Одновре­менно образуется аммиак, остающийся в известковом молоке в растворенном состоянии.

Присутствующие в известковом молоке мелкие кристаллы гипса при последующей нейтрализации являются центрами кристаллизации образующегося гипса и предохраняют от обра­зования пересыщенных растворов его в нейтрализованном гидро­лизате. Это мероприятие имеет важное значение при последую­щей отгонке спирта из бражки, так как пересыщенные растворы гипса в бражке вызывают гипсацию бражных колонн и быстро выводят их из строя. Такой метод работы получил название ней­трализации с направленной кристаллизацией гипса.

Одновременно с известковым молоком в нейтрализатор 5 Подаются слабокислый водный экстракт суперфосфата из мер­ника-бачка 38.

Соли даются в нейтрализатор из расчета 0,3 кг сернокислого аммония и 0,3 кг суперфосфата на 1 м3 гидролизата.

Нейтрализатор 5 (емкостью 35-40 м 3) представляет собой стальной бак, футерованный кислотоупорными керамическими плитками и снабженный вертикальными мешалками и тормозны­ми лопатками, укрепленными неподвижно на стенках бака. Ней­трализация на гидролизных заводах ранее производилась пе­риодически. В настоящее время она вытесняется более совершен­ной непрерывной нейтрализацией. На рис. 77 приведена послед­няя схема. Процесс осуществляется в двух последовательно со­единенных нейтрализаторах 5 и 6, имеющих одинаковое устрой­ство. Кислый гидролизат по трубе 1 непрерывно подается в пер­вый нейтрализатор, куда одновременно поступают известковое молоко и питательные соли. Контроль за полнотой нейтрализа­ции производят путем измерения концентрации ионов водорода при помощи потенциометра 3 с сурьмяным или стеклянным электродом 4. Потенциометр непрерывно записывает рН гидро­лизата и автоматически регулирует его в заданных пределах, посылая электрические импульсы реверсивному мотору, соеди­ненному с запорной арматурой на трубе, подающей известковое молоко в первый нейтрализатор. В нейтрализаторах сравнитель­но быстро протекает реакция нейтрализации и относительно медленно — процесс кристаллизации гипса из пересыщенного раствора.

Поэтому скорость протекания жидкости через нейтрализа — ционную установку обусловлена вторым процессом, требующим для своего окончания 30-40 мин.

По истечении этого времени нейтрализованный гидролизат, называемый «нейтрализатом», поступает в отстойник 7 полу­непрерывного или непрерывного действия.

Полунепрерывный процесс состоит в том, что нейтрализат протекает через отстойник непрерывно, а оседающий на дно его гипс удаляется периодически, по мере накопления.

При непрерывной работе отстойника все операции произво­дятся непрерывно. Перед спуском в канализацию шлам 8 в при­емнике дополнительно промывается водой. Последний способ из-за некоторых производственных трудностей еще не получил широкого распространения.

Гипсовый шлам из отстойника обычно состоит наполовину из двухводного сернокислого кальция и наполовину из лигнина и гуминовых веществ, осевших из гидролизата. На некоторых гидролизных заводах гипсовый шлам обезвоживают, высушива­ют и обжигают, превращая в строительный алебастр. Обезвожи­вают на барабанных вакуум-фильтрах, а высушивают и обжи­гают во вращающихся барабанных печах, обогреваемых топоч­ными газами.

Нейтрализат, освобожденный от взвешенных частиц, перед брожением охлаждается в холодильнике 10 (рис. 77) с 85 до 30°. Для этой цели обычно применяются спиральные или пла­стинчатые теплообменники, отличающиеся высоким коэффици­ентом теплопередачи и небольшими габаритами. При охлажде­нии из нейтрализата выделяются смолообразные вещества, кото­рые оседают на стенках теплообменников и постепенно загряз­няют их. Для чистки теплообменники периодически отключают и промывают 2-4%-ным горячим водным раствором едкого на­тра, который растворяет смолообразные и гуминовые вещества.

Нейтрализованный, очищенный и охлажденный гидролизат.

Сбраживают древесное сусло специальными акклиматизиро­ванными в этой среде спнртообразующими дрожжами. Брожение идет по непрерывному методу в батарее последовательно соеди­ненных бродильных чанов 11 и 12.

Дрожжевая суспензия, содержащая около 80-100 г прессо­ванных дрожжей в литре, подается непрерывным потоком по трубе 15 в дрожжанку 44 и затем в верхнюю часть первого, или головного, бродильного чана 11. В дрожжанку одновременно’ с дрожжевой суспензией подается охлажденное древесное сусло. На каждый кубометр дрожжевой суспензии в бродильный чан поступает 8-10 м3 сусла.

Дрожжинки, содержащиеся в среде гексозных Сахаров, при помощи системы ферментов расщепляют сахара, образуя этило­вый спирт и углекислоту. Этиловый спирт переходит в окружаю­щую жидкость, а углекислый газ выделяется на поверхности дрожжинок в виде маленьких пузырьков, которые постепенно’ увеличиваются в объеме, затем постепенно всплывают на поверх­ность чана, увлекая приставшие к ним дрожжинки.

При соприкосновении с поверхностью пузырьки углекислоты лопаются, а дрожжинки, имеющие удельный вес 1,1, т. е. боль­ший, чем у сусла (1,025), опускаются вниз, пока снова не будут подняты углекислотой на поверхность. Непрерывное движение дрожжинок вверх и вниз способствует перемещению потоков жидкости в бродильном чане, создавая перемешивание или «бро­жение» жидкости. Выделяющаяся на поверхности жидкости углекислота из бродильных чанов по трубе 13 поступает на уста­новку для получения жидкой или твердой углекислоты, исполь­зуется для получения химических продуктов (например, моче­вины) или выпускается в атмосферу.

Частично сброженное древесное сусло вместе с дрожжами передается из головного бродильного чана в хвостовой чан 12, Где брожение и заканчивается. Поскольку концентрация сахарз в хвостовом чане небольшая, брожение в нем идет менее интен­сивно, и часть дрожжей, не успевая образовать пузырьки угле­кислоты, оседает на дно чана. Чтобы не допустить этого, в хвос­товом чане устраивают часто принудительное перемешивание жидкости мешалками или центробежными насосами .

Бродящая или сброженная жидкость называется бражкой. По окончании брожения бражка передается в сепаратор 14, ра­ботающий по принципу центрифуги. Попадающая в него бражка вместе со взвешенными в ней дрожжами начинает вращаться со скоростью 4500-6000 оборотов в минуту. Центробежная сила вследствие разности удельных весов бражки и дрожжей разде­ляет их. Сепаратор делит жидкость на два потока: больший, не содержащий дрожжей, поступает в воронку 16 и меньший, содер­жащий дрожжи, поступает через воронку в трубу 15. Обычно первый поток в 8-10 раз больше, чем второй. По трубе 15 дрож­жевая суспензия возвращается в головной бродильный чан 11 Через дрожжанку 44. Сброшенное и освобожденное от дрожжей сусло собирается в промежуточном сборнике бражки 17.

При помощи сепараторов дрожжи постоянно циркулируют в замкнутой системе бродильной установки. Производительность сепараторов 10-35 м3/час.

Во время брожения и особенно при сепарации часть содержа­щихся в древесном сусле гуминовых коллоидов коагулируется, образуя тяжелые хлопья, медленно оседающие на дно бродиль­ных чанов. В днищах чанов устроены штуцеры, через которые осадок периодически спускается в канализацию.

Как уже указывалось выше, теоретический выход спирта из 100 кг сброженных гексоз составляет 64 л. Однако практически вследствие образования за счет Сахаров побочных продуктов (глицерин, уксусный альдегид, янтарная кислота и т. д.), а также из-за присутствия в сусле вредных для дрожжей примесей выход спирта составляет 54-56 л.

Для получения хороших выходов спирта необходимо все вре­мя дрожжи поддерживать в активном состоянии. Для этого сле­дует тщательно выдерживать заданную температуру брожения, концентрацию водородных ионов, необходимую чистоту сусла и оставлять в бражке перед поступлением ее на сепаратор не­большое количество гексоз, так называемый «недоброд» (обычно не более 0,1 %’ сахара в растворе). Благодаря наличию недоброда дрожжи все время остаются в активной форме.

Периодически гидролизный завод останавливают на планово — предупредительный или капитальный ремонт. В это время дрож­жи следует сохранять в живом виде. Для этого суспензию дрож­жей при помощи сепараторов сгущают и заливают холодным древесным суслом. При низкой температуре брожение резко за­медляется и дрожжи потребляют значительно меньше сахара.

Бродильные чаны емкостью 100-200 м3 обычно изготовляют­ся из листовой стали или, реже, из железобетона. Продолжитель­ность брожения зависит от концентрации дрожжей и составляет от 6 до 10 часов. Необходимо следить за чистотой производствен­ной культуры дрожжей и предохранять ее от инфицирования посторонними вредными микроорганизмами. Для этой цели все оборудование необходимо содержать в чистоте и периодически подвергать стерилизации. Наиболее простым способом стерили­зации является пропарка всего оборудования и особенно трубо­проводов и насосов острым паром.

По окончании брожения и отделения дрожжей спиртовая бражка содержит от 1,2 до 1,6% этилового спирта и около 1% пентозных Сахаров.

Выделяют спирт из бражки, очищают и укрепляют его в трех­колонном брагоректификационном аппарате, состоящем из браж — ной 18, ректификационной 22 и метанольной 28 колонн (рис.77).

Бражка из сборника 17 насосом подается через теплообмен­ник 41 на питающую тарелку бражной колонны 18. Стекая по тарелкам исчерпывающей части бражной колонны вниз, бражка встречает на своем пути поднимающийся вверх пар. Последний, постепенно обогащаясь спиртом, переходит в верхнюю, укрепляю­щую часть колонны. Стекающая вниз бражка постепенно осво­бождается от спирта, а затем из кубовой царги колонны 18 по трубе 21 переходит в теплообменник 41, где нагревает поступаю­щую в колонну бражку до 60-70е. Дальше бражку нагревают до 105° в колонне острым паром, поступающим по трубе 20. Осво­божденная от спирта бражка называется «бардой». По трубе 42 Барда выходит из бардяного теплообменника 41 и направляется в дрожжевой цех для получения из пентоз кормовых дрожжей. Этот процесс в дальнейшем будет подробно рассмотрен.

Бражная колонна в верхней укрепляющей части заканчивает­ся дефлегматором 19, в котором конденсируются пары ьод — носпиртовой смеси, поступающие с верхней тарелки ко­лонны.

В 1 м3 бражки при температуре 30° растворяется около 1 мъ углекислого газа, образовавшегося при брожении. При нагрева­нии бражки в теплообменнике 41 и острым паром в нижней части бражной колонны растворенная углекислота выделяется и вместе с парами спирта поднимается в укрепляющую часть колонны и далее в дефлегматор 19. Неконденсирующиеся газы отделяются через воздушники, установленные на трубопроводах спиртового конденсата после холодильников. Низкокипящие фракции, со­стоящие из спирта, альдегидов и эфиров, проходят через дефлег­матор 19 и окончательно конденсируются в холодильнике 39у Откуда в виде флегмы стекают обратно в колонну через гидро­затвор 40. Неконденсирующиеся газы, состоящие из углекислого газа, перед выходом из холодильника 39 проходят дополнитель­ный конденсатор или промываются в скруббере водой для улав­ливания последних остатков спиртовых паров.

На верхних тарелках бражной колонны в жидкой фазе содер­жится 20-40% спирта.

Конденсат по трубе 25 поступает на питающую тарелку рек­тификационной колонны 22. Эта колонна работает аналогично бражной колонне, но на более высоких концентрациях спирта. В нижнюю часть этой колонны по трубе 24 подается острый пар, который постепенно вываривает спирт из спиртового конденсата, стекающего в низ колонны. Освобожденная от спирта жидкость, называемая лютером, по трубе 23 уходит в канализацию. Содер­жание спирта в барде и лютере составляет не более 0,02%.

Над верхней тарелкой ректификационной колонны устанавли­вается дефлегматор 26. Не сконденсировавшиеся в нем пары окончательно конденсируются в конденсаторе 26а и стекают об­ратно в колонну. Часть низкокипящих фракций отбирается по трубе 43 в виде эфироальдегидной фракции, которая возвращает­ся в бродильные чаны, если она не имеет применения.

Для освобождения этилового спирта от летучих органических кислот в колонну подается из бака 45 10%-ный раствор едкого натра, который нейтрализует кислоты на средних тарелках укре­пляющей части колонны. В средней части ректификационной ко­лонны, где крепость спирта составляет 45-50%, накапливаются сивушные масла, которые отбираются по трубе 46. Сивушные масла представляют собой смесь высших спиртов (бутиловый, пропиловый, амиловый), образовавшихся из аминокислот.

Этиловый спирт, освобожденный от эфиров и альдегидов, а также сивушных масел, отбирается при помощи гребенки с верхних тарелок укрепляющей части ректификационной колон­ны и по трубе 27 поступает на питающую тарелку метанольной колонны 28. Спирт-сырец, поступающий из ректификационной колонны, содержит около 0,7% метилового спирта, который обра­зовался при гидролизе растительного сырья и вместе с моноса­харидами попал в древесное сусло.

При брожении гексоз метиловый спирт не образуется. По техническим условиям на этиловый спирт, вырабатываемый ги­дролизными заводами, в нем должно содержаться не более 0,1% метилового спирта. Исследования показали, что легче всего мети­ловый спирт отделяется из спирта-сырца при минимальном со­держании в нем воды. По этой причине в метанольную колонну подают спирт-сырец с максимальной крепостью (94-96% эта­нола). Выше 96%’ этиловый спирт получить на обычных ректифи­кационных колоннах нельзя, так как этой концентрации отвечает состав нераздельнокипящей водоспиртовой смеси.

В метанольной колонне легкокипящей фракцией является ме­танол, который поднимается в верхнюю часть колонны, укреп­ляется в дефлегматоре 29 и по трубе 30 сливается в сборники метанольной фракции, содержащей около 80% метанола. Для выпуска товарного 100%-ного метанола устанавливается вторая метанольная колонна, не показанная на рис. 77.

Этиловый спирт, стекая по тарелкам, опускается в нижнюю часть метанольной колонны 28 и по трубе 33 сливается в прием­ники готовой продукции . Обогревают метанольную колонну глу­хим паром в выносном подогревателе 31, который установлен таким образом, что по принципу сообщающихся сосудов его меж­трубное пространство залито спиртом. Поступающий в подогре­ватель водяной пар нагревает спирт до кипения и образующиеся спиртовые пары идут на обогрев колонны. Пар, поступающий в подогреватель 31, конденсируется в нем и в виде конден­сата подается в сборники чистой воды или сливается в кана­лизацию.

Количество и крепость полученного этилового спирта измеряют в специальной аппаратуре (фонарь, контрольный сна­ряд, мерник спирта). Из мерника паровым насосом этиловый спирт подают за пределы главного корпуса — в стационарные цистерны, располженные в складе спирта. Из этих цистерн по мере необходимости товарный этиловый спирт переливают в железнодорожные цистерны, в которых отвозят его к местам потребления.

Описанный выше технологический процесс дает возможность получать из 1 т абсолютно сухой хвойной древесины 150-180 л 100%-ного этилового спирта. При этом на 1 дкл спирта расхо­

Абсолютно сухой древесины в кг. . . . . 55-66;

TOC o «1-3» h z серной кислоты — моаоидрата в кг … . 4,5;

Извести негашеной, 85%-ной в кг …………………………………………………. 4,3;

Пара технологического 3- и 16-атмосферного

В мегакалориях. ………………………………………………………………………….. 0,17-0,26;

Воды в м3……………………………………………………………………………………………. 3,6;

Элекгрознер в квт-ч. …………………………………………………………………….. 4,18

Годовая производительность гидролизно-спиртового завода средней мощности по спирту составляет 1 -1,5 млн. дал. На этих заводах основным продуктом является этиловый спирт. Как уже указывалось, одновременно с ним из отходов основного произ­водства на гидролизно-спиртовом заводе вырабатывается твердая или жидкая углекислота, фурфурол, кормовые дрожжи, продукты переработки лигнина. Эти производства будут рассмотрены в дальнейшем.

На некоторых гидролизных заводах, получающих в качестве основного продукта фурфурол или ксилит, после гидролиза бога­тых пентозами гемицеллюлоз остается трудногидролизуемый остаток, состоящий из целлюлозы и лигнина и носящий название целлолигнина.

Целлолигнин может быть гидролизован перколяционным ме­тодом, как описано выше, и полученный гексозный гидролизат, обычно содержащий 2-2,5% Сахаров, может быть переработан по описанной выше методике в технический этиловый спирт или кормовые дрожжи. По этой схеме перерабатывается хлопковая шелуха, кукурузная кочерыжка, дубовая одубина, подсолнечная лузга и т. д. Такой производственный процесс является экономи­чески выгодным только при дешевом сырье и топливе.

На гидролизно-спиртовых заводах обычно получается техни­ческий этиловый спирт, используемый для последующей химиче­ской переработки. Однако в случае необходимости этот спирт
сравнительно легко очищается путем дополнительной ректифи­кации и окисления щелочным раствором перманганата. После та­кой очистки этиловый спирт вполне пригоден для пищевых целей.

Гидролиз древесины. Лесохимия » Блог о самостоятельном туризме

Гидролизом из древесины получают этиловый спирт, глюкозу, кормовые дрожжи, фурфурол и др. Сырьем гидролизного производства являются опилки, мелко измельченная древесина. В процессе гидролиза древесины происходит осахаривание клетчатки серной кислотой. На предприятиях этот процесс проводят в автоклавах, в которые подают сырье, серную кислоту и пар (рис.18). Под воздействием кислоты, повышенных температур и давления происходит разложение целлюлозы, гемицеллюлозы с образованием раствора простых сахаров, содержащего в твердом состоянии лигнин, и летучие вещества. Из гидролизного раствора отделяют твердую часть древесины — лигнин — побочный продукт, в испарителе выделяют пары метилового спирта, уксусной и муравьиной кислот, фурфурол. В оставшемся растворе гашеной известью нейтрализуют серную кислоту. Образуется гипсовый шлам — побочный продукт и очищенные сахаристые вещества, которые сбражживают к бродильных чанах с выделением углекислого газа. Получают раствор бражки, содержащий 1,2-1,6 % этилового спирта. В ректификационных аппаратах из бражки выделяют этиловый спирт.

Оставшаяся часть бражки образует барду, которую используют для производства кормовых дрожжей, как связывающее вещество в изготовлении литейных форм и др.

Из 1т опилок можно получить до 180 л этилового спирта — основного продукта и 40 кг кормовых дрожжей, 9 кг фурфурола. 3 кг метилового спирта, до 70 кг углекислого газа, 0,8 кг скипидара.

Кормовые дрожжи — один из наиболее ценных побочных продуктов. Это высококачественный белковый корм, содержащий аминокислоты, витамины и по питательности не уступает кормам животного происхождения, мясо-костной муке. Одна тонна кормовых дрожжей заменяет 3 т овса, а белок дрожжей лучше усваивается организмом животных, чем растительный белок зерна, жмыха. Фурфурол представляет маслянистую жидкость и применяют его для антисептической пропитки дерева, очистки нефти, растительных масел, в производстве пластмасс, синтетических красителей. На его основе вырабатывают лекарственные вещества от грибковых заболеваний в том числе фурацилин, гербициды. Значительная часть сырья образует гидролизный лигнин. После специальной обработки его возможно применять как аналогичный отход щелоков целлюлозного производства. Химической переработкой возможно получать активированный уголь, антисептические вещества. Практически лигнин складируют в отвалах вблизи заводов. Гидролизное производство в основном утилизирует отходы лесопиления и поэтому территориально комбинируется с крупными его центрами.

Лесохимия включает производства термического разложения древесины, канифоли и скипидара. Термическое разложение древесины проводят без доступа воздуха — сухая перегонка, в воздушной среде — газификация. Сухая перегонка древесины по сущности аналогична пиролизу угля. Древесину нагревают без доступа воздуха в специальных печах (ретортах) до 400-500°. Происходит обугливание и разложение древесины с выделением первоначально воды, метана, окиси углерода, а с повышением температуры образуются пары метилового спирта, смолы Летучие вещества конденсируют и получают водный раствор различных продуктов — подсмольную воду, нерастворимую смолу и газовый остаток. Твердая часть разложения древесины — уголь с низким содержанием зольных веществ, серы, фосфора Его применяют для получения высококачественных металлов, электродов, сероуглерода, черного пороха. Пористый древесный уголь называют активированным Один грамм такого угля имеет поверхность пор до 400 кв.м Его используют для поглощения вредных веществ, при отравлениях в медицине. Из подсмольной воды выделяют уксусную кислоту, метиловый (древесный) спирт. Древесная смола — вязкая жидкость, содержащая фенолы, органические кислоты и их производные. Она используется в производстве гербицидов, дубильных и поверхностно-активных веществ, лаков, красок, флотационных масел, синтетических смол, как консервант, антисептик древесины, канатов, кож литейный крепитель и в других целях. Для этого смолу разгоняют на фракции с выделением легких масел (креозотовое масло), антиокислителя, тяжелых масел, а остаток разгонки называют пеком. Пек применяют как крепитель литейных форм, водоотталкивающая добавка дорожного грунта. Качество угля, соотношение выхода основных продуктов зависит от породы древесины и условий технологического процесса. Так, термическим разложением сосновой древесины, насыщенной смолой, при температурах до 200° выделяют скипидар, а при повышении температур другие продукты. Из 1 куб.м древесины получают 140-180 кг угля, 280-400 кг жидкой фракции, 80-100 кг газов, в том числе до 30 кг уксусной кислоты, 30 кг метилового спирта, 15 кг скипидара и другие продукты.

Газификацию древесины осуществляют в газогенераторах для получения газообразного топлива и продуктов лесохимии. Сущность процесса аналогична газификации других видов топлива. Из древесины получают парогазовую смесь, содержащую органические кислоты, спирты, смолу. При определенных условиях до 60% сырья можно перевести в парогазовую фракцию, наполовину состоящую из смолы, которую, как и при сухой перегонке древесины возможно получать различные продукты.

Термическим разложением можно перерабатывать отходы древесины и таким образом использовать все части дерева в хозяйственных целях по аналогии с переработкой угля, сланцев, торфа.

 

 

Калифов и скипидар — вещества, получаемые из живицы*- смолистой жидкости подсочки хвойных пород или экстракции осмола*. При нарезке дерева смола под влиянием давления вытекает из ствола. Живицу собирают обычно летом методом подсочки (рис. 19). Для этого на стволе дерева удаляют кору и в древесине делают специальные надрезы. С одной сосны за сезон получают до 2 кг живицы, состоящей на 13-17% из скипидара и 62-65% из смоляных кислот. При переработке освобождают от воды, сора и нагревают паром. Отгоняют газовую часть — скипидар, а канифоль образует остаток.

Канифоль ползают из соснового осмола. Для этого осмол измельчают в щепу и проводят ее экстракцию бензином, спиртами, бензолом. Смолистые вещества растворяются. Выпариванием из раствора отгоняют скипидар, флотационное масло, а остаток представлен канифолью. Из 1 куб.м получают до 40 кг канифоли, 8 кг скипидара и 1,5 кг флотационного масла.

Канифоль применяют в производстве бумаги, мыла, лаков, красок, линолеума, кож, при пайке, лужении, пропитке обмоток электрических машин, кабеля, как электроизоляционное вещество Живичный скипидар имеет высокое качество и используется в медицине, при приготовлении лекарств, как растворитель лаков, красок, смол, жиров, сырье для производства камфоры.

Таким образом, процесс переработки древесины представлен рядом последовательных стадий; заготовка-лесопиление — производство конечной

продукции (мебель, строительные материалы, дома и др.). Важная особенность производственного процесса — использование различных методов воздействия на древесину (механических, химических, микробиологических). При этом, особенно на стадии механической обработки, до 3/4 древесных ресурсов образуют отходы. Поэтому в лесной промышленности актуальна проблема рационального применения в хозяйстве всей массы дерева, всех пород лесосечного фонда. Этому способствует комплексное использование древесины на основе сочетания различных методов ее переработки, увеличение выработки продукции из каждого кубического метра сырья, особенно древесных плит, картона, товаров лесохимии. Расчеты свидетельствуют, что 1 млн. куб.м ДВП заменяет 16 тыс. куб.м пиломатериалов, для производства которых необходимо заготовить 54 тыс.куб.м древесины, или срубить 25-30 тыс. хвойных деревьев, которые произрастают на площади 300 га. Следовательно, экономится древесина, и сохраняются леса как естественный компонент природы. Применение различных методов, существование отдельных стадий переработки древесины обусловливают функционирование отдельных леспромхозов, лесопильных, целлюлозных заводов, бумажных и картонных фабрик и др. Целесообразность использования всей древесной массы благоприятствуют сочетанию различных производств на определенной территории — комбинированию в лесной промышленности. При этом комбинированные производства имеют тесные производственные связи на основе последовательной переработки сырья и утилизации отходов. Таким образом, формируются предприятия комплексного типа с механической и химической переработкой древесины комбинаты — деревообрабатывающие, фанерно- спичечные, целлюлозно-бумажные и др. Наиболее широкое развитие комбинирование получило в лесопромышленных комплексах (ЛПК). Они имеют определенный лесной фонд, обеспечивающий комплекс сырьем на длительный период. ЛПК как сочетание сырьевых производств размещаются в лесных районах. В их состав входят леспромхозы, лесопильные заводы, производства фанеры, изделий из древесины, древесных плит, целлюлозы, бумаги, картона, продукции лесохимии. Они объединены технологически, организационно и территориально. На крупных ЛПК ежегодно перерабатывают до 10 млн. куб. м древесины и выпускают разнообразную продукцию при высокой утилизации отходов. Это позволяет использовать древесину на 94% (Братский ЛПК). Экономическая эффективность повышается за счет снижения производственных, транспортных расходов, 

применения высокопроизводительного оборудования, лучшего использования достижений научно-технического прогресса. Как следствие, снижение трудоемкости производства, повышение производительности труда. 

 

 

 

Морилка для дерева спирт., дуб, 0,5л. АНЛЕС

Морилка для дерева спиртосодержащая
Цвет: сосна, калужница, орегон, дуб, орех, махагон, красное дерево, папоротник

Область применения:
•Предназначена для тонирования любых пород дерева, придания благородных оттенков древесине, в частности для окраски и исправления дефектов мебели, паркета и различных изделий из дерева в домашних условиях

Химическая основа:
Смесь кислотных красителей и нигрозина, ПАВ, полезные добавки, изопропиловый спирт, вода

Свойства:
•образует влагостойкое, светостойкое защитное покрытие
•стойкость к истиранию
•используется как самостоятельно, так и в качестве прочной протравы для последующего покрытия лаком
•сохраняет и подчеркивает текстуру древесины
•может использоваться для древесины твердых пород
•для наружных и внутренних работ
•быстро сохнет, не вызывает набухания древесины
•не поднимает волокон древесины, создает выравнивающий эффект
•глубоко проникает в поры, обеспечивая лучшие по сравнению с другими защитные свойства и возможность последующего шлифования
•в отличие от неводных морилок не требуют идеального высушивания древесины.

Технические данные в соответствии с ТУ 2389-003-44297874-99.

Указания к применению:
•Перед окраской необходимо подготовить древесину: тщательно отшлифовать шкуркой, очистить от пыли, пятен масла, старого лака.
•Нанести морилку в 1-3 слоя тампоном, валиком , кистью или распылением

Условия хранения и транспортировки:
Морилка должна храниться в упаковке предприятия-изготовителя в крытых складских помещениях при температуре от -10 до +40оС.. Транспортирование морилки может быть осуществлено любым видом транспорта в крытых транспортных средствах в соответствии с правилами перевозок грузов, действующими на данном виде транспорта Срок годности 2 года.

Меры предосторожности:
Не пожароопасна. Относятся к 3 классу опасных веществ – малоопасные. Все работы проводить в резиновых перчатках. Избегать попадания в органы пищеварения. Беречь от детей.

Морилка разрешена к применению Центром Государственного санитарно-эпидемиологического надзора Санкт-Петербурга, санитарно-эпидемиологическое заключение № 78 01 05 238 П 003418 05 02

Как сделать из опилок спирт

На чтение 10 мин. Просмотров 46 Обновлено

«Древесина, древесные опилки, бумага» и тому подобные материалы состоят в значительной степени из целлюлозы. Целлюлоза — это полимер, построенный из соединенных друг с другом молекул глюкозы. В результате гидролиза целлюлозы можно разорвать химические связи между молекулами глюкозы (такой процесс происходит не обязательно в жестких условиях при высокой температуре — он идет, например, в пищеварительном тракте коровы и других жвачных животных). Остается подвергнуть полученный раствор глюкозы очистке, а потом ферментации — брожению. В результате брожения микроорганизмы (вернее, их ферменты) превращают глюкозу в этиловых спирт (а также в ряд других соединений, в том числе в высшие спирты — так называемые сивушные масла). Для получения более чистого этилового спирта следует полученную смесь очистить — ректификацией, активированным углем и т.п. Таким образом в промышленности и получают этиловый спирт, который называется гидролизным. В принципе его можно очистить и до состояния питьевого спирта, затратив соответствующее количество денег и усилий.

Вы в лесу. Вокруг теснятся толстые и тонкие стволы деревьев. Для химика все они состоят из одного и того же материала — древесины, основной частью которой является органическое вещество — клетчатка (C6H10O5) х. Клетчатка образует стенки клеток растений, т. е. их механический скелет; довольно чистую мы её имеем в волокнах хлопчатой бумаги и льна; в деревьях она встречается всегда вместе с другими веществами, чаще всего с лигнином, почти такого же химического состава, но обладающего иными свойствами. Элементарная формула клетчатки C6H10O5 совпадает с формулой крахмала, свекловичный сахар имеет формулу C12H22O11. Отношение числа атомов водорода к числу атомов кислорода в этих формулах такое же, как и в воде: 2:1. Поэтому эти и им подобные вещества в 1844 г. были названы «углеводами», т. е. веществами, как бы (но не на самом деле) состоящими из углерода и воды.

Углевод клетчатка имеет большой молекулярный вес. Молекулы её представляют длинные цепи, составленные из отдельных звеньев. В отличие от белых зёрен крахмала, клетчатка представляет прочные нити и волокна. Это объясняется различным, теперь точно установленным, структурным строением молекул крахмала и клетчатки. Чистая клетчатка в технике зовётся целлюлозой.

В 1811 г. академик Кирхгоф сделал важное открытие. Он взял обыкновенный крахмал, полученный из картофеля, и подействовал на него разбавленной серной кислотой. Под действием H2SO4 произошёл гидролиз крахмала и он превратился в сахар:

Эта реакция имела важное практическое значение. На ней основано крахмало-паточное производство.

Но ведь клетчатка имеет ту же самую эмпирическую формулу, что и крахмал! Значит, из неё тоже можно получить сахар.

Действительно, в 1819 г. было впервые осуществлено и осахаривание клетчатки с помощью разбавленной серной кислоты. Для этих целей можно применять и концентрированную кислоту; русский химик Фогель в 1822 г. получил сахар из обычной бумаги, действуя на неё 87-процентным раствором H2SO4.

В конце XIX в. получение сахара и спирта из дерева стало интересовать уже и инженеров-практиков. В настоящее время спирт из целлюлозы получают в заводских масштабах. Способ, открытый в пробирке учёного, стад осуществляться в больших стальных аппаратах инженера.

Посетим гидролизный завод. В огромные варочные котлы (перколяторы) загружают опилки, стружки или щепу. Это — отходы лесопильных или деревообрабатывающих предприятий. Раньше эти ценные отходы сжигались или просто выбрасывались на свалку. Через перколяторы непрерывным током проходит слабый (0,2—0,6%) раствор минеральной кислоты (чаще всего серной). Долго держать одну и ту же кислоту в аппарате нельзя: содержащийся в ней сахар, полученный из древесины, легко разрушается. В перколяторах давление 8—10 ат, а температура 170—185°. При этих условиях гидролиз целлюлозы идёт значительно лучше, чем при обычных условиях, когда процесс весьма затруднителен. Из перколяторов получают раствор, содержащий около 4% сахара. Выход сахаристых веществ при гидролизе достигает 85 % от теоретически возможного (по уравнению реакции).

Дальше сахарный раствор поступает на сбраживание в спирт с помощью дрожжей, с чем мы уже знакомы. Так из дерева получают этиловый спирт. Он называется гидролизным спиртом.

Рис. 8. Наглядная схема получения гидролизного спирта из древесины.

Для Советского Союза, имеющего необозримые лесные массивы и неуклонно развивающего промышленность синтетического каучука, получение спирта из древесины представляет особый интерес. Ещё в 1934 г. XVII съезд ВКП(б) постановил всемерно развивать производство спирта из опилок и отходов бумажной промышленности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. За годы второй и третьей пятилеток у нас были построены и пущены заводы по выработке гидролизного спирта — спирта из древесины. Этот спирт в настоящее время всё в больших количествах перерабатывается в синтетический каучук. Это — спирт из непищевого сырья. Каждый миллион литров гидролизного этилового спирта освобождает для питания около 3 тыс. тонн хлеба или 10 тыс. тонн картофеля и, следовательно, около 600 га посевной площади. Для получения этого количества гидролизного спирта нужно 10 тыс. тонн опилок с 45-процентной влажностью, что может дать за год работы один лесопильный завод средней производительности.

В советское время, кто еще помнит, много шутили на тему спирта, приготовленного из опилок. Ходили слухи, будто после войны дешевую водку делали как раз на основе «опилочного» алкоголя. В народе этот напиток получил название – «сучок».

Вообще, разговоры о производстве спирта из опилок возникли, конечно же, не на пустом месте. Такой продукт действительно производился. Назывался он «гидролизным спиртом». Сырьем для его производства действительно были опилки, точнее – целлюлоза, извлекаемая из отходов лесной промышленности. Выражаясь строго научно – из непищевого растительного сырья. По приблизительным расчетам, из 1 тонны древесины можно было получить около 200 литров этилового спирта. Это будто бы позволяло заменить 1,5 тонны картофеля или 0,7 тонн зерна. Применялся ли такой спирт на советских лекеро-водочных заводах, неизвестно. Производился он, понятное дело, для сугубо технических целей.

Надо сказать, что производство технического этанола из органических отходов уже давно будоражит воображение ученых. Можно найти литературу XIX века, где обсуждаются возможности получения спирта из самого разнообразного сырья, в том числе и непищевого. В XX веке эта тема зазвучала с новой силой. В 1920-го годы ученые в Советской России даже предлагали делать спирт из… фекалий! Было даже шутливое стихотворение Демьяна Бедного:

Ну настали времена,
Что ни день, то чудо:
Водку гонят из говна –
По три литра с пуда!

Русский ум изобретет
В зависть всей Европы —
Скоро водка потечет
В рот из самой жопы…

Впрочем, идея с фекалиями так и осталась на уровне шутки. А вот к целлюлозе отнеслись серьезно. Помните, в «Золотом теленке» Остап Бендер рассказывает иностранцам о рецепте «табуреточного самогона». Дело в том, что с целлюлозой «химичили» уже тогда. Причем, надо заметить, извлекать ее можно не только из отходов лесной промышленности. Отечественное сельское хозяйство ежегодно оставляет огромные горы соломы – это тоже прекрасный источник целлюлозы. Не пропадать же добру. Солома – источник возобновляемый, можно сказать – даровой.

Есть только в этом деле одна загвоздка. Помимо нужной и полезной целлюлозы в одревесневших частях растений (а таковыми, в том числе, является и солома) содержится лигнин, который усложняет весь процесс. Из-за наличия в растворе этого самого лигнина практически невозможно получить нормальную «бражку», поскольку сырье не осахаривается. Лигнин тормозит развитие микроорганизмов. По этой причине требуется «подкормка» — добавление нормального пищевого сырья. Чаще всего в этой роли выступает мука, крахмал или патока.

От лигнина, конечно же, можно избавиться. В целлюлозо-бумажной промышленности это традиционно делается химическим путем, например, с помощью обработки кислотой. Вопрос только в том, куда его потом девать? В принципе, из лигнина можно получить неплохое твердое топливо. Горит он хорошо. Так, в Институте теплофизики СО РАН даже разработали соответствующую технологию сжигания лигнина. Но, к сожалению, тот лигнин, что остается от нашего целлюлозо-бумажного производства, в качестве топлива непригоден из-за содержащейся в нем серы (последствия химической обработки). Если его сжигать – получим кислотные дожди.

Есть и другие способы – обрабатывать сырье перегретым паром (лигнин при высоких температурах плавится), проводить экстракцию органическими растворителями. Кое-где именно так и делают, однако эти способы очень затратные. В условиях плановой экономики, где все затраты брало на себя государство, можно было работать и таким способом. Однако в условиях рыночной экономики получается так, что овчинка, образно говоря, не стоит выделки. И при сопоставлении затрат выходит, что куда дешевле обходится производство технического спирта (по-современному – биоэтанола) из традиционного пищевого сырья. Все зависит от того, в каких количествах вы располагаете таким сырьем. У американцев, например, имеет место перепроизводство кукурузы. Куда проще и выгоднее излишки пустить на производство спирта, чем транспортировать ее на другой континент. В Бразилии, как мы знаем, излишки сахарного тростника также используются в качестве сырья для производства биоэтанола. В принципе, в мире не так уж мало стран, где спирт заливают не только в желудок, но и в бак автомобиля. И все было бы неплохо, если бы некоторые известные мировые деятели (в частности, кубинский лидер Фидель Кастро), не выступили против такого «несправедливого» использования сельхозпродукции в условиях, когда в некоторых странах люди страдают от недоедания, а то и вообще умирают с голоду.

В общем, идя навстречу филантропическим пожеланиям, ученые, работающие в сфере производства биоэтанола, должны искать какие-то более рациональные, более совершенные технологии переработки непищевого сырья. Примерно десять лет назад специалисты Института химии твердого тела и механохимии СО РАН решили пойти другим путем – использовать для этих целей механохимический способ. Вместо известной химической обработки сырья или нагревания они стали применять особую механическую обработку. Для чего были сконструированы специальные мельницы и активаторы. Суть метода такова. Благодаря механической активации целлюлоза переходит из кристаллического состояния в аморфное. Это облегчает работу ферментов. Но главное здесь то, что сырье в процессе механической обработки разделяется на различные частички – с разным (большим или меньшим) содержанием лигнина. Потом уже – благодаря разным аэродинамическим характеристикам этих частичек – их легко отделить друг от друга с помощью специальных установок.

На первый взгляд, все очень просто: размололи – и дело с концом. Но только на первый взгляд. Если бы действительно все было так просто, то уже во всех странах мололи бы солому и прочие растительные отходы. На самом деле здесь необходимо найти правильную интенсивность, чтобы сырье разделилось на отдельные ткани. В противном случае у вас получится однообразная масса. Задача ученых – как раз найти здесь необходимый оптимум. И оптимум этот, как показывает практика, достаточно узкий. Можно и перестараться. В том-то, надо сказать, и заключается работа ученого, чтобы выявить золотую середину. Причем, здесь необходимо учитывать и экономические аспекты – а именно, отработать технологию так, чтобы затраты на механихимическую обработку исходного сырья (каким бы дешевым оно ни было) не сказались на себестоимости производства.

В лабораторных условиях уже получены десятки литров замечательного спирта. Самым впечатляющим выглядит тот момент, что спирт получен из обычной соломы. Причем – без применения кислоты, щелочей и перегретого пара. Главное подспорье тут – «чудо-мельницы», сконструированные спецами Института. В принципе, уже ничто не мешает перейти и к промышленным образцам. Но это уже – другая тема.


Вот он — первый отечественный биоэтанол из соломы! Пока еще в бутылях. Дождемся ли, когда его начнут производить цистернами?

Древесный спирт: Справочник отравителя

Имя:______________________________________ Дата:_______

В дни, предшествовавшие сухому закону, Нью-Йорк пытался обновить свой офис коронера, улучшая лабораторные методы и используя науку для определения причины смерти и раскрытия преступлений. Вплоть до 1917 года коронер был выборным должностным лицом, не имевшим ни научного, ни медицинского образования. Убийства всех видов списывались как самоубийства или «стихийные бедствия». Яды стали популярным способом избавиться от соперника или члена семьи, потому что маловероятно, что их действие будет обнаружено.

В 1918 году Чарльз Норрис был назначен главным судмедэкспертом и стал пионером судебной токсикологии. Он, в свою очередь, нанял химика по имени Александр Геттлер, которому было поручено разработать методы определения того, были ли яды причиной смерти. Геттлер потратил время на измельчение печени и тестирование различных веществ. В годы, предшествовавшие запрету, Геттлер отметил рост числа смертей, связанных с отравлением древесным спиртом.

——- Выдержка из Справочника отравителя ——-

Древесный спирт, технически известный как метиловый спирт, но также и как древесный спирт, гидроксиметан, карбино, колониальный спирт, колумбийский спирт и, несколько лет спустя, метанол, сам по себе не был чем-то новым.Древние египтяне использовали его в процессах бальзамирования. На протяжении веков он был основным ингредиентом домашнего виски. Его химическая формула была определена в 1661 году химиком, который назвал его «духом ящика», потому что он получил его путем перегонки самшита. Термин «метил» произошел от греческого слова «methy» (что означает «вино») и «hyle» (что означает «дерево» или, точнее, «тропа деревьев»).

Химическая структура древесного спирта проста: три атома водорода связаны с одним атомом углерода (в кластере, известном как метильная группа), с одним атомом кислорода и другим атомом водорода.Его также легко сделать, как поняли промышленники и самогонщики, требуя немного больше, чем дрова и тепло. Этот процесс получил название деструктивной дистилляции. Плиты и куски дерева помещались в закрытый контейнер и нагревались не менее чем до 400 градусов по Фаренгейту (204 градуса по Цельсию). Когда древесина превращалась в древесный уголь, ее естественные жидкости испарялись. Пар можно было охладить, сконденсировать и перегнать в довольно мутный суп, содержащий метиловый спирт, ацетон и уксусную кислоту. Вторая перегонка позволила отделить чистый метиловый спирт, жидкость прозрачную, как стекло, и без запаха, как лед, от других ингредиентов.
————————————————— ————————

«Промышленный» спирт был в основном зерновым спиртом (этанолом) с добавлением других химических веществ, чтобы сделать его непригодным для питья, метанол был одной из распространенных добавок. Добавление этих химикатов требовалось по закону после введения запрета, чтобы предотвратить использование технического спирта в качестве напитка. По сути, правительство приказало добавить в алкоголь химические вещества, которые сделали бы его непригодным для питья. В результате было много бутлегеров, которые пытались сделать промышленный спирт пригодным для питья и менее токсичным, перегоняя, разбавляя или смешивая его с другими химическими веществами.Ни одна из этих процедур не была особенно эффективной, и люди, решившие употреблять алкоголь нелегально, рисковали своей жизнью.

Почему метиловый спирт так опасен, в отличие от других алкогольных напитков? Ликеры обычно содержат около 3% этанола, который часто получают путем ферментации зерна, фруктов и овощей. Чтобы заменить ныне запрещенные спиртные напитки в эпоху Сухого закона, люди обратились к сомнительным методам дистилляции и напиткам, которые представляли собой смесь этанола и метанола.Даже небольшое количество метанола может быть смертельным, но некоторых людей этот риск не останавливает.

Метанол токсичен при проглатывании, вдыхании или даже попадании на кожу. Метанол при попадании в организм распадается на еще более токсичные вещества, этот процесс называется интоксикацией . Ферменты в печени сначала превращают метанол в формальдегид, который затем превращается в муравьиную кислоту. Этот процесс занимает до 30 часов с момента первоначального воздействия метанола и означает, что вы, возможно, не умрете изначально от его употребления, но у вас могут появиться симптомы через день.Обычно первым признаком отравления метанолом является потеря зрения. Если человек выздоравливает от токсинов, слепота остается постоянной, поскольку муравьиная кислота фактически повреждает зрительный нерв.

Как и предсказывал Геттлер, число случаев отравления увеличилось. В 1926 году только в Нью-Йорке 1200 человек заболели ядовитым алкоголем и 400 умерли. Бутлегерство алкоголя, большая часть которого содержала метанол, продолжалась, отравления стали проблемой общественного здравоохранения. Геттлер продолжал работать над этими случаями, публикуя сообщения о смерти от алкоголя, чтобы привлечь внимание к проблеме.В 1933 году была отменена 18-я поправка, а также прекращена программа, требовавшая сделать технический спирт токсичным.

____ 1. Согласно статье, что из следующего верно? (Стандарт 1: привести текстовое свидетельство)

а) чаще всего от отравления метанолом страдали дети       б) Сухой закон узаконил употребление метилового спирта
в) структура метанола и этанола идентична                        г) метиловый спирт токсичен и может вызвать слепоту

____ 2.Выберите предложение, которое поддерживает основную идею статьи. (Стандарт 2: Центральные идеи)

а) Яды стали популярным способом избавиться от соперника или члена семьи, потому что было маловероятно, что их действие будет обнаружено.
b) В годы, предшествовавшие запрету, Геттлер отметил рост числа смертей, связанных с отравлением древесным спиртом.
c) В 1918 году Чарльз Норрис был назначен главным судебно-медицинским экспертом и был пионером в области судебной токсикологии.
d) Ликеры обычно содержат около 3% этанола, который часто получают путем ферментации зерна, фруктов и овощей.

____ 3. Что лучше всего описывает структуру статьи? (Стандарт 2: Центральные идеи)

а) описание того, как медицинское обследование изменилось в 1900-х годах
б) убедительное эссе о том, почему сухой закон не был экономически обоснованной идеей
в) сравнение метилового спирта с этиловым спиртом и рассказ о том, почему метанол токсичен
d ) авторское мнение о том, какой была жизнь во время Сухого закона

____ 4.Почему так долго умирал человек после приема смертельной дозы метанола? (Стандарт 1: привести текстовое свидетельство)

а) требуется время, чтобы яд циркулировал по всему телу и достиг головного мозга
б) яд накапливался в тканях человека и иногда требовались годы, чтобы убить их
в) только некоторые люди чувствительны к метанолу
г ) метанол преобразуется печенью в еще более токсичное вещество (токсикация)

____ 5.Какая связь между запретом и метанолом? (Стандарт 5: Отношения)

a) запрет привел к тому, что метанол был признан незаконным
b) запрет привел к увеличению числа отравлений метанолом
c) запрет уменьшил количество смертей, связанных с алкоголем
d) запрет продвинул область токсикологии

____ 6. Какое из следующих определений термина «токсикация» является лучшим? (Стандарт 4: Значения)

а) процесс, при котором одно вещество превращается в другое
б) ряд химических реакций, протекающих в крови
в) процесс, при котором одно вещество превращается в другое вещество, более токсичное, чем первое
г) а процедура, при которой ученый определяет, насколько сильным является токсин

____ 7.Какие из следующих данных подтверждают предсказание Геттлера о том, что отравления метанолом увеличатся после запрета? (Стандарт 8: Рассуждение)

а) сравнение числа смертей от отравления метанолом до и после вступления в силу запрета
б) токсикологический отчет о том, как быстро крысы умирают от отравления метанолом
в) перечень конфискованного количества спирта, содержащего метанол
г) больничные записи, показывающие, сколько людей лечились от болезней, связанных с алкоголем

____ 8.Завершите эту аналогию: Этанол так же важен для зерна, как метанол для … (Стандарт 4: Значения)    

 а) яд      б) дерево      в) плод      г) слепота

____ 9. Есть два потенциальных источника получения человеком метанола, какие они — обведите 2? (Стандарт 4: Значения)

а) его можно получить непосредственно из горящей древесины
б) его можно получить из органов человека, умершего от отравления метанолом
в) его можно ферментировать с использованием гниющих фруктов
г) его можно полученный из промышленного спирта, который был загрязнен

10.Своими словами опишите разницу между молекулой этанола и молекулой метанола. (Стандарт 8: визуальная информация)

 

 

Как новый японский «древесный спирт» делает вас пьяным, а не слепым

Особая скука возникает, когда вы отделены от мира природы, и проблема, кажется, становится все более неразрешимой с каждым днем. Но унылые горожане вскоре смогут восстановить утраченную связь с природой с помощью возлияний. Группа японских ученых изобрела новый вид древесного спирта, который можно пить.

Обычно термин «древесный спирт» используется для обозначения метанола, основного ингредиента гоночного топлива, самогона и формальдегида. Метанол производится путем перегонки ферментированной древесины, и он чрезвычайно токсичен. Даже употребление небольшого количества метанола может привести к слепоте или смерти, потому что кровь становится опасно кислой после метаболизма метанола в организме. Исследователи из Японского научно-исследовательского института лесного хозяйства и лесных товаров сообщили AFP в понедельник, что их изобретение, однако, представляет собой этанол — и поэтому полностью пригоден для питья.

Они начали процесс с измельчения древесины в целлюлозу, подобно первому этапу изготовления бумаги. Но в то время как производители бумаги добавляли в смесь отбеливатель, они ввели активные дрожжи, чтобы катализировать процесс брожения. Наконец, они перегнали смесь, получив восемь пинт 30-градусного ликера из почти девяти фунтов кедра. Говорят, вкус у него древесный, как у ликера, выдержанного в бочке.

Как правило, процесс перегонки древесины требует кипячения смеси древесной массы и воды. Этот метод производит метанол, вид древесного спирта, который вам не следует пить.Но исследователи нашли способ избежать использования тепла при производстве, тем самым сохранив вкус и обеспечив безопасность напитка для употребления.

«Наш метод позволяет сделать его пригодным для питья и иметь древесный вкус, поскольку для разложения древесины не требуется высокая температура или серная кислота», — исследователь Кенго Магара, доктор философии. сказал AFP .

Новый опьяняющий напиток был создан исследователями Японского научно-исследовательского института лесного хозяйства и лесных товаров, финансируемого государством предприятия, которое занимается изучением всего, что связано с лесом.На данный момент команда приготовила ликер из кедра, березы и вишни. Они надеются сотрудничать с бизнесом по продаже древесного спирта в течение следующих нескольких лет, используя деревья со всей Японии для создания региональных вкусов и стилей крепкого алкоголя.

Древесный спирт, вероятно, понравится многим высокомерным любителям алкоголя, учитывая культурные предпочтения нашего времени. Это может звучать немного претенциозно, но кто не хотел пить дерево?

Многочисленные области применения метанола от одежды до топлива: основные продукты и технологии | Инновация

Универсальный возобновляемый
ресурс, помогающий людям
жить лучше

* По данным компании, использующей нашу технологию

Метанол, также известный как метиловый спирт, является очень универсальным химическим веществом, широко используемым в промышленных целях и в нашей повседневной жизни.Его эффективность в качестве энергоносителя сделала его все более распространенным в качестве топлива для заводов и для производства электроэнергии. Потенциал метанола в качестве экологически безопасного источника топлива огромен, и во всем мире растет спрос на него как на многообещающий ресурс для новой эры чистой энергии. MGC является единственным комплексным производителем метанола с полным спектром продуктов и технологий, поддерживаемых глобальной производственной сетью.

Метанол — вездесущий в природе

Метанол — это разновидность спирта, изготавливаемая в основном из природного газа.Это основной материал в уксусной кислоте и формальдегиде, а в последние годы он также все чаще используется в этилене и пропилене. Смешивание метанола с подобными веществами позволяет использовать его в качестве промежуточного материала для производства буквально тысяч метанола и производных метанола, используемых практически во всех сферах нашей жизни. Метанол и его производные, такие как уксусная кислота и формальдегид, образующиеся в результате химических реакций, используются в качестве основных материалов в акриловом пластике; синтетические ткани и волокна, используемые для изготовления одежды; клеи, краски и фанера, используемые в строительстве; и в качестве химического агента в фармацевтике и агрохимикатах.Его бесконечное множество применений сделали метанол повсеместным в нашей жизни и во всем обществе.

Использование метанола

Mitsubishi Gas Chemical — единственный в мире комплексный производитель метанола

В 1952 году Mitsubishi Gas Chemical стала первой компанией в Японии, успешно синтезировавшей природный газ в метанол. Более десяти лет MGC производила метанол и производные продукты на одном заводе в Ниигате на севере Японии. В 1970-х годах мы увеличили наши производственные мощности и открыли заводы за границей, чтобы быть ближе к более дешевым исходным материалам, чтобы удовлетворить быстро растущий спрос и повысить нашу конкурентоспособность.Разработанные технологии производства и методы добычи природного газа вывели нас на передовые позиции в индустрии метанола, и мы начали работу по созданию глобальной сети производства и продаж.

Вскоре мы использовали нашу запатентованную технологию для производства и поставок метанола на месте и во все регионы мира с помощью специально спроектированных танкеров. За более чем 60 лет непрерывного расширения и диверсификации нашей деятельности мы превратились в ведущего мирового поставщика метана с полностью интегрированной глобальной сетью, ежегодно производящей и поставляющей около 2 метанов.5 миллионов тонн метана. Зарубежные заводы MGC поставляют 40% всего метанола, ежегодно импортируемого Японией. Наши технологии, наши сети и наш опыт делают нас единственным в мире комплексным производителем метанола и производных метанола.

Метанол — безопасный, чистый и универсальный источник энергии будущего

Универсальность метанола делает его распространенным топливным ресурсом в электроэнергетике. В MGC мы используем метанол в качестве источника топлива не только в жидком виде, но и в виде высокоэффективных аккумуляторов на топливных элементах.В местах и ​​условиях, где нецелесообразно использовать коммерческую энергию, в настоящее время обычно используются перезаряжаемые батареи, солнечные элементы и генераторы, работающие на газе. Топливные элементы MGC с прямым метанолом (DMFC) предлагают еще одно решение, не имеющее себе равных по эффективности и универсальности.

Использование метанола

В отличие от стандартных водородных топливных элементов, в которых в качестве источника топлива используется газообразный водород, в DMFC используется уникальная метамикс концентрированного 54% ​​сжиженного метанола. Концентрированное топливо обеспечивает стабильное производство электроэнергии в течение всего срока службы топлива, что делает его более стабильным, чем водород, а также более легким по весу и более компактным, что упрощает его хранение и транспортировку.Это делает его идеальным топливом для выработки электроэнергии в чрезвычайных ситуациях, например, после стихийного бедствия, в качестве резервного источника топлива и в качестве основного источника топлива для объектов, недоступных для электросетей. Портативные источники питания, использующие DMFC, также тише бензиновых генераторов и не выделяют вредных газов, таких как окись углерода или окись азота. Это делает DMFC подходящим для проектов и мероприятий, проводимых как снаружи, так и внутри. Снаружи генераторы DMFC практически бесшумны на расстоянии всего 2-3 метра, а всего четыре литра метамикса могут питать генератор мощностью 200 Вт более восьми часов.Его универсальность, безопасность, надежность и экологичность сделают метанол основным источником энергии в будущем.

Бонусная функция!Питьевой этанол,


непригодный для питья метанол

Этанол (этиловый спирт) и метанол (метиловый спирт) очень похожи, но очень разные. Оба являются спиртами, но этанол создается из ферментированного крахмала и сахара, которые содержатся в зерне, а метанол создается из природного газа, угля и биомассы. Их молекулярные структуры отличаются всего на несколько молекул, но эта небольшая вариация придает им совершенно разные свойства.Самое главное отличие состоит в том, что этанол является питьевой формой алкоголя, а метанол при употреблении очень токсичен.

Разница между этанолом и метанолом

Центр данных по альтернативным видам топлива: метанол

Метанол (CH 3 OH), также известный как древесный спирт, считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года. В качестве моторного топлива метанол имеет химические и физические свойства топлива, аналогичные этанолу. Метанол использовался в 1990-х годах, но больше не используется и не разрабатывается в качестве коммерческого транспортного топлива.

Производство

Это топливо обычно производится путем паровой конверсии природного газа с получением синтез-газа. Подача этого синтез-газа в реактор с катализатором дает метанол и водяной пар. Метанол можно производить из различного сырья, но в настоящее время наиболее экономичным является природный газ.

Преимущества

Метанол может стать альтернативой обычному транспортному топливу. К преимуществам метанола относятся:

  • Более низкие производственные затраты — Метанол дешевле в производстве по сравнению с другими альтернативными видами топлива.

  • Повышенная безопасность — Метанол имеет меньший риск воспламенения по сравнению с бензином.

  • Повышенная энергетическая безопасность —Метанол можно производить из различных отечественных видов углеродсодержащего сырья, таких как биомасса, природный газ и уголь.

Исследования и разработки

Метанол продавался в 1990-х годах как альтернативное топливо для совместимых автомобилей. На пике своего развития ежегодно в автомобилях на альтернативных видах топлива в Соединенных Штатах использовалось почти 6 миллионов бензиновых галлонов, эквивалентных 100% метанолу и смесям 85% метанола и 15% бензина.

Массачусетский технологический институт исследовал будущее природного газа в качестве сырья, чтобы обеспечить более широкое использование метанола в качестве транспортного топлива.

Дополнительная информация

Узнайте больше о метаноле по ссылкам ниже. Центр данных по альтернативным видам топлива (AFDC) и Министерство энергетики США не обязательно рекомендуют или поддерживают эти компании (см. отказ от ответственности).

AFDC также обеспечивает поиск публикаций для получения дополнительной информации.


Алкоголь из дерева: Алкогольные напитки сохраняют вкус дерева

Да, вы правильно прочитали. Алкогольные напитки, сделанные из дерева, — настоящая находка.

 

Японские исследователи изготовили алкогольные напитки на основе древесины в лаборатории, и они даже имеют вкус дерева.

 

«Мы подумали, что было бы интересно подумать, что алкоголь может быть сделан из чего-то поблизости, например, из деревьев», — сказал AFP News исследователь Кенго Магара.

 

Путем измельчения древесины в кремообразную пасту с добавлением дрожжей и фермента исследователи из Японского научно-исследовательского института лесного хозяйства и лесных товаров произвели алкогольные напитки на основе коры без применения тепла, сохраняя специфический аромат древесины каждого дерева.

 

Как правило, процесс перегонки древесины требует кипячения смеси древесной массы и воды, в результате чего образуется метанол, опасный ингредиент, который может вызвать слепоту у людей. Но избегая использования тепла, вместо этого производится этанол, что делает его пригодным для питья.

 

«Наш метод может сделать его пригодным для питья и со вкусом дерева, потому что для разложения дерева не требуется высокая температура или серная кислота», — сказал Магара.

Научно-исследовательский институт планирует коммерциализировать напитки, сотрудничая с партнером из частного сектора.Цель состоит в том, чтобы древесный спирт появился на прилавках магазинов в течение трех лет.

 

«В Японии много деревьев по всей стране, и мы надеемся, что люди смогут насладиться древесными спиртами, которые производятся в каждом регионе», — продолжил Магара.

 

До сих пор исследователи производили напитки из кедра, березы и вишни. Около девяти фунтов кедровой древесины произвели восемь пинт жидкости с содержанием алкоголя около 15 процентов. Экспериментировали как с заваренной, так и с дистиллированной версиями, но Магара сказал: «Мы думаем, что дистиллированный алкоголь выглядит лучше.»

 

Магара признал, что, хотя ученые уже производили биотопливо путем ферментации древесины, это топливо содержало токсины и не имело вкуса, что делало его непригодным для коктейлей.

 

 

 

Метиловый спирт, 30 мл | Инструменты для домашней науки

Есть вопросы? Обратитесь в службу поддержки клиентов.

406-256-0990 или Живой чат

Возраст 14+
На складе, готово к отправке
Нужно быстро? Варианты доставки смотрите в корзине.

Флакон 30 мл безводного (безводного) метилового спирта, также называемого метанолом, древесным спиртом или древесной нафтой. Взгляните на таблицу ниже, чтобы узнать формулу метилового спирта, плотность, срок годности, общее использование и многое другое! Читать Подробнее

участника My Science Perks зарабатывают не менее 0,07 долларов США обратно за этот товар. Войдите или создайте Бесплатный HST Аккаунт, чтобы начать зарабатывать сегодня

Ограничения по доставке:

ОПИСАНИЕ

Флакон 30 мл безводного (безводного) метилового спирта марки ACS.Метиловый спирт также называют метанолом, древесным спиртом или древесной нафтой. Он легко воспламеняется и ядовит, поэтому внимательно прочитайте предупредительные этикетки перед использованием.

Взгляните на таблицу ниже, чтобы узнать формулу метилового спирта, плотность, срок годности, общие области применения и многое другое!

Вы также можете узнать больше о метиловом спирте, или метаноле, в нашей статье об альтернативных источниках энергии.

Формула CH 3 OH
Вес формулы 32.042 
Марка СКУД
Форма Решение
Плотность 792 кг/м³
Номер CAS 67-56-1
Классификация DOT UN1230, Метанол
Код хранения Красный
Срок годности 36 месяцев
Альтернативные имена Метанол, древесный спирт, древесная нафта
Общее использование Используется для создания топлива, растворителей и антифриза 
Опасность Легковоспламеняющаяся и горючая жидкость 

 

ПРЕДУПРЕЖДЕНИЕ: Этот продукт может подвергнуть вас воздействию метанола, который, как известно в штате Калифорния, вызывает врожденные дефекты или другой вред репродуктивной системе.

ЯЩИК ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ

ВКЛАДКА СОДЕРЖИМОЕ

 

ТАБЛИЦА С ХАРАКТЕРИСТИКАМИ

 

Описание продукта
НЕ-МЕТАЛЛ
Спецификации
Содержание

Ограничение на отправку: Этот товар доставляется только эконом-классом или UPS на почтовый адрес в 50 штатах США.

Предупреждение: ОПАСНЫЕ ХИМИЧЕСКИЕ ВЕЩЕСТВА. Этот комплект содержит опасные химические вещества. Не для детей младше 15 лет. Использовать под присмотром взрослых. Внимательно прочитайте предупреждающие этикетки.

Мы хотим, чтобы этот предмет был живым, когда вы его получите! Поэтому нам нужно знать, когда вы будете дома, чтобы получить его (минимизируя воздействие элементов).Укажите дату доставки, среда — Пятница, это по крайней мере 7 дней с сегодняшнего дня.

Химия/Химикаты

/химия/,/химия/химикаты/

Мы поняли. Наука может быть грязной. Но продукты и услуги Home Science Tools справятся с этим.

Наши продукты долговечны, надежны и доступны по цене, чтобы доставить вас из поля в лабораторию на кухню.Они не подведут вас, с чем бы они ни столкнулись. Будь то (чрезмерно) нетерпеливые молодые ученые из года в год или строгие требования, которые возникают раз в жизни.

И если ваш научный запрос пойдет не так, как ожидалось, вы можете рассчитывать на помощь нашей службы поддержки клиентов. Рассчитывайте на дружелюбные голоса на другом конце телефона и советы экспертов в своем почтовом ящике. Они не счастливы до тех пор, пока вы не будете счастливы.

Итог? Мы гарантируем, что наши продукты и услуги не испортят ваше научное исследование, каким бы грязным оно ни было.

Вопросы? Свяжитесь с нашей службой поддержки клиентов.

Метиловый спирт – обзор

8.6 Процессы на основе метанола

Метанол, вероятно, является одним из самых универсальных растворителей в промышленности по переработке природного газа. Исторически сложилось так, что метанол был первым коммерческим органическим физическим растворителем и использовался для ингибирования образования гидратов, дегидратации, очистки газов и извлечения жидкостей (Kohl and Nielsen, 1997). Большинство этих применений связаны с низкими температурами, когда физические свойства метанола выгодны по сравнению с другими растворителями, которые имеют проблемы с высокой вязкостью или даже образованием твердых частиц.Работа при низких температурах, как правило, устраняет наиболее существенный недостаток метанола, высокую потерю растворителя. Кроме того, метанол относительно недорог и прост в производстве, что делает этот растворитель очень привлекательной альтернативой для процессов обработки газа.

Метанол имеет благоприятные физические свойства по сравнению с другими растворителями, за исключением давления паров. Преимущества низкой вязкости метанола при низкой температуре проявляются в улучшении перепада давления в холодильной камере установок закачки и улучшении теплообмена.Метанол имеет гораздо более низкое поверхностное натяжение по сравнению с другими растворителями. Высокое поверхностное натяжение способствует возникновению проблем с пенообразованием в контакторах. Процессы с метанолом, вероятно, не подвержены пенообразованию. Однако основным недостатком метанола является высокое давление паров, которое в несколько раз больше, чем у гликолей или аминов. Чтобы свести к минимуму потери метанола и повысить абсорбцию воды и кислых газов, температура абсорбера или сепаратора обычно не превышает -20°F.

Высокое давление паров метанола вначале может показаться существенным недостатком из-за высоких потерь растворителя.Однако высокое давление пара также имеет значительные преимущества. Хотя это часто не учитывается, отсутствие тщательного смешивания газа и растворителя может создать серьезные проблемы. Из-за высокого давления паров метанол полностью смешивается с газовым потоком перед холодильной камерой. Гликоли, поскольку они не испаряются полностью, могут потребовать специальных насадок и их размещения в холодильной камере для предотвращения замерзания. Перенос растворителя в другие последующие процессы также может представлять серьезную проблему.Поскольку метанол более летуч, чем гликоли, амины и другие физические растворители, включая нежирное масло, метанол обычно не используется на стадии регенерации в этих последующих процессах. Отпарная колонна концентрирует метанол в верхнем конденсаторе, откуда его можно удалить и дополнительно очистить. К сожалению, если гликоли переносятся в аминные звенья, гликоль концентрируется в растворе и потенциально начинает разлагаться и, возможно, разбавлять раствор амина.

Использование метанола в дальнейшем использовалось при разработке процесса Rectisol либо отдельно, либо в виде смесей толуола и метанола для более селективного удаления сероводорода и выделения углекислого газа в головной продукт (Ranke and Mohr, 1985).Толуол имеет дополнительное преимущество, поскольку карбонилсульфид более растворим в толуоле, чем в метаноле. Процесс Rectisol был в первую очередь разработан для удаления двуокиси углерода и сероводорода (наряду с другими серосодержащими соединениями) из газовых потоков, образующихся в результате частичного окисления угля, нефти и нефтяных остатков. Способность метанола поглощать эти нежелательные компоненты сделала его естественным растворителем. К сожалению, при низких температурах метанол также имеет высокое сродство к углеводородным компонентам газовых потоков.Например, пропан лучше растворяется в метаноле, чем в углекислом газе. Существует две версии процесса Rectisol — двухступенчатая и однократная. Первым этапом двухстадийного процесса является обессеривание перед конверсией сдвига; концентрации сероводорода и диоксида углерода составляют около 1% и 5% по объему соответственно. Регенерация метанола после десульфурации исходного газа дает сырье с высоким содержанием серы для извлечения серы. Прямоточный процесс применим только для продуктов парциального окисления под высоким давлением.Прямоточный процесс также применим, когда соотношение содержания сероводорода и диоксида углерода неблагоприятно, около 1:50 (Esteban et al., 2000).

Физический/химический комбинированный процесс очистки, в котором алканоламин (моно- или диэтаноламин) в смеси с метанолом более эффективен, чем один физический растворитель, используемый на многих газоочистных сооружениях. Основное преимущество этого растворителя заключается в хорошей физической абсорбции физического компонента растворителя в сочетании с химической реакцией амина.Комбинация химически активного амина с полярным физическим растворителем с низкой температурой кипения, таким как метанол, дает большие преимущества в абсорбции компонентов диоксида углерода и серы, поскольку: (1) низкое содержание серы в газообразном продукте, (2) низкое содержание углерода диоксида в очищенном газе, (3) удаление абсорбцией следовых компонентов, таких как цианистый водород, карбонилсульфид, производные меркаптана и производные углеводородов с более высокой молекулярной массой, (4) относительно низкая температура регенерации, поскольку метанол имеет температуру кипения ниже температура кипения воды и (5) растворитель не вызывает коррозии, поэтому можно использовать оборудование из углеродистой стали.

Недавно был разработан процесс с использованием метанола, в котором одновременно можно проводить дегидратацию, удалять кислые газы и контролировать точку росы по углеводородам (Rojey and Larue, 1988; Rojey et al., 1990). IFPEXOL-1 используется для удаления воды и контроля точки росы по углеводородам; процесс IFPEXOL-2 используется для удаления кислых газов. Новая концепция процесса IFPEXOL-1 заключается в использовании части насыщенного водой входного сырья для извлечения метанола из водной части низкотемпературного сепаратора.Такой подход решил основную проблему с закачкой метанола на крупных предприятиях, а именно получение метанола путем перегонки. Помимо этого очень простого открытия, холодная часть процесса удивительно похожа на основной процесс впрыска метанола. Модификации процесса включают промывку водой углеводородной жидкости из низкотемпературного сепаратора для увеличения извлечения метанола. Процесс IFPEXOL-2 для удаления кислых газов очень похож на процесс аминового типа, за исключением рабочих температур.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *