Покрытия металлов – Металлические покрытия

Металлические покрытия

Нанесение на поверхность деталей износостойких , жаростойких, антикоррозионных и декоративных покрытий

Напыление, нанесение вещества в дисперсном состоянии на поверхность изделий и полуфабрикатов для сообщения им специальных физико-химических, механических, декоративных свойств или для восстановления дефектной поверхности. Напылённое покрытие удерживается на поверхности в основном силами адгезии. В зависимости от исходного состояния напыляемых материалов и конструкции напыляющих устройств различают следующим методы напыления.: газопламенный, электродуговой, порошковый, жидкостный, парофазовый, плазменный, лазерный, автотермоионноэмиссионный. Указанными методами наносят металлы (Ni, Zn, Al, Ag, Cr, Cu, Au, Pt и др.), сплавы (сталь, бронзу и др.), химические соединения (силициды, бориды, карбиды, окислы и др.), неметаллические материалы (пластмассы). Толщина напыляемого слоя зависит от метода и режима напыления и требуемых свойств. Кроме того, напылением получают тонкие эпитаксиальные плёнки, например полупроводниковых материалов.

Плакирование (механо-термический). Способ плакирования или облицовки заключается в том, что на матрицу основного металла накладывают с обеих сторон (или с одной стороны) листы другого металла, затем весь пакет подвергают горячей прокатке, получая в результате диффузии на границах раздела металлов прочное сцепление между слоями. Таким способом сталь плакируют медью, латунью, никелем, медноникелевыми сплавами, алюминием, нержавеющей сталью, получая биметаллические материалы. Толщина плакировочного слоя обычно составляет 8-20% общей толщины листа.

Термодиффузионные покрытия. Эти покрытия обладают сравнительно высокой коррозионной стойкостью и высокой адгезией. Диффузионные покрытия получаются в результате насыщения поверхностных слоёв защищаемого металла атомами защищающего металла и диффузии последних в глубину защищаемого металла при высоких температурах. В поверхностных слоях покрываемого металла обычно наблюдается образование новых фаз химических соединений или твёрдых растворов.

Из диффузионных покрытий, обладающих высокой коррозионной стойкостью и в особенности жаростойкостью, представляют интерес покрытия алюминием (алитирование), кремнием (термосилицирование), хромом (термохромирование). Наблюдаемое при этом значительное повышение жаростойкости изделий обусловлено образованием на их поверхности окислов Al2O3, Cr2O3, SiO2 или смешанных окислов, обладающих повышенными защитными свойствами и препятствующих дальнейшему окислению сплава.

Металлизация погружением в расплавленные металлы (Горячие покрытия). Способ горячего нанесения покрытий заключается в погружении изделий в расплавленный металл. Возможности получения покрытия горячим способом определяются способностью покрываемого металла смачиваться расплавленным металлом покрытия. Покрывающий металл, как правило, должен иметь более низкую температуру плавления, чем покрываемый металл. К числу недостатков этого способа относится: большой расход наносимого металла, неравномерность покрытия по толщине на изделиях сложной формы и т.д. Наиболее широко этот метод применяется в промышленности для нанесения на углеродистую сталь цинка, олова, свинца.

Химико-термическая обработка

Целью химико-термической обработки является получение поверхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или коррозионной стойкостью. Для этого нагретые заготовки подвергают воздействию среды, из которой путем диффузии в поверхностный слой заготовок переходят нужные для получения заданных свойств элементы: углерод, азот, алюминии, хром, кремний и др. Эти элементы диффундируют в поверхностный слой лучше, когда они выделяются в атомарном состоянии при разложении какого-либо соединения. Подобное разложение легче всего происходит в газах, поэтому их и стремятся применять для химико-термической обработки стали. Выделяющийся при разложении газа активизированный атом элемента проникает в решетку кристаллов стали и образует твердый раствор или химическое соединение. Наиболее распространенными видами химико-термической обработки стали являются цементация, азотирование, цианирование.

Цементация.

Цементацией называется поглощение углерода поверхностным слоем заготовки, который после закалки становится твердым; в сердцевине заготовка остается вязкой. Цементации подвергают такие изделия, которые работают одновременно на истирание и удар.

Существуют два вида цементации: цементация твердым карбюризатором и газовая цементация. При цементации твердым карбюризатором применяют древесный уголь в смеси с углекислыми солями — карбонатами (ВаСО3, Nа2СО3, К2СО3, СаСО3 и др.). Цементации подвергают заготовки из углеродистой или легированной стали с массовым содержанием углерода до 0,08 %. Для деталей, подверженных большим напряжениям, применяют стали, содержащие до 0,3 % С. Такое содержание углерода обеспечивает высокую вязкость сердцевины после цементации. Для цементации заготовки помещают в стальные цементационные ящики, засыпают карбюризатором, покрывают крышками, тщательно обмазывают щели глиной, помещают ящики в печь и выдерживают там 5—10 ч при температуре 930—950 °С. Технология цементации деталей в твердом карбюризаторе заключается в следующем. Детали очищают от грязи, масла, окалины и упаковывают в цементационный ящик. На дно ящика насыпают карбюризатор слоем 25—30 мм.

Печи для химикотермической обработки(цементация, азотирование)

Диффузионная металлизация

Диффузионной металлизация-это процесс диффузионного насыщения поверхностных слоев стали различными металлами. Она может осуществляться в твердых, жидких и газообразных средах.

При диффузионной металлизации в твердых средах применяют порошкообразные смеси, состоящие из ферросплавов с добавлением хлористого аммония в количисве 0,5-5%.

Жидкая диффузионная металлизация осуществляется погружением детали в расплавленный  металл (например цинк, алюминий).

При газовом способе насыщения применяют летучие хлористые соединения металлов, образующиеся при взаимодействии хлора с металлами при высоких температурах .

Диффузия металлов в железе идет значительно медленнее, чем углерода и азота, потому что углерод и азот образуют с железом твердые растворы внедрения, а металлы – твердые растворы замещения. Это приводит к тому, что диффузионные слои при металлизации получаются в десятки раз более тонкими.

Поверхностное насыщение стали металлами проводится при температуре 900-1200С.

Алитированием называется процесс насыщения поверхности стали алюминием. В результате алитирования сталь приобретает высокую окалиностойкость  и коррозионную стойкость в атмосфере и в ряде сред.

При алитировании в порошкообразных смесях чистые детали вместе со смесью упаковывают в железный ящик.

Алитирование в расплавленном алюминии отличается от алитирования в порошкообразных смесях простотой метода, быстрой и более низкой температурой.

Основным недостатком является- налипание алюминия на поверхность детали.

Алитированные стали металлизацией с последующим диффузионным отжигом в несколько раз дешевле, чем в порошках.

Алитированием подвергают трубы, инструмент для литья цветных сплавов, чехлы термопар, детали газогенераторных машин и т.д.

Хромирование проводят для повышения коррозионной стойкости, кислотостойкости, окалиностойкости и т.д. Хромирование средне- и высокоуглеродистых сталей повышает твердость и износостойкость.

 Хромирование чаще всего проводят в порошкообразных смесях. Процесс происходит при температуре 1000-1050С.Диффузионный слой, получаемый при хромировании углеродистых сталей, состоит из карбидов хрома. Карбидный слой имеет высокую твердость HV 12000-13000. Толщина хромированного слоя достигает 0,15- 0,20 мм при длительности процесса 6-15ч.Чем больше углерода в стали, тем меньше толщина слоя.

Иногда применяют хромирование в вакууме. Издели засыпают кусочками хрома в стальном или керамическом тигле и помещают в вакуумную печь.

Хромирование применяют для пароводяной арматуры, клапанов, вентилей.

Борированием называется насыщение стали бором. Борирование проводят с целью повышения стойкости против абразивного износа. Толщина борированных слоев не превышает 0,3мм, твердость HV 18000-20000.

Широкое распространение получил метод электролизного борирования в расплавленных солях, содержащих бор. Деталь служит катодом в ванне с расплавленной бурой. Температура процесса 900-950С. Процесс можно вести и без электролиза в ваннах с расплавленными хлористыми солями, в которые добавляют порошкообразный ферробор или карбид бора.

Борированию подвергают втулки грязевых нефтяных насосов, штампы.

Силицированием называется процесс насыщения поверхности стали кремнием. В результате силицирования сталь приобретает высокую коррозионную стойкость в морской воде, в различных кислотах и повышенную износостойкость. Кроме того, силицирование резко повышает окалиностойкость молибдена и некоторых других металлов и сплавов.

Силицированный слой представляет собой твердый раствор кремния в а-железе. Силицированный слой несмотря на низкую твердость (HV 2000-3000) и пористость после пропитки маслом при температуре 170-200С имеет повышенную износостойкость.

При газовом силицировании при температуре 1000С в течение 2-4ч образуется слой толщиной 0,5-1,0 мм.

Силицированием подвергают детали, применяемые а оборудовании химической, бумажной и нефтяной промышленности.

Получение металлических защитных покрытий

Нанесение защитных металлических покрытий – один из самых распространенных методов борьбы с коррозией. Эти покрытия не только защищают от коррозии, но и придают их поверхности ряд ценных физико-механических свойств: твердость, износоустойчивость, электропроводность, паяемость, отражательную способность, обеспечивают изделиям декоративную отделку и т.д.

По способу защитного действия металлические покрытия делят на катодные и анодные.

Катодные покрытия имеют более положительный, а анодные — более электроотрицательный электродные потенциалы по сравнению с потенциалом металла, на который они нанесены. Так, например, медь, никель, серебро, золото, осажденные на сталь, являются катодными покрытиями, а цинк и кадмий по отношению к этой же стали – анодными покрытиями.

Необходимо отметить, что вид покрытия зависит не только от природы металлов, но и от состава коррозионной среды. Олово по отношению к железу в растворах неорганических кислот и солей играет роль катодного покрытия, а в ряде органических кислот (пищевых консервах) служит анодом. В обычных условиях катодные покрытия защищают металл изделия механически, изолируя его от окружающей среды. Основное требование к катодным покрытиям – беспористость. В противном случае при погружении изделия в электролит или при конденсации на его поверхности тонкой пленки влаги обнаженные (в порах или трещинах) участки основного металла становятся анодами, а поверхность покрытия катодом. В местах несплошностей начнется коррозия основного металла, которая может распространяться под покрытие (рис. 44 а).

Рисунок 11 Схема коррозии железа с пористым катодным (а) и анодным (б) покрытием

Анодные покрытия защищают металл изделия не только механически, но главным образом электрохимически. В образовавшемся гальваническом элементе металл покрытия становится анодом и подвергается коррозии, а обнаженные (в порах) участки основного металла выполняют роль катодов и не разрушаются, пока сохраняется электрический контакт покрытия с защищаемым металлом и через систему проходит достаточный ток (рис.4 б). Поэтому степень пористости анодных покрытий в отличие от катодных не играет существенной роли.

В отдельных случаях электрохимическая защита может иметь место при нанесении катодных покрытий. Это происходит, если металл покрытия по отношению к изделию является эффективным катодом, а основной металл склонен к пассивации. Возникающая анодная поляризация пассивирует незащищенные (в порах) участки основного металла и затрудняет их разрушение. Такой вид анодной электрохимической защиты проявляется для медных покрытий на сталях 12Х13 и 12Х18Н9Т в растворах серной кислоты.

Основной метод нанесения защитных металлических покрытий – гальванический. Применяют также термодиффузионный и механотермический методы, металлизацию распылением и погружением в расплав.Разберем каждый из методов более подробно.

Гальванические покрытия.

Гальванический метод осаждения защитных металлических покрытий получил очень широкое распространение в промышленности. По сравнению с другими способами нанесения металлопокрытий он имеет ряд серьезных преимуществ: высокую экономичность (защита металла от коррозии достигается весьма тонкими покрытиями), возможность получения покрытий одного и того же металла с различными механическими свойствами, легкую управляемость процесса (регулирование толщины и свойств металлических осадков путем изменения состава электролита и режима электролиза), возможность получения сплавов разнообразного состава без применения высоких температур, хорошее сцепление с основным металлом и др.

Недостаток гальванического метода – неравномерность толщины покрытия на изделиях сложного профиля.

Электрохимическое осаждение металлов проводят в гальванической ванне постоянного тока (рис 45). Покрываемое металлом изделие завешивают на катод. В качестве анодов используют пластины из осаждаемого металла (растворимые аноды) или из материала, нерастворимого в электролите (нерастворимые аноды).

Обязательный компонент электролита – ион металла, осаждающийся на катоде. В состав электролита могут также входить вещества, повышающие его электропроводность, регулирующие протекание анодного процесса, обеспечивающие постоянство рН, поверхностно-активные вещества, повышающие поляризацию катодного процесса, блескообразующие и выравнивающие добавки и др.

Рисунок 5 Гальваническая ванна для электроосаждения металлов:

1 – корпус; 2 – вентиляционный кожух; 3 – змеевик для обогрева; 4 – изоляторы; 5 – анодные штанги; 6 – катодные штанги; 7 – барботер для перемешивания сжатым воздухом

В зависимости от того, в каком виде ион разряжающегося металла находится в растворе, все электролиты делятся на комплексные и простые. Разряд комплексных ионов на катоде происходит при более высоком перенапряжении, чем разряд простых ионов. Поэтому осадки, полученные из комплексных электролитов, более мелкозернисты и равномерны по толщине. Однако у этих электролитов ниже выход металла по току и более низкие рабочие плотности тока, т.е. по производительности они уступают простым электролитам, в которых ион металла находится в виде простых гидратированных ионов.

Распределение тока по поверхности изделия в гальванической ванне никогда не бывает равномерным. Это приводит к разной скорости осаждения, а следовательно, и толщине покрытия на отдельных участках катода. Особенно сильный разброс по толщине наблюдается на изделиях сложного профиля, что отрицательно сказывается на защитных свойствах покрытия. Равномерность толщины осаждаемого покрытия улучшается с увеличением электропроводности электролита, ростом поляризации с ростом плотности тока, уменьшением выхода металла по току при повышении плотности тока, увеличении расстояния между катодом и анодом.

Способность гальванической ванны давать равномерные по толщине покрытия на рельефной поверхности называется рассеивающей способностью. Наибольшей рассеивающей способностью обладают комплексные электролиты.

Для защиты изделий от коррозии используют гальваническое осаждение многих металлов: цинка, кадмия, никеля, хрома, олова, свинца, золота, серебра и др. Применяют также электролитические сплавы, например Cu – Zn, Cu – Sn, Sn – Bi и многослойные покрытия.

Наиболее эффективно (электрохимически и механически) защищают черные металлы от коррозии анодные покрытия цинком и кадмием.

Цинковые покрытия применяются для защиты от коррозии деталей машин, трубопроводов, стальных листов. Цинк – дешевый и доступный металл. Он защищает основное изделие механическим и электрохимическим способами, так как при наличии пор или оголенных мест происходит разрушение цинка, а стальная основа не корродирует.

Покрытия из цинка занимают доминирующее положение. С помощью цинка защищают от коррозии примерно 20 % всех стальных деталей, и около 50% производимого в мире цинка расходуется на гальванические покрытия.

В последние годы получили развитие работы по созданию защитных гальванических покрытий из сплавов на основе цинка: Zn – Ni (8 – 12% Ni), Zn – Fe, Zn – Co (0,6 – 0,8% Co). При этом удается повысить коррозионную стойкость покрытия в 2-3 раза.

Цинкование проводят в кислых, цианидных и цинкатных электролитах. Осаждение цинка происходит с высоким выходом по току. Цинковые покрытия отличаются высокой степенью чистоты, химической стойкостью и хорошими механическими свойствами.

Применение цианидных электролитов обеспечивает получение более мелкозернистых покрытий. Их используют для обработки деталей сложной формы. Однако эти электролиты экологически опасны. В некоторых случаях цианидные электролиты заменяют на щелочные цинкатные.

Все большее распространение получают цинковые комбинированные электрохимические покрытия (КЭП). Из сульфатного электролита получают КЭП с включениями корунда до 0,4 – 0,5 масс. %. Из цинкатного электролита с порошком карбонильного никеля получают КЭП с содержанием никеля 6 – 12 масс. %. На основе цинка получают также покрытия с частицами полимеров – капрона и полиамида, содержание которых в КЭП 0,9 – 3,1 масс. %. Эти покрытия в 1,5 раза более стойки к воздействию кислот, чем чистые цинковые покрытия.

Кадмий имеет более близкий потенциал к железу, чем цинк. Характер защиты кадмием зависит от коррозионной среды. Во влажной атмосфере в присутствии хлор-ионов потенциал кадмия становится электроотрицательнее потенциала железа, и кадмий электрохимически защищает металл от коррозии.

Необходимо учитывать высокую токсичность и дефицитность кадмия. Поэтому его применяют только для защиты особо важных деталей.

Для цинкования и кадмирования предложены электролиты, в которых металлы находятся в виде простых солей или в виде комплексных соединений. Наибольшее применение получили сульфатные электролиты. Их состав, г/л:

Цинкование

Кадмирование

Zn SO4 – 200 – 250

Cd SO4 – 40 – 60

Na2 SO4 – 50 – 100

(Nh5)2SO4 – 240 – 250

Al2 (SO4)3 – 20 – 30

Препарат ОС-20 – 0,7 – 1,2

Декстрин – 8 – 10

Диспергатор НФ – 50 – 100

рН = 3,54,5

Уротропин – 15 – 20

Катодная плотность тока для цинкования 100 – 400 А/м2. Температура электролита для обоих процессов – 15 – 30 ºС.

Очень распространены никелевые покрытия. Их широко применяют для защиты изделий от коррозии и для декоративной отделки в машиностроении, приборостроении, автомобилестроительной, медицинской, электронной промышленности, при изготовлении предметов бытового потребления. Никелевые покрытия весьма стойки в атмосфере, растворах щелочей и некоторых органических кислот, что обусловлено сильно выраженной способностью никеля к пассивации в этих средах.

Никель в паре с железом является катодом, так как имеет более электроположительный потенциал, чем железо. Никель может защищать сталь только механическим путем, следовательно, покрытие не должно иметь пор и должно иметь большую толщину – 20 – 25 мкм. Существуют несколько разновидностей никелевых покрытий.

Никелирование матовое – нанесение на поверхность металлических деталей матового слоя никеля. Основным компонентом электролитов для получения матовых осадков никеля является сульфат никеля. В раствор вводят также сульфат натрия или магния для получения пластичных и полируемых покрытий, а также борную кислоту для поддержания устойчивого значения рН.

Блестящее никелирование используют для защитно-декоративной отделки поверхности. Блестящий никель можно наносить на детали со сложным профилем, он обладает пониженной коррозионной стойкостью по сравнению с матовыми покрытиями.

Никелирование черное – электролитическое нанесение на поверхность металлических изделий слоя никеля черного цвета. Такое покрытие используют как с защитно-декоративной целью, так и для уменьшения коэффициента отражения света. Оно нашло применение в оптической промышленности и в некоторых отраслях машиностроения. У черного никеля низкие показатели коррозионной стойкости, пластичности и прочности сцепления с поверхностью. Поэтому применяют предварительное оловянирование или осаждение матового никеля. Если применить предварительное цинкование, а затем осадить черный никель, то покрытия приобретают такую же коррозионную стойкость, как если бы они были покрыты только цинком. Часто черный никель наносят на изделия из меди или латуни.

Применяют также химический способ нанесения никеля на поверхность металлических изделий. Химически восстановленный никель отличается повышенной коррозионной стойкостью и твердостью. Он позволяет получать равномерные по толщине осадки, отличающиеся высокими декоративными свойствами и малой пористостью.

Усовершенствование процессов никелирования идет по пути создания новых электролитов и сплавов на основе никеля. Разработаны новые метансульфоновые растворы, из которых получают пластичные никелевые покрытия с низкими внутренними напряжениями.

Многослойные в два-три слоя никелевые покрытия обладают большей коррозионной стойкостью, чем однослойные. Первый слой никеля осаждают из простого никелевого электролита, а 2-й слой из электролита, содержащего серу, в составе органических добавок. Потенциал никеля, содержащего серу имеет более отрицательное значение, чем потенциал никеля без включений серы. Поэтому второй слой электрохимически защищает от коррозии первый слой никеля. Таким образом обеспечивается более высокая защита основного изделия.

Используют также двухслойное покрытие, называемое «сил-никель». Оно состоит из первого блестящего слоя никеля. Второй слой получают из электролита, содержащего в виде суспензии каолин. В ходе электролиза каолин осаждается вместе с никелем и включается в осадок.

Покрытия из сплавов Ni – W используются при изготовлении пуансонов штампов для производства телевизионных трубок. Совершенствуются процессы соосаждения Ni с фторопластом и MoS2. Введение в матрицу покрытия алмазных и других неметаллических составляющих позволяет существенно повысить твердость и износостойкость никелевых покрытий.

Использование многослойных никелевых покрытий обеспечивает значительную экономию никеля и повышает их эксплуатационные свойства.

Хромовые покрытия широко применяют для защиты от коррозии и механического износа различных машин и аппаратов.

Хромовые покрытия бывают защитно-декоративные и функциональные. Хром по отношению к стали является катодом, и при их контакте разрушаться будет сталь. Поэтому хромовые покрытия на стали должны быть сплошными и беспористыми.

Стальные изделия могут быть защищены от коррозии в атмосферных условиях однослойным хромовым покрытием толщиной не менее 40 мкм.

Для деталей из меди и медных сплавов осаждают хром по никелевому подслою. Детали из цинковых, алюминиевых, магниевых сплавов покрывают хромом после нанесения многослойного покрытия.

Основными компонентами электролитов для хромирования являются оксид хрома (VI) CrO3 и серная кислота. В водном растворе соединения Cr (VI) образуют смесь, состоящую из кислот h3Cr2O7 и h3CrO4. В растворе эти кислоты находятся в динамическом равновесии:

2h3 Cr O4 Û h3 Cr2 O7 + h3O

При электролизе на катоде одновременно происходит восстановление Cr+2 до Cr+3 и до металлического хрома, а также разряд ионов водорода. Выход по току хрома не превышает 15 – 25%. Хромирование – очень сложный процесс. Хром выделяется на катоде только при очень высоких плотностях тока (1000 – 3000 А/м2). Причем для каждой температуры имеется минимум плотности тока, ниже которого хром не осаждается.

Изменяя режим электролиза, можно получить блестящие, матовые (серые) или «молочные» осадки хрома. Блестящие осадки имеют наиболее высокую твердость, хорошее сцепление с основным металлом и наименьшую хрупкость. Матово-серые осадки отличаются высокой хрупкостью. Покрытия «молочным» хромом имеют высокую твердость, пластичность, значительно меньшую пористость и более высокую защитную способность.

Стальные детали приборов и машин, работающих в жестких условиях эксплуатации , покрывают двумя слоями хрома: нижний — молочный и верхний – блестящий. Это обеспечивает хорошую защиту от коррозии и высокую износостойкость при необходимых декоративных качествах.

Хромирование черное применяется для защитно-декоративной отделки деталей, поверхность которых наряду с коррозионной стойкостью должна иметь низкий коэффициент отражения света. По сравнению с другими покрытиями черного цвета черное хромовое покрытие отличается повышенной коррозионной стойкостью. Наносят черный хром по подслою молочного или блестящего хрома или никеля. Черные хромовые покрытия состоят на 75% из металлического хрома и на 25% из оксидов хрома.

Традиционные процессы получения хромовых покрытий из растворов, содержащих соединения Cr (VI), экологически опасны. ПДК для Cr (VI) равно 0,02 мг/л, а для Cr (III) – 0,07 мг/л. В связи с этим отработанные гальваностоки проходят сложную систему очистки. Первоначально соединения Cr(VI) восстанавливают до Cr(III). Если процесс восстановления проводят химическим путем, то применяют гидросульфит натрия – Na HS O3. Для полного восстановления соединений Cr (VI) требуется 5-7-кратный избыток гидросульфита и рН = 2 — 2,5. В процессе очистки часть Na HSO3 разлагается с выделением SO2, что приводит к дополнительному загрязнению атмосферы. Заключительная стадия очистки состоит в подщелачивании раствора до рН = 8,0-8,5 и осаждении Сг (ОН)3 вместе с другими примесями в осадок.

С целью улучшения экологической ситуации очень привлекательно выглядит идея получения осадков хрома из электролитов, содержащих соединения Сr (III). На этом пути возникают трудности, связанные с низким рН гидратообразования Сr(ОН)з, инертностью аквакомплексов Сr(Н2О)63+, образованием прочных внутриорбитальных комплексов и сложной конструкцией электролизера.

Разработанные электролиты на основе соединений Сr(III) не позволяли получить толстые слои. При достижении толщины в несколько микрон выделение хрома прекращается. Введение в раствор слабых лигандов, таких, как муравьиная или малоновая кислоты, а также ряда добавок позволяет получать толстые осадки хрома (до 100-200 мкм). Использование новых электролитов дало возможность проводить осаждение хрома с выходами по току до 25-45 % и скоростью 0,8-1,6 мкм/мин вне зависимости от времени.

В процессе электролиза растворов, содержащих ионы Сr3+, соединения Сr (VI) оказывают вредное влияние. Это требует усложнения конструкции электролизера и разделения диафрагмой или мембраной анодного и катодного пространства, так как шестивалентные ионы хрома (Сr6+) в основном образуются в результате химического взаимодействия с озоном, выделяющимся на аноде. Применение новых оксидных материалов, имеющих высокое перенапряжение для реакции образования соединений Сr (VI), позволило резко снизить выход по току Сrб+ и избежать конструктивного усложнения электролизера.

Таким образом, открываются перспективы для промышленного освоения новых передовых технологий нанесения защитных хромовых покрытий.

Оловянные покрытия применяют главным образом для защиты от коррозии в растворах органических кислот и солей, содержащихся в пищевых продуктах, а также от атмосферной коррозии в приборостроении, где наряду с защитными свойствами необходимо обеспечить паяемость изделия.

Олово в контакте со сталью является катодом, так как его потенциал имеет более положительное значение по отношению к железу. Однако в среде органических кислот олово образует комплексные соединения, и потенциал его становится более электроотрицательным.

В этих средах олово выступает как анод.

Около 50% добываемого олова расходуется на изготовление белой жести. С целью повышения коррозионной устойчивости производят оплавление оловянных покрытий. Блестящее оловянирование – это нанесение на поверхность металлических изделий блестящего слоя олова. По пористости и коррозионной стойкости они не отличаются от матовых покрытий, но обладают повышенной твердостью.

Для оловянирования применяют кислые и щелочные электролиты. Кислые электролиты просты по составу и работают при комнатной температуре. Они применяются для покрытия деталей простой конфигурации. Состав кислого электролита для покрытия оловом, г/л: Sn SO4 — 20-25; h3SO4 — 50-100; препарат ОС-20 — 2-5. Температура 15-30°С, плотность тока— 100-200 А/м2.

Для покрытия оловом сложных деталей применяют щелочной электролит состава, г/л: Na2Sn(OH)6 — 45-90; NaOHсвoб — 7-17; Ch4COONa — 15. Температура 60-80 °С, плотность тока — 50-200 А/м2.

Свинец устойчив в среде серной кислоты и ее соединений. Свинец, как и олово, не может защищать стальные изделия электрохимически. Поэтому применяют свинцовые беспористые покрытия большой толщины (до 300 мкм), которые механически защищают детали из черных металлов в средах, содержащих серную и хромовые кислоты и их соли. Необходимо учитывать высокую токсичность свинца.

Для покрытия изделий свинцом в промышленности применяют борфтористоводородные или фенолсульфоновые электролиты. Осадки хорошего качества получают только в присутствии органических добавок. Состав электролитов, г/л:

Борфтористоводородный

Фенолсульфоновый

Pb (BF4)2 — 125-200

Рb(НОС6Н4SОз)2 — 170-180

HBF4 — 40-600

НО Сб Н4 S0з Н своб —20-25

Клей столярный — 0,5-1,0

Клей столярный — 0,4-0,5

Электролиз проводят при температуре 15-30 °С и плотности тока 50-200 А/м2

 

1.3 Термодиффузионный метод покрытия

Термодиффузионный метод был разработан в 1938 году Н.А. Изгарышевым и Э.С. Саркисовым и получил практическое применение. Сущность метода состоит в поверхностном насыщении основного металла атомами легирующего компонента в результате диффузии его при высоких температурах. Тем самым удается значительно снизить расход легирующего металла.

Для создания термодиффузионного покрытия должны существовать следующие необходимые условия:

       — возможность образования твердого раствора основного металла с металлом покрытия;

       — атомный радиус металла покрытия не должен превышать атомный радиус основного металла, что обеспечивает свободу перемещения атомов вглубь кристаллической решетки.

Термодиффузионные покрытия на железе могут создавать металлы: Сu, Аu, Zn, Ti, Al, Si, Cr, Mo и т.д. Из них наибольшее применение в промышленности нашли покрытия:

       — алюминием — термоалитирование;

       — хромом — термохромирование;

       — кремнием — термосилицирование.

Термодиффузионные покрытия рассмотрены ранее (см. часть 1, гл. I, п. 8).

Плакирование — термомеханический способ. Плакирование является наиболее совершенным методом защиты малостойких металлов сплавами или металлами, обладающими повышенной коррозионной стойкостью.

Способ плакирования заключается в том, что на матрицу основного металла накладывают с обеих сторон листы другого металла, затем весь пакет подвергают горячей прокатке. В результате термодиффузии на границе раздела металлов получают прочное многослойное изделие.

Для плакирования применяют металлы и сплавы, обладающие хорошей свариваемостью: углеродистые и кислотостойкие стали, дюралюмины, сплавы меди.

В качестве защитного покрытия для плакирования используют алюминий, тантал, молибден, титан, никель, нержавеющие стали.

Толщина плакирующего слоя колеблется от 3 до 40 % от толщины защищаемого металла. Плакированную сталь можно подвергать всем видам механической обработки, в том числе штамповке и сварке.

Металлургическая промышленность выпускает углеродистую сталь в виде листов марок Ст. З, 10, 15К, 20К и др., плакированную хромистыми, хромоникелевыми и другими высоколегированными сталями (08Х17Т, 08X13, 10Х17Н13М2Т, 15X25T, 12Х18Н10Т и др.) различной толщины. Известны также сплавы, плакированные медью, серебром, алюминием. В электрохимической промышленности нашли широкое применение бианоды — плакированные электроды, основу которых составляет титан или тантал, а защитный слой состоит из платины, родия, иридия.

Метод плакирования позволяет экономить дорогостоящие металлы или высоколегированные сплавы и находит широкое применение в промышленности.

studfiles.net

Назначение антикоррозийных покрытий металла и их виды, правила выбора

Антикоррозийное покрытие металла — один из наиболее распространенных способов защиты металлических конструкций или коммуникаций от всевозможных негативных внешних воздействий.

Защита покрытия от коррозии — это создание на поверхности дополнительного слоя, который не допускает непосредственного контакта металла с воздухом, влагой или водой.

Существуют различные виды антикоррозионных покрытий, благодаря которым можно успешно продлить срок эксплуатации металлических приспособлений.

Что такое коррозия металла

Прежде чем выяснить, как покрывать металл от коррозии, следует разобраться, что же такое сама коррозия. Под ней понимается химическая реакция, которая появляется тогда, когда созданы все благоприятные условия для этого.

На поверхности коррозия образуется по следующим причинам:

  • если материал длительное время взаимодействовал с влагой;
  • если поверхность находится в открытом месте;
  • если условия эксплуатации не соблюдались;
  • если металл деформировался, а свойства его настолько изменились, что его в будущем использовать будет невозможно.

Из-за внешних факторов металл может менять цвет, текстуру или крошиться.

Назначение антикоррозийных покрытий

То или иное антикоррозийное покрытие имеет такое назначение:

  • создает защиту к негативному воздействию влаги;
  • противостоит разным видам топлива;
  • не допускает реакцию с большим количеством химических составляющих, которые могут повредить защитный слой покрытия;
  • создает атмосферостойкость и электроизоляцию.

Защитные материалы способны создать активную и пассивную защиту от коррозии. Под пассивной защитой понимается нанесение слоя лакокрасочной продукции, с помощью которого металл изолируется от влаги. Чаще всего для пассивной защиты металла используются лакокрасочные средства на основе синтетических связующих, а также алкидные краски. Когда требуется качественное и тонкое покрытие, обратите внимание на битумные краски, а если речь идет о применении в агрессивной среде и при высокой температуре, то нужно использовать кремнийорганические эмали.

А активная защита подразумевает использование в красителях химических ингибиторов, которые замедляют окисление металлов и прочие добавки. Такие покрытия продержатся дольше по сравнению с пассивной защитой.

Антикоррозийное покрытие нужно, чтобы коррозия не распространилась по всей поверхности металла.

Приобрести средства для борьбы с коррозией можно в любом строительном магазине, они доступны в плане стоимости. Они быстро вступают в контакт со ржавчиной и поражают ее очаги.

С целью защиты используются специализированные лакокрасочные составы, самые бюджетные — это эмали и краски с химическими добавками.

Преимущества

Все они достаточно просты в применении и нанесении, работа не требует специальной подготовки. С помощью данных составов можно быстро и качественно обработать металлические конструкции сложного дизайна и больших габаритов.

А еще покрытие имеет ряд бонусов. Они не только недорогие, но также обладают такими плюсами:

  • покрытие может быть любого цвета, достаточно лишь подобрать ту или иную палитру;
  • составы имеют высокие характеристики защиты;
  • если покрытие в процессе эксплуатации повредится, то их можно будет легко восстановить.

Большинство средств для борьбы с коррозией в основном применяются для длительной изоляции присутствующих в конструкции элементов из металла. Этот способ обработки может успешно сочетаться с декоративной отделкой. Внешняя эстетика в конечном результате бывает немаловажной. Тем более, если работы будут выполнены небрежно, то есть вероятность, что через время коррозия вновь проявится и будет более опасной.

Виды покрытий и правила их выбора

Металлоконструкции следует надежно защищать от механических и химических повреждений. С помощью антикоррозийной защиты можно сохранить изначальный вид материала. Также можно продлить срок эксплуатации конструкции до 60 лет. Защитный слой наносится равномерно и устойчивым к высоким температурным воздействиям и сколам.

Тот или иной вид антикоррозийной зашиты нужно выбирать, в зависимости от особенностей самой конструкции:

  • цинкование — подходящий вариант для мелких элементов и изделий, но для ремонтных работ оно не подойдет;
  • азотирование — преимущественно используется с целью зашиты цистерн. Нитритный слой хорошо противостоит воды, маслу или бензину, но способен разрушиться вследствие воздействия кислот или солей.

Кроме таких антикоррозийных покрытий на отечественном рынке популярностью пользуются следующие:

  • алитирование (используется сплав железа и алюминия) — используется для покрытия литейного оборудования, труб или листового металла;
  • хромирование (состоит из 60 процентов феррохрома) — защищает детали промышленного оборудования, трубы в теплообменных сетях и автозапчасти;
  • диффузионное циинкование (сплав алюминия и цинка) — в этом случае защитный слой наносят в специальных роторных печах, потом он пассируется и становится более устойчивым к коррозии.

Самый простой и бюджетный метод создания антикоррозийной защиты металла — это покрытие их специальными красками вроде «Нержалюкса» или «Сереброла»

Металлические изделия можно обрабатывать посредством пластмасс, в частности, нейлона либо фторпласта.

Однако какой бы вы ни выбрали метод защиты, важно обрабатываемую поверхность правильно подготовить, очистить или обезжирить. Это и есть залогом того, что покрытие будет нанесено равномерно, а срок службы значительно увеличится.

Особенности нанесения защитных составов

Как уже говорилось, антикоррозийное защитное покрытые делается на основе разных металлических сплавов и самих металлов (цинка, кадмия, алюминия, никеля и других).

Способов нанесения защитного слоя существует несколько:

  • гальванизация — металлы осаждаются на поверхности конструкций посредством электролитического воздействия;
  • горячий способ — металл сплавляется с защитным слоем при температуре до 450 градусов;
  • диффузионный метод — конструкция погружается порошкообразную металлическую смесь при температуре от 380 до 1000 градусов;
  • металлизация — расплавленные металлы распыляются посредством специального оборудования.

Тот или иной метод нанесения антикоррозийного покрытия подбираются под определенные виды металлоконструкций. В частности, если речь идет об обработке крупных объектов вроде цистерн, баков, мостов или судов, то выбирается металлизация. Для обработки средних предметов из стали используется гальванизация, диффузным способом защита наносится на детали разной техники, а для стальных и чугунных конструкций — горячая методика.

Защита материала должна проводиться очень внимательно, также требуется провести некоторые профилактические мероприятия, которые не допускают появления коррозии. Если же на металле уже появилась ржавчина, то действовать нужно следующим образом:

  • первым делом используйте дефектоскопию. Этот метод предусматривает подробное изучение поверхности, чтобы выявить степень коррозии в металле. На этом этапе выполняется диагностика, и определяются самые подходящие способы борьбы со ржавчиной и последствиями. Иногда нужно выполнить качественную и полноценную отделку помещения или промышленного отдела;
  • далее идут подготовительные работы, во время которых поверхность подготавливают к следующим работам, и они направлены на чистку металла от ржавчины, а также к отделке. В некоторых случаях перед покраской нужно будет выполнить грунтовку или удалить царапины, сквозь которые жидкость попадает в структуру металла и изнутри его разрушает. Не забывайте о том, что пыль вредна, и ее очень важно удалить на этапе подготовке поверхности. Именно в пыли могут присутствовать химические составляющие и соединения, которые провоцируют разрушение металла;
  • последний и наиболее важный этап — нанесение на металлическую поверхность того или иного лакокрасочного покрытия. Торопиться здесь нельзя, поскольку от качества действий зависит и то, насколько эффективным будет защитный слой покрытия. После каждого следующего слоя нужно дожидаться его высыхания и затвердевания. Затем проверяется качество выполненной работы.

Антикоррозийная защита для металла невероятно важна, правильно подобранный состав позволит надежно защитить ваши металлоконструкции от негативных внешних воздействий и продлит срок их эксплуатации.

tokar.guru

1.3. Металлические защитные покрытия

Защитными металлическими покрытиями называют искусственно созданные на поверхности защищаемого изделия слои металла с целью защиты от коррозии. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Роль покрытия, как средства защиты от коррозии, сводится, в основном, к изоляции металла от внешней среды, к прекращению работы гальваноэлементов на поверхности металла и повышению термодинамической устойчивости металла.

1.3.1. Классификация металлических покрытий

Металлические покрытия различаются по назначению, условиям эксплуатации, методам нанесения, механизму защиты.

По назначению металлические покрытия подразделяются на:

— защитные, применяемые для предохранения основного металла от коррозии;

— защитно-декоративные, применяемые для деталей, требующих, наряду с защитой от коррозии, также и декоративной отделки;

— покрытия, применяемые для специальных целей, например, для повышения твердости, износостойкости, антифрикционных свойств деталей и др.

По условиям эксплуатации покрытия подразделяются на эксплуатируемые в агрессивной среде, в атмосферных условиях, при высоких температурах.

По методам нанесения металлические покрытия подразделяются на гальванические, горячие, термодиффузионные, металлизационные, плакировочные.

К гальваническим относятся покрытия, которые получаются путем осаждения слоя металла из электролита, содержащего ионы этого металла, под действием постоянного тока.

Горячие покрытия получаются при погружении защищаемого изделия в ванну с расплавленным металлом (например, покрытие листового железа, проволоки, морозильных агрегатов некоторых типов холодильников расплавленным цинком, оловом или свинцом).

Термодиффузионные покрытия образуются в результате насыщения поверхностных слоев защищаемого металла атомами защищающего металла при высоких температурах.

Металлизация — способ нанесения металлических защитных покрытий путем распыления расплавленного металла струей сжатого воздуха или инертного газа.

Плакировочное покрытие получается путем нанесения на обе стороны защищаемого металла слоя коррозионно-стойкого металла. Прочное соединение получается в результате взаимной диффузии на границе двух металлов в процессе горячей прокатки.

Независимо от способа нанесения, все металлические покрытия должны удовлетворять следующим основным требованиям:

— быть прочно-сцепленными с основой и не отслаиваться при любых условиях эксплуатации;

— быть плотными, мелкокристаллическими, обеспечивающими коррозионную стойкость изделия;

— иметь минимальную пористость;

— удовлетворять специальным требованиям к покрытию: твердости, износостойкости, удельному электросопротивлению, оптическим свойствам, антифрикционным свойствам и др.

По механизму защиты металлические покрытия подразделяются на анодные и катодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. По отношению к стали катодными покрытиями являются медные, никелевые, золотые, серебряные, палладиевые и др. Катодные покрытия могут служить надежной защитой от коррозии только при отсутствии в них пор, трещин и других дефектов, т.е. при условии их сплошности. При повреждении покрытия или наличии пор возникает коррозионный элемент, в котором основной металл служит анодом и растворяется, а материал покрытия — катодом, на котором идет процесс или восстановления водорода, или ионизации кислорода. Анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. По отношению к стали анодными покрытиями являются цинковое, кадмиевое, марганцевое и др. В случаях применения анодных покрытий условие сплошности необязательно. При наличии дефектов в покрытии при действии агрессивных растворов возникает коррозионный гальванический элемент, в котором основной металл будет катодом, а металл покрытия — анодом, поэтому защищаемое изделие не будет корродировать.

Защитные свойства и продолжительность срока службы анодных покрытий зависят от их толщины, а катодных покрытий — не только от толщины, но и от их сплошности. При выборе покрытия, наряду с конструктивными соображениями, необходимо учитывать условия эксплуатации детали, коррозионную стойкость металлов, допустимость гальванических пар, возникающих при сопряжении деталей в узлы, и характеристику защитных свойств покрытия. Вид покрытия выбирается с учетом электрохимических свойств металлов основы и покрытия. Величиной, определяющей электрохимические свойства металла, является электродный потенциал.

При сопряжении деталей в узлы не допускается образования гальванических пар, вызывающих коррозию металла. В справочниках машиностроителя имеются специальные таблицы, где приведены допустимые и недопустимые гальванические пары, например, хром, олово, медь и ее сплавы, нержавеющая сталь образуют недопустимые гальванические пары с цинком и его сплавами. Гальванические покрытия, как защитные покрытия от коррозии, нашли широкое применение во многих отраслях промышленности благодаря надежной защите от коррозии, высокой экономичности процессов и легкой управляемости.

Для электроосаждения металла используется установка, состоящая из электролизера и источника постоянного тока с регулировкой величины силы тока. Электролизер состоит из гальванической ванны, электролита и электродов.

Электроосаждение металлов проводят в гальванической ванне под действием постоянного тока. Защищаемая деталь завешивается на катодную штангу, подключенную к отрицательному полюсу источника тока, и в результате ионно-электронного перехода на границе металл — электролит, т. е. реакции восстановления ионов, происходит осаждение металла на поверхности детали. В состав электролита входят простые или комплексные соли металла, осаждающегося на катоде, а также вещества, повышающие электропроводность и буферные свойства электролита, поверхностно — активные, блескообразующие и выравнивающие добавки, способствующие получению мелкокристаллических, ровных, полублестящих или блестящих покрытий.

В электролите соль осаждаемого металла подвергается диссоциации, и на катоде протекает реакция разряда гидратированного иона металла с последующим вхождением образовавшихся атомов металла в состав кристаллической решетки покрытия. Одновременно с разрядом металла на катоде может протекать реакция выделения водорода. Катодный процесс в общем виде можно записать следующими уравнениями:

;

.

Для получения мелкокристаллических, равномерных по толщине, полублестящих и блестящих покрытий осаждение во многих случаях ведут из комплексных электролитов, в которых ионы металла образуют комплексные ионы. В этом случае процесс разряда протекает из комплексных ионов, что сопровождается значительно большей поляризацией. Например, электроосаждение цинка из аммиакатных электролитов протекает по следующей схеме:

,

.

Мелкозернистую структуру осадков, полученных из комплексных электролитов, обычно связывают с величиной катодной поляризации, которая при разряде из комплексных растворов значительно больше, чем из простых растворов солей тех же металлов. Высокая катодная поляризация обусловлена затруднениями, которые определяются природой комплексных ионов и механизмом их разряда, а также характером изменения энергетического состояния поверхности катода при электролизе. Константы нестойкости большинства комплексных ионов металлов значительно меньше, чем их простых солей. Согласно приведенной выше схеме, при разряде комплексного иона присоединение электрона к центральному иону (цинку) и освобождение лиганда (аммиака) представляют собой одновременно протекающие процессы. При этом состав разряжающихся комплексных ионов может отличаться от состава комплексных ионов, преобладающих в растворе, и зависеть от концентрации лиганда, кислотности раствора, что в конечном итоге влияет на структуру и качество покрытий.

Для повышения электропроводности электролита в раствор добавляют соли щелочных или щелочноземельных металлов, а в отдельных случаях соответствующие кислоты или щелочи. В водных растворах всегда присутствуют ионы водорода, их концентрация играет большую роль при электроосаждении металлов, особенно выделяющихся при значительных электроотрицательных потенциалах (цинк, никель, кадмий, железо и др.). При электролизе водных растворов простых солей этих металлов уже при небольшой концентрации водородных ионов происходит выделение на катоде водорода совместно с осаждаемым металлом, вследствие чего выход металла по току снижается. Чем больше кислотность раствора, тем ниже выход металла по току. Помимо снижения выхода по току, выделение водорода совместно с металлом часто вызывает изменение структуры и физико-механических свойств осадка. Включаясь в катодный осадок, водород повышает внутренние напряжения, вызывает хрупкость, растрескивание, пузырчатые вздутия, питтинг.

Увеличение рН раствора выше определенного предела приводит к выпадению в осадок гидроксидов металлов, которые, включаясь в катодное покрытие, ухудшают его внешний вид, приводят к повышению внутренних напряжений, растрескиванию осадка, вызывают их хрупкость. Во избежание образования и накопления гидроксидов у катода кислотность растворов в процессе электролиза должна быть постоянной. Для этого в электролиты добавляют специальные вещества, позволяющие поддерживать в определенном интервале рН раствора. Такими веществами являются слабо диссоциирующие неорганические и органические кислоты (борная, уксусная, аминоуксусная и т.д.) и их соли, слабые основания и их соли. При электролизе простых солей электроположительных металлов (медь, серебро, висмут, палладий, золото) избыток ионов водорода не влияет на выход металла по току, так как в этих условиях потенциал восстановления водородных ионов не достигается. В этом случае повышение кислотности растворов необходимо, прежде всего, для предупреждения гидролиза солей и увеличения электропроводности растворов.

В настоящее время электроосаждение большинства металлов производят из растворов их комплексных солей. В этих растворах концентрация водородных ионов влияет как на состав комплексных ионов, так и на их устойчивость, что отражается на величине катодной поляризации и структуре осадков. Повышение значения рН электролита, в большинстве случаев, способствует образованию более сложных по составу и более прочных комплексных ионов.

На структуру и свойства гальванических покрытий влияют многие факторы. Структура металлических покрытий во многом определяет химические, физические и механические свойства гальванических осадков. Согласно современным представлениям, электрокристаллизация вначале происходит не на всей поверхности электрода, а лишь на его активных участках. Остальная часть поверхности грани кристалла при этом остается пассивной. К активным местам относятся вершины углов и ребер кристаллов, искажения кристаллической решетки и другие дефекты поверхности катода. На них и возникают первые зародыши, которые растут и образуют новый слой за счет присоединения к грани структурных элементов — атомов. Структура гальванического осадка определяется соотношением скоростей образования кристаллических зародышей и их роста. Чем выше относительная скорость образования зародышей, тем более мелкозерниста структура покрытия. Образование кристаллических зародышей, особенно на чужеродной поверхности катода, сопряжено с большей затратой энергии по сравнению с их ростом. Поэтому повышение катодной поляризации способствует образованию мелкозернистых покрытий, которые обладают лучшими защитными свойствами.

К факторам, влияющим на катодную поляризацию, а следовательно, и на структуру осадка, относятся, главным образом, состояние поверхности катода, природа и концентрация разряжающихся ионов, плотность тока, температура, специальные добавки к электролиту органических и неорганических веществ.

Как было показано выше, для электроосаждения большинства металлов применяют комплексные электролиты. Применение комплексных солей вместо простых приводит к повышению поляризации выделения металлов и, как следствие, к получению мелкокристаллических полублестящих и блестящих покрытий.

Большое влияние на структуру электролитических осадков оказывают поверхностно-активные вещества. В зависимости от природы и концентрации этих веществ в электролите осадки на катоде получаются мелкозернистыми, полублестящими или блестящими. Изменение структуры осадков в присутствии ПАВ происходит из-за повышения катодной поляризации, т. е. затруднения процесса электроосаждения металла. Действие ПАВ связано с адсорбцией их на границе раздела металл-раствор. Поверхностно-активные вещества полностью или частично закрывают поверхность катода, вследствие чего выделение металла тормозится. При этом структура и свойства осадков будут зависеть от относительных скоростей процессов адсорбции ПАВ и осаждения металла. Если скорость адсорбции ПАВ мала по сравнению со скоростью осаждения металла и пассивируются лишь отдельные активные участки поверхности катода, то возможно периодическое чередование процессов адсорбции и десорбции пассиватора (ПАВ), приводящее к затуханию роста одних микроучастков катода и образованию новых кристаллов на других. Происходит как бы равномерное перераспределение тока на поверхности катода. Благодаря этому осадок металла становится более однородным по структуре, ровным и блестящим.

Если скорость адсорбции велика, катод покрывается сплошным слоем ПАВ. Выделение металла происходит в результате разряда ионов, равномерно проникающих к поверхности электрода через адсорбционную пленку. Для проникновения ионов через плотный слой адсорбированного вещества необходима повышенная энергия активации, поэтому процесс осаждения металла протекает при значительной поляризации катода. При этом поверхность катода становится энергетически однородной, и ионы металла разряжаются с одинаковой скоростью на всех участках катода, благодаря чему образуется мелкозернистый и равномерный электролитический осадок. Поверхностно-активные вещества применяют также в качестве блескообразующих и выравнивающих добавок, обеспечивающих получение блестящих покрытий непосредственно в процессе электролиза. Повышение плотности тока приводит к увеличению поляризации и, следовательно, увеличению числа одновременно растущих активных мест поверхности катода. Это способствует образованию на катоде мелкокристаллического осадка. Однако при очень высоких плотностях тока (вблизи предельного тока) образуются рыхлые дендритообразные осадки. Образование дендритов объясняется преимущественным ростом кристаллов на отдельных участках катода, на которых, вследствие неравномерного распределения тока, устанавливается плотность тока, превышающая допустимую для данного электролита. Поэтому катодная плотность тока должна выбираться в зависимости от состава электролита, концентрации соли выделяемого металла, температуры и степени перемешивания раствора. Чем выше концентрация металла, температура электролита и интенсивность перемешивания, тем больше допустимая плотность тока. Повышение температуры электролита снижает катодную поляризацию, способствуя образованию крупнозернистых осадков. При этом может быть увеличена допустимая катодная плотность тока и, следовательно, скорость осаждения металла. Кроме того, при повышении температуры электролита возрастает выход по току, уменьшаются внутренние напряжения и хрупкость осадков.

Качество и свойства гальванических покрытий определяются не только их структурой, но и равномерностью распределения металла по толщине на поверхности покрываемых деталей.

При прохождении через электролит ток распределяется по поверхности электрода неравномерно, особенно при покрытии деталей сложной конфигурации. Вследствие неравномерного распределения тока фактическая толщина покрытия отличается от расчетной: на одних участках поверхности катода она больше, на других меньше. Это может отрицательно сказаться на защитных свойствах покрытий. Способность электролита давать более равномерные по толщине покрытия на рельефной поверхности детали по сравнению с первичным распределением тока называют рассеивающей способностью. Факторы, влияющие на рассеивающую способность электролита, подразделяются на электрохимические и геометрические. Электрохимические факторы — это изменение катодного потенциала в зависимости от плотности тока, электропроводность раствора и зависимость выхода металла по току от плотности тока. Геометрические факторы — это размеры и форма электродов, их расположение относительно друг друга. Равномерность толщины осаждаемого покрытия улучшается с увеличением электропроводности электролита, ростом поляризации, плотности тока, увеличением расстояния между катодом и анодом. Наибольшей рассеивающей способностью обладают комплексные электролиты.

studfiles.net

📌 Покрытия металлов — это… 🎓 Что такое Покрытия металлов?


Покрытия металлов
Покрытия металлов
в авиастроении. В изделиях авиационной техники практически на все металлические детали и узлы наносятся те или иные покрытия в целях защиты их от коррозии, действия высоких температур и придания требуемого декоративного вида. Наибольшее применение получили лакокрасочные покрытия (ЛКП). Учитывая жёсткие условия эксплуатации, для обеспечения максимальной адгезии лакокрасочных слоев широко используются в качестве предварительного подслоя анодно-оксидные и химические конверсионные покрытия.
Алюминиевый сплавы обычно подвергаются анодному оксидированию (анодированию) в растворе серной или хромовой кислоты. В качестве подслоя под ЛКП анодирование применяется и для деталей из магниевых сплавов; его проводят обычно в растворе бифторида аммония или смеси на его основе. В отдельных случаях анодирование металлов используется как самостоятельное покрытие, например, твёрдое анодирование деталей из алюминиевых и титановых сплавов. Замена анодно-оксидных покрытий химическими конверсионными покрытиями исключает снижение выносливости. Практически применяются 2 процесса: хроматирование в смеси хромового ангидрида и фторсиликата натрия и хроматное фосфатирование в смеси ортофосфорной кислоты, хромового ангидрида и фтористоводородной кислоты. Для магниевых сплавов химические конверсионные покрытия являются основным видом подготовки поверхности под ЛКП. Обычно применяют хроматирование (например, в смеси двухромовокислого калия, азотной кислоты и хлористого аммония), которое заменяется анодированием или фторидным фосфатированием при нанесении органических покрытий, работающих при повышенных температурах.
Химические конверсионные покрытия достаточно широко используются и при подготовке поверхности различных сталей под ЛКП. о этом случае применяется фосфатирование в растворах, содержащих монофосфат цинка и азотнокислый цинк. Подготовка поверхности сталей под ЛКП проводится и путем гальванического кадмирования с последующим пассивированием или фосфатированием, а также металлизацией цинком или сплавом алюминий — цинк. На углеродистые и низколегирующие стали ЛКП могут также наноситься после механической зачистки электрокорундом, дробью или металлическими щётками. Коррозионностойкие стали покрываются ЛКП после обработки поверхности электрокорундом, гидропескоструйной обработкой или травлением и обязательной пассивации (например, в 30%-ном растворе азотной кислоты или смеси ее бихроматом).
Правильный выбор системы подготовки поверхности — главн фактор в обеспечении адгезии ЛКП. Важными факторами являются также регламентация перерывов между подготовкой и окраской и соблюдение технологических режимов нанесения грунтовочных, промежуточных и окончательных слоев. Выбор той или иной лакокрасочной системы (см. Лакокрасочные материалы) для защиты различных деталей узлов и агрегатов летательных аппаратов, а также для окончательной окраски всей его поверхности определяется прежде всего характером контактирующих сред и температурой эксплуатации. В общем случае при воздействии атмосферы различной агрессивности при температуре эксплуатации до 100(°)С используются перхлорвиниловые эмали, нанесённые по акриловым или фенольно-масляным грунтам, до 200(°)С — эпоксидные эмали по акриловым или эпоксидным грунтам, до 300(°)С — глифталевые эмали по глифталевым грунтам, до 400(°)C — органические эмали. Лакокрасочные системы выбирают исходя из того, что летательные аппараты эксплуатируются в самых разнообразных климатических условиях. При отсутствии непосредственных контактов с водой внутренний набор планера летательного аппарата, выполненный из алюминиевых сплавов, во многих местах защищается только грунтами. Использование одних грунтов, однако, исключается, где возможны различного рода загрязнения, а также в труднодоступных местах, если сплавы, из которых изготовлены конструкции, чувствительны к расслаивающей коррозии. Особое внимание уделяется защите заклепочных и сварных соединений.
Для отделки внутренних салонов пассажирских самолётов наряду с ЛКП нашли применение пластиковые покрытия. Отделка производится так называемым алюмопластом, то есть листами из алюминиевый сплавов, на которые заранее приклеена перхлорвиниловая плёнка.
Гальванические покрытия получили в авиастроении большое распространение для защиты и придания специальных свойств поверхностям стальных деталей. Кадмирование и цинкование применяются для защиты деталей, работающих при средний температураx (до 300(°)С). Эти виды покрытий являются эффективным средством предотвращения контактной коррозии при соединении деталей из разнородных металлов. Покрытия наносятся в цианистых, сернокислых или хлористоаммонийных электролитах. Меднение чаще используется в качестве подслоя для нанесения других гальванических покрытий — таких, как оловянистые и никелевые; проводится в цианистом, пирофосфатном или сернокислом электролитах. Никелирование применяется для защитно-декоративной отделки и в качестве подслоя при выполнении некоторых более сложных и термостойких (до 500(°)С) систем (никель — медь — никель, никель — кадмий) и проводится в кислых растворах, содержащих сернокислый никель и хлористые или фтористые соли. Для повышения износостойкости и стойкости к окислению при повышенных температураx применяется хроматирование, осуществляемое в кислых растворах на основе хромового ангидрида. Оловянирование (лужение) используется для защиты токоведущих и подлежащих пайке деталей. Во всех гальванических процессах важной операцией, особенно при обработке высокопрочных сталей, является обезводороживание, которое осуществляется путём нагрева в специально регламентированных (в зависимости от вида наносимого покрытия) условиях. Эта операция позволяет исключить водородное охрупчивание в эксплуатации.
Наряду с гальваническими и металлизационными покрытиями в авиастроении получили распространение и другие виды металлических покрытий. Прокат из алюминиевых конструкционных сплавов защищается путём плакирования технически чистым алюминием или алюминием с цинком. Плакирующий слой имеет более отрицательный потенциал и за счёт электро-химической защиты существенно тормозит развитие таких опасных видов коррозии, как коррозионное растрескивание н расслаивающая коррозия. Для повышения жаростойкости жаропрочных материалов, используемых в авиационных двигателях при температураx выше 1000(°)С, применяются такие методы формирования покрытий, как электронно-лучевое напыление, термодиффузионная обработка и некоторые другие.
См. также Абляция.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

.

  • Покидание аварийное
  • Покрышев Пётр Афанасьевич

Смотреть что такое «Покрытия металлов» в других словарях:

  • покрытия металлов — в авиастроении. В изделиях авиационной техники практически на все металлические детали и узлы наносятся те или иные покрытия в целях защиты их от коррозии, действия высоких температур и придания требуемого декоративного вида. Наибольшее… …   Энциклопедия «Авиация»

  • покрытия металлов — в авиастроении. В изделиях авиационной техники практически на все металлические детали и узлы наносятся те или иные покрытия в целях защиты их от коррозии, действия высоких температур и придания требуемого декоративного вида. Наибольшее… …   Энциклопедия «Авиация»

  • Защитные лакокрасочные покрытия —         покрытия, наносимые на поверхности металлических изделий и сооружений с целью защиты их от коррозии и для декоративной отделки. З. л. п. не изменяют принципиально электрохимическую природу процессов, происходящих на поверхности… …   Большая советская энциклопедия

  • Лакокрасочные покрытия —         покрытия, которые образуются в результате плёнкообразования (высыхания) лакокрасочных материалов (См. Лакокрасочные материалы), нанесённых на поверхность изделий. Основное назначение Л. п. защита материалов от разрушения (например,… …   Большая советская энциклопедия

  • ГОСТ 5272-68: Коррозия металлов. Термины — Терминология ГОСТ 5272 68: Коррозия металлов. Термины оригинал документа: 115. Адсорбционный слой Слой, возникающий на металле в результате адсорбции атомов или молекул окружающей среды и затрудняющий протекание процесса коррозии Определения… …   Словарь-справочник терминов нормативно-технической документации

  • Государственный университет цветных металлов и золота — был основан в 1930 году (приказом Высшего Совета Народного Хозяйства СССР от 17 апреля 1930 г. № 1238) на базе факультета цветной металлургии Московской горной академии как Московский институт цветных металлов и золота. Указом Президиума… …   Википедия

  • Красноярская академия цветных металлов и золота — Государственный университет цветных металлов и золота был основан в 1930 году (приказом Высшего Совета Народного Хозяйства СССР от 17 апреля 1930 г. № 1238) на базе факультета цветной металлургии Московской горной академии как Московский институт …   Википедия

  • Красноярский институт цветных металлов — Государственный университет цветных металлов и золота был основан в 1930 году (приказом Высшего Совета Народного Хозяйства СССР от 17 апреля 1930 г. № 1238) на базе факультета цветной металлургии Московской горной академии как Московский институт …   Википедия

  • Красноярский институт цветных металлов и золота — Государственный университет цветных металлов и золота был основан в 1930 году (приказом Высшего Совета Народного Хозяйства СССР от 17 апреля 1930 г. № 1238) на базе факультета цветной металлургии Московской горной академии как Московский институт …   Википедия

  • Московский институт цветных металлов и золота — Государственный университет цветных металлов и золота был основан в 1930 году (приказом Высшего Совета Народного Хозяйства СССР от 17 апреля 1930 г. № 1238) на базе факультета цветной металлургии Московской горной академии как Московский институт …   Википедия

Книги

  • Анодные процессы электрохимической и химической обработки металлов, Давыдов Алексей Дмитриевич, Мирзоев Рустам Аминович, Настоящее учебное пособие посвящено анодным процессам в электрохимических и химических технологиях получения цветных металлов (электрохимическое рафинирование), обработке поверхности черных и… Категория: Машиностроение. Приборостроение Серия: Учебники для вузов. Специальная литература Издатель: Лань, Подробнее  Купить за 2508 руб
  • Анодные процессы электрохимической и химической обработки металлов. Учебное пособие, Давыдов Алексей Дмитриевич, Мирзоев Рустам Аминович, Настоящее учебное пособие посвящено анодным процессам в электрохимических и химических технологиях получения цветных металлов (электрохимическое рафинирование), обработке поверхности черных и… Категория: Учебники для ВУЗов Издатель: Лань, Производитель: Лань, Подробнее  Купить за 1673 грн (только Украина)
  • Анодные процессы электрохимической и химической обработки металлов. Учебное пособие, Мирзоев Р.А., Настоящее учебное пособие посвящено анодным процессам в электрохимических и химических технологиях получения цветных металлов (электрохимическое рафинирование), обработке поверхности черных и… Категория: Учебники: доп. пособия Серия: — Издатель: Лань, Подробнее  Купить за 1293 руб
Другие книги по запросу «Покрытия металлов» >>

dic.academic.ru

Защитные покрытия металлов

В данном разделе сайта изложены новейшие методы химической и электрохимической обработки поверхности металлов, а также горячие, электрохимические и химические методы нанесения металлических, окисных и солевых покрытий с целью защиты от коррозии, защитно-декоративной отделки и защиты от механического износа. Особенно подробно приведена рецептура гальванических ванн.

Целая глава посвящена обезвреживанию сточных вод в цехах химической и электрохимической обработки поверхности металлов.

Предназначается в качестве учебного пособия для студентов вузов, обучающихся по специальности «Физико-химические исследования металлургических процессов». Может быть полезна для научно-технических работников, специализирующихся и работающих в области нанесения защитных покрытий.

В издававшихся до сих пор в нашей стране учебниках и учебных пособиях по вопросам нанесения защитных покрытий предусматривались только электрохимические и отчасти химические методы. Между тем защита стальных изделий и конструкций от атмосферной коррозии на десятилетия осуществляется в основном (95—98%) цинкованием путем погружения в расплавленный металл. Как известно, алюминирование электролизом водных растворов вообще невозможно, в то время как алюминиевые покрытия, получаемые горячим методом, обладают рядом ценных защитных свойств. Хотя покрытие оловом для консервной тары в некоторых странах, например в США, в основном осуществляется электролитическим методом, более толстые покрытия (>2 мкм) наносятся горячим методом.

В то же время покрытия из меди и медных сплавов, металлов подгруппы железа, цинка в относительно тонких слоях, кадмия, серебра и золота, платиновых металлов, сплавов на основе меди, олова, никеля и др. наносятся только или преимущественно электролитическим методом.

За последние 10—15 лет достигнуты большие успехи в области нанесения блестящих защитно-декоративных покрытий с применением блескообразователей и выравнивающих добавок, что представляет особенно большой интерес для развивающейся в нашей стране автомобильной и других отраслей промышленности.

Первые четыре главы раздела посвящены подготовке поверхности покрываемых изделий перед нанесением покрытий, электролитической и химической полировке металлов, некоторым основным принципам электроосаждения металлов и сплавов, макро- и микрорассеивающей способности электролитов.

Далее подробно изложен горячий метод нанесения цинковых покрытий и пути повышения их коррозионной стойкости путем гомогенизирующего диффузионного отжига, а также электролитическое цинкование готовых изделий на сравнительно небольшую толщину. Горячий метод лужения изложен менее подробно, поскольку в основном процесс осуществляется электролитическим путем.

Небольшая глава посвящена горячему методу нанесения алюминиевых покрытий. Остальные главы посвящены электролитическим методам нанесения покрытий из кадмия, меди, никеля, хрома, драгоценных металлов и их сплавов и некоторым смежным вопросам.

Последние три главы посвящены химическому и электрохимическому оксидированию металлов, фосфатированию, обезвреживанию сточных вод в цехах химической и электрохимической обработки поверхности металлов.

В разделе изложен материал, накопленный совместно с большим коллективом производственных и научных работников, а также использованы данные из советских и зарубежных литературных источников.

Редакция выражает глубокую признательность рецензентам проф. докт. хим. наук Н. В. Коровину и коллективу кафедры технологии электрохимических производств Уральского политехнического института во главе с зав. кафедрой проф. докт. техн. наук А. И. Левиным за внимательный просмотр рукописи и весьма ценные замечания по ней, учтенные при окончательной подготовке к опубликованию.

В общей системе мероприятий по защите металлических изделий, конструкций и сооружений от атмосферной коррозии видное место занимают защитные покрытия. По литературным данным, около 40% мирового производства цинка расходуется для защиты стали от коррозии. Больше 30% мирового производства дорогого и дефицитного олова потребляется в производстве белой жести, предназначенной главным образом для изготовления консервной тары. Свыше 10% стратегического никеля используется в виде защитных покрытий.

Различают защитные покрытия на органической и неорганической основе. К первой группе относят лакокрасочные, полимерные и пластмассовые покрытия, ко второй группе — металлические, окисные и солевые покрытия. Как теоретическая основа, так и технология нанесения покрытий этих двух групп коренным образом различаются.

В предлагаемой книге рассмотрены покрытия на неорганической основе — металлические, окисные, солевые, причем наиболее подробно освещены металлические покрытия, которые имеют наиболее широкое распространение.

Помимо покрытий, предназначенных для защиты основного металла от атмосферной коррозии, различают защитно-декоративные покрытия, которые не только должны защищать основной металл от коррозии, но и сообщать его поверхности красивый, часто блестящий вид на протяжении определенного периода эксплуатации в атмосферных условиях.

Довольно широкое распространение имеют износостойкие покрытия, назначение которых сводится к повышению сопротивления трущихся поверхностей механическому износу. Для этих целей успешно применяют хромовые покрытия, которые повышают срок службы трущихся поверхностей, в частности цилиндров двигателей внутреннего сгорания автомобилей и тракторов, авиационных моторов, мотоциклов и других двигателей.

Покрытия из металлов и сплавов сообщают поверхности изделий определенные оптические, магнитные, антифрикционные и другие свойства. В последнее десятилетие покрытия из драгоценных металлов применяют все в больших количествах в электронной промышленности — в производстве полупроводниковых приборов и различного рода электрических контактов, когда наряду с химической стойкостью требуется сообщить поверхности высокую электропроводность, низкое и постоянное переходное электросопротивление и целый ряд других свойств. Помимо перечисленных, нередко наносят и другие металлические, окисные и солевые покрытия, которые в различных отраслях народного хозяйства находят более или менее широкое распространение.

В зависимости от физико-химических свойств металлопокрытий и основного металла, требуемой толщины покрытия и целого ряда других технико-экономических показателей выбирают тот или иной метод нанесения покрытия. Большое распространение имеет горячий метод, т. е. погружение покрываемых изделий в расплавленный металл и электролитический метод. Горячий метод применяется для нанесения покрытий со сравнительно низкой температурой плавления, во всяком случае на несколько десятков градусов (или больше) ниже температуры плавления основного металла. Непременным условием применимости горячего метода нанесения металлопокрытия является образование между ним и основой промежуточного сплава типа интерметаллида.

Несомненные преимущества горячего метода перед электролитическим проявляются при нанесении достаточно толстых покрытий порядка 50—100 мкм и больше; для тонких же покрытий электролитический метод гораздо экономичнее.

Яркой иллюстрацией такого положения служат процессы нанесения оловянных и цинковых покрытий. В целях экономии дорогого и дефицитного олова в годы второй мировой войны применявшийся с начала XIX в. горячий метод лужения, при котором расход олова (в I половине XIX столетия) доходил до 100 кг на тонну жести, стали быстро заменять электролитическим, при котором толщина оловянного покрытия для неагрессивных пищевых продуктов была доведена до десятых долей микрона и в настоящее время в США горячим методом лудят только около 0,4% всей белой жести. Готовые изделия более или менее сложной формы покрываются оловом электролитически в кислых или щелочных электролитах. Процесс цинкования на большую толщину осуществляется только горячим методом, в значительной степени усовершенствованным; электролитическое цинкование применяют в тех случаях, когда можно ограничиться сравнительно небольшой толщиной покрытия.

Горячим методом наносят алюминиевые покрытия (электролитическое алюминирование из водных растворов теоретически невозможно), а также покрытия полуфабрикатов сплавами на основе свинца.

Электролитический метод имеет несомненные преимущества при нанесении покрытий со сравнительно высокой температурой плавления, например в процессах меднения, никелирования, хромирования, а также при нанесении покрытий из сплавов на их основе, при серебрении, золочении, покрытиях металлами платиновой группы и некоторыми редкими металлами. Широкое распространение имеет процесс электролитического окисления (анодирования) алюминия, магния и других металлов.

Диффузионные методы нанесения покрытий, распыление расплавленного металла и напыление металла методом испарения в вакууме имеют более ограниченное применение. В последнее время все чаще прибегают к нанесению покрытий на изделия сложной формы и на неметаллические изделия химическим методом, т. е. без электрического тока, заменяя его восстановителем, например гипофосфитом, гидразином и др.

В зависимости от назначения защитных покрытий к ним предъявляют различные требования. Однако независимо от их назначения общим требованием, которому должны удовлетворять все покрытия, является прочное сцепление с основой. Хотя количественного метода определения прочности сцепления между основой и покрытием нет, имеются некоторые технологические пробы, на основании которых можно вынести качественное суждение о прочности сцепления. В наиболее ответственных случаях покрытие не должно отслаиваться от основы при любой степени деформации. Другими требованиями, предъявляемыми к покрытиям, являются мелкая структура, а при нанесении защитно-декоративных покрытий они должны иметь блестящий вид без полировки. Покрытия должны иметь максимально равномерную толщину на различных участках — выступах и углублениях, так как толщина покрытий является важнейшей характеристикой, определяющей срок их защитного действия. Покрытия должны иметь минимум пор (даже микроскопических размеров). Это требование не столь существенно при нанесении так называемых анодных покрытий, т. е. покрытий, у которых электродный потенциал в данных условиях эксплуатации изделий электроотрицательнее, чем потенциал основного металла. Как известно, потенциал ряда металлов в сильной степени зависит от среды, температуры и других факторов. Так, например, потенциал олова в органических кислотах или солях, в том числе в пищевых продуктах, электроотрицательнее потенциала железа и электрохимически защищает его от коррозии. Потенциал цинка в воде при температуре 60° С и выше в результате образования на нем защитной пленки становится электроположительнее потенциала железа и перестает его электрохимически защищать. Предъявляемые требования в значительной степени удовлетворяются при надежной подготовке поверхности основного металла, правильном выборе типа электролита и оптимальной концентрации компонентов, входящих в его состав, электрического и температурного режима.

При электролитическом способе нанесения металлических покрытий мелкокристаллическое строение их и равномерное распределение по толщине часто обеспечиваются применением комплексных растворов, в частности цианистых солей, вместо простых и введением в электролит органических добавок.

www.stroitelstvo-new.ru

Металлические покрытия

 

Нанесенные металлопокрытия способны придавать поверхности изделий высокие показатели износостойкости, коррозионной стойкости, жаростойкости, а также некоторые особые физические свойства. Строение и свойства покрытий в значительной мере определяются способами их нанесения, к которым относятся: погружение в расплав, термодиффузия, гальваническое осаждение, напыление, плакирование.

П о г р у ж е н и е в расплав позволяет покрывать изделия из углеродистой стали цинком, оловом, свинцом, алюминием. При взаимодействии с металлом основы расплав проявляет большую химическую активность, которая увеличивается с ростом температуры. По этой причине для методов погружения пригодны только указанные металлы, имеющие низкую температуру плавления.

Прочность сцепления металла покрытия с металлом основы обусловливается образованием сплава между этими металлами в виде их химического соединœения. Возникающий промежуточный слой имеет высокую твердость и хрупкость, в связи с этим его толщина не должна превышать несколько микрометров.

Получаемые покрытия защищают стальные изделия от электрохимического коррозионного воздействия влажной атмосферы, разбавленных растворов солей, кислот, щелочей благодаря их собственной коррозионной стойкости, плотности и толщинœе. Рост толщины покрытия при погружении изделия в расплав зависит от температуры расплава, выдержки в расплаве, толщина может достигать 0,05 мм.

Механизм антикоррозионной защиты изделий обусловлен соотношением электродных потенциалов металла основы и покрытия в данных условиях коррозии. В случае, в случае если потенциал металла покрытия более электроположителœен, чем потенциал металла основы, то покрытие является катодным, при более электроотрицательном своем потенциале покрытие играет роль анода в коррозионном процессе.

Катодное покрытие при нарушении его сплошности и проникновении электролита к основному металлу обусловливает начало электрохимической коррозии с анодным растворением основного металла и образованием продуктов коррозии. Распространение коррозионного процесса под покрытием вызывает его отслаивание и потерю защитных свойств. По этой причине катодные покрытия защищают металл изделия только механически, изолируя его от воздействия коррозионной среды, но не защищают его электрохимически.

Анодное покрытие при возникновении в нем несплошностей обусловливает коррозионный процесс, в котором основной металл является катодом и не подвергается коррозионному разрушению. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, анодное покрытие способно защищать металл основы и механически, и электрохимически.

Из покрытий стальных изделий, получаемых погружением в расплав, при обычных коррозионных воздействиях катодными являются покрытия свинцом и оловом, анодными – покрытия цинком и алюминием. По этой причине к плотности и прочности катодных покрытий свинцом и оловом предъявляются высокие требования.

Т е р м о д и ф ф у з и я как метод высокотемпературного насыщения металлами поверхности стальных изделий для придания им высоких характеристик жаростойкости, коррозионной стойкости, износостойкости описана в п. 3.5.5. Более низкие температуры порядка 400оС применяются для получения цинковых покрытий на мелких стальных деталях с высокой коррозионной стойкостью во влажной атмосфере. Необходимая активация поверхности и процесса диффузии цинка достигается применением порошковой смеси цинка с химическими активаторами. Изделия для диффузионного цинкования укладываются в ящики, засыпаются порошковой смесью и загружаются в печь. После выдержки в течении 4 ч образуется диффузионный цинковый слой толщиной 0,1 мм.

Г а л ь в а н и ч е с к о е осаждение наиболее широко применяется для получения покрытий с высокими защитными свойствами из многих металлов и сплавов, включая Cr, Ni, Zn, Fe, Cu, Cd, Sn, Pb и др.
Размещено на реф.рф
Регулируя режим осаждения, можно в широких пределах изменять химический состав и структурно-фазовое состояние покрытия, за счёт чего управлять его свойствами: твердостью, прочностью, коррозионной стойкостью, износостойкостью, жаростойкостью.

Сущность процесса электроосаждения состоит в использовании ванны с водным раствором электролита͵ содержащим ионы осаждаемого металла и подвергаемого электролизу. Покрываемые изделия погружаются в электролит и подключаются к отрицательному полюсу источника постоянного тока, ᴛ.ᴇ. в качестве катода. Анодом служит растворяемая пластина из осаждаемого металла либо графит или металл, нерастворяемый при электролизе.

В процессе пропускания через электролит постоянного электрического тока на изделиях-катодах происходит разряд катионов электролита с электроосаждением атомов металла и образованием покрытия, а также разряд ионов водорода с его выделœением в газообразном виде:

Men+∙mH2O+ne=Me+mH2O,

H+∙H2O+e=H+H2O=0,5H2+H2O.

В это же время на анодах металл переходит в электролит в виде катионов или происходит разряд анионов электролита:

Me+mH2O=Men+∙mH2O+ne,

4OH=O2+2H2O+4e.

Заданные свойства покрытия получают за счёт изменения режима электролиза: состава электролита͵ его температуры, катодной плотности тока и его направления, наложения ультразвуковых колебаний. Используя определœенный режим, можно получать покрытия тонкие и толстые, твердые и мягкие, плотные и пористые, матовые и блестящие, однослойные и многослойные применительно к самым различным деталям приборов, механизмов, машин и условиям их эксплуатации.

Н а п ы л е н и е покрытий позволяет придавать поверхности изделий большую контактную прочность и износостойкость, высокое сопротивление коррозии, жаростойкость и жаропрочность, а также специальные свойства: эмиссионные и антиэмиссионные, геттерные, теплоизоляционные и электроизоляционные, биоактивные и биоинœертные. Метод напыления обеспечивает эффективное получение покрытий из легированных сталей, цветных металлов и сплавов, полимеров и композиций на их основе. Кроме этого, указанные покрытия могут наноситься на изделия из металлов и многих неметаллических материалов.

Сущность большинства процессов напыления состоит в распылении либо испарении напыляемого материала с образование его частиц в виде потока, направляемого на поверхность изделия, где частицы при ударе и взаимодействии с поверхностью формируют покрытие. Учитывая зависимость отспособа создания частиц и их потока, а также от вида напыляемых частиц методы напыления покрытий делятся на газотермическое напыление и вакуумноконденсационное напыление.

Газотермическое напыление использует процессы плавления и распыления металла, а также других материалов под воздействие газовой струи, с образованием потока распыленных частиц, направленного к поверхности изделия и формирующего покрытие.

По принципу нагрева и расплавления материала газотермическое напыление разделяют на два метода:

1. Напыление с расплавлением за счёт высокотемпературного газового потока, где по виду нагрева различают следующие способы: а) плазменное напыление, б) газопламенное напыление, в) детонационно-газовое напыление.

2. Металлизация с расплавлением путем электронагрева, в которой выделяют такие способы: а) электродуговая металлизация, б) высокочастотная металлизация.

Газотермическим расплавлением и напылением получают покрытия толщиной от 0,15 мкм до 2 мм, используя порошки, проволоку, фольгу из металлов и различных неметаллов, включая тугоплавкие. Процессы газотермического напыления используются в приборостроении, машиностроении, электронной и медицинской технике при изготовлении либо восстановлении деталей и инструмента с высокой поверхностной твердостью, прочностью, износостойкостью, жаростойкостью, коррозионной стойкостью, биоактивностью либо биоинœертностью и другими свойствами.

Металлизация позволяет с высокой производительностью получать покрытия, используя токопроводящие материалы – металлическую и порошковую проволоку. При этом возможно применение проволоки из различных металлов для нанесения композиционных металлопокрытий с высокой износостойкостью, коррозионной стойкостью, специальными свойствами.

Вакуумно-конденсационное напыление классифицируют по принципу испарения и распыления на три метода:

1. Напыление с термическим испарением, ĸᴏᴛᴏᴩᴏᴇ по виду нагрева делят на следующие способы: а) с резистивным нагревом, б) с индукционным нагревом, в) с электронно-лучевым нагревом, г) с дуговым нагревом.

2. Напыление с импульсным испарением-распылением, где различают такие способы: а) с дугоразрядным испарением, б) с электроннолучевым испарением, в) с лазерным испарением.

3. Напыление с ионным (катодным) распылением в плазме тлеющего разряда, в котором выделяют следующие способы: а) в плазме с двумя электродами, б) в плазме с тремя электродами в) в плазме с магнетроном.

По характеру взаимодействия напыляемых частиц с остаточными газами камеры вакуумное напыление делят на два класса:

1. Напыление в нейтральной разреженной среде (аргона, гелия) или в высоком вакууме.

2. Реакционное напыление в активной разреженной среде азота͵ угарного газа, кислорода, газовых смесей с получением покрытий, содержащих фазы внедрения: нитриды, карбиды, оксиды.

Термическое испарение и напыление с термическим испарением применяют для получения покрытий толщиной от 0,001 до 0,1 мм из металлов (включая тугоплавкие), сплавов, полупроводниковых соединœений и диэлектриков с приданием покрытию характера однородных, многослойных либо композиционных структур.
Размещено на реф.рф
Этот метод используется в микроэлектронике для создания перспективных приборов и устройств с особыми электрофизико-химическими параметрами, в производстве деталей приборов и машин, технологического инструмента и оснастки с высокими эксплуатационными качествами.

Импульсное (взрывное) испарение-распыление позволяет применять металлы и многие другие материалы для создания покрытий с повышенной толщиной и высокими физико-механическими свойствами. Это обеспечило покрытиям широкое распространение в производстве деталей и инструмента с высокой износостойкостью поверхности, повышенной несущей способностью, контактной прочностью.

Ионное распыление обеспечивается бомбардировкой материала-катода ионными лучами или ионно-плазменным ускоренным потоком, часто его называют катодным распылением. Напыляемые металлы и неметаллы отличаются широкой номенклатурой, а регулирование параметров напыляющего потока характеризуется большим диапазоном. По этой причине способы ионного распыления успешно применяются для получения как тонких пленочных структур в микроэлектронике, так и для создания более толстых защитных покрытий деталей приборов, механизмов и машин, технологического инструмента и оснастки.

Наряду с отличиями в технологических и конструктивных характеристиках газотермическое и вакуумно-конденсационное напыление имеют общие параметры схемы напыления (рис.35). К общим условиям, формирующим покрытия, относятся дистанция напыления L, угол конусности потока распыления φ, угол встречи потока с поверхностью напыления αн, давление окружающей среды, температура поверхности напыляемого изделия, диаметр пятна напыления dн, скорость перемещения пятна покрытия, величина перекрытия проходов напыления lп.

Рис. 36. Общая схема напыления покрытий: 1 – напыляемая поверхность, 2 – поток напыляемых частиц, 3 – источник потока частиц, 4 – пятно напыляемого покрытия

Регулирование конструктивно-технологических характеристик процессов напыления позволяет эффективно управлять свойствами получаемых покрытий и успешно применять напыление при изготовлении деталей широкой номенклатуры в различных отраслях приборостроения и машиностроения, в электронной, аэрокосмической, ядерной технике.

П л а к и р о в а н и е представляет наложение с одной или двух сторон на лист или ленту из основного металла тонкого листа жаростойкого либо коррозионностойкого металла или сплава. После сложения этих листов в пакет он прокатывается либо прессуется в горячем состоянии или нагревается под давлением. За счёт термомеханических процессов в контактной зоне происходит взаимная диффузия атомов основного и плакирующего металлов с образованием их прочного сцепления в пограничной зоне.

Жаростойкое плакирование углеродистых и низколегированных сталей производится с применением хромистой или хромоникелœевой жаростойких сталей, медные листы или ленты плакируются нихромом.

Антикоррозионное плакирование сталей предусматривает использование меди, латуни, никеля, хрома или хромоникелœевой нержавеющей стали, для плакирования дуралюмина применяется технический алюминий.

Толщина плакирующего металла может составлять величину от 3 до 60% толщины основного металла, чаще всœего применяются слои толщиной 10% основного металла.

referatwork.ru

📌 покрытия металлов — это… 🎓 Что такое покрытия металлов?

покры́тия мета́ллов в авиастроении. В изделиях авиационной техники практически на все металлические детали и узлы наносятся те или иные покрытия в целях защиты их от коррозии, действия высоких температур и придания требуемого декоративного вида. Наибольшее применение получили лакокрасочные покрытия (ЛКП). Учитывая жёсткие условия эксплуатации, для обеспечения максимальной адгезии лакокрасочных слоев широко используются в качестве предварительного подслоя анодно-оксидные и химические конверсионные покрытия.

Алюминиевый сплавы обычно подвергаются анодному оксидированию (анодированию) в растворе серной или хромовой кислоты. В качестве подслоя под ЛКП анодирование применяется и для деталей из магниевых сплавов; его проводят обычно в растворе бифторида аммония или смеси на его основе. В отдельных случаях анодирование металлов используется как самостоятельное покрытие, например, твёрдое анодирование деталей из алюминиевых и титановых сплавов. Замена анодно-оксидных покрытий химическими конверсионными покрытиями исключает снижение выносливости. Практически применяются 2 процесса: хроматирование в смеси хромового ангидрида и фторсиликата натрия и хроматное фосфатирование в смеси ортофосфорной кислоты, хромового ангидрида и фтористоводородной кислоты. Для магниевых сплавов химические конверсионные покрытия являются основным видом подготовки поверхности под ЛКП. Обычно применяют хроматирование (например, в смеси двухромовокислого калия, азотной кислоты и хлористого аммония), которое заменяется анодированием или фторидным фосфатированием при нанесении органических покрытий, работающих при повышенных температурах.

Химические конверсионные покрытия достаточно широко используются и при подготовке поверхности различных сталей под ЛКП. В этом случае применяется фосфатирование в растворах, содержащих монофосфат цинка и азотнокислый цинк. Подготовка поверхности сталей под ЛКП проводится и путем гальванического кадмирования с последующим пассивированием или фосфатированием, а также металлизацией цинком или сплавом алюминий — цинк. На углеродистые и низколегирующие стали ЛКП могут также наноситься после механической зачистки электрокорундом, дробью или металлическими щётками. Коррозионностойкие стали покрываются ЛКП после обработки поверхности электрокорундом, гидропескоструйной обработкой или травлением и обязательной пассивации (например, в 30%-ном растворе азотной кислоты или смеси ее бихроматом).

Правильный выбор системы подготовки поверхности — главный фактор в обеспечении адгезии ЛКП. Важными факторами являются также регламентация перерывов между подготовкой и окраской и соблюдение технологических режимов нанесения грунтовочных, промежуточных и окончательных слоев. Выбор той или иной лакокрасочной системы (см. Лакокрасочные материалы) для защиты различных деталей узлов и агрегатов летательных аппаратов, а также для окончательной окраски всей его поверхности определяется прежде всего характером контактирующих сред и температурой эксплуатации. В общем случае при воздействии атмосферы различной агрессивности при температуре эксплуатации до 100°С используются перхлорвиниловые эмали, нанесённые по акриловым или фенольно-масляным грунтам, до 200°С — эпоксидные эмали по акриловым или эпоксидным грунтам, до 300°С — глифталевые эмали по глифталевым грунтам, до 400°C — органические эмали. Лакокрасочные системы выбирают исходя из того, что летательные аппараты эксплуатируются в самых разнообразных климатических условиях. При отсутствии непосредственных контактов с водой внутренний набор планёра летательного аппарата, выполненный из алюминиевых сплавов, во многих местах защищается только грунтами. Использование одних грунтов, однако, исключается, там где возможны различного рода загрязнения, а также в труднодоступных местах, если сплавы, из которых изготовлены конструкции, чувствительны к расслаивающей коррозии. Особое внимание уделяется защите заклепочных и сварных соединений.

Для отделки внутренних салонов пассажирских самолётов наряду с ЛКП нашли применение пластиковые покрытия. Отделка производится так называемым алюмопластом, то есть листами из алюминиевых сплавов, на которые заранее приклеена перхлорвиниловая плёнка.

Гальванические покрытия получили в авиастроении большое распространение для защиты и придания специальных свойств поверхностям стальных деталей. Кадмирование и цинкование применяются для защиты деталей, работающих при средних температурах (до 300°С). Эти виды покрытий являются эффективным средством предотвращения контактной коррозии при соединении деталей из разнородных металлов. Покрытия наносятся в цианистых, сернокислых или хлористоаммонийных электролитах. Меднение чаще используется в качестве подслоя для нанесения других гальванических покрытий — таких, как оловянистые и никелевые; проводится в цианистом, пирофосфатном или сернокислом электролитах. Никелирование применяется для защитно-декоративной отделки и в качестве подслоя при выполнении некоторых более сложных и термостойких (до 500°С) систем (никель — медь — никель, никель — кадмий) и проводится в кислых растворах, содержащих сернокислый никель и хлористые или фтористые соли. Для повышения износостойкости и стойкости к окислению при повышенных температурах применяется хроматирование, осуществляемое в кислых растворах на основе хромового ангидрида. Оловянирование (лужение) используется для защиты токоведущих и подлежащих пайке деталей. Во всех гальванических процессах важной операцией, особенно при обработке высокопрочных сталей, является обезводороживание, которое осуществляется путём нагрева в специально регламентированных (в зависимости от вида наносимого покрытия) условиях. Эта операция позволяет исключить водородное охрупчивание в эксплуатации.

Наряду с гальваническими и металлизационными покрытиями в авиастроении получили распространение и другие виды металлических покрытий. Прокат из алюминиевых конструкционных сплавов защищается путём плакирования технически чистым алюминием или алюминием с цинком. Плакирующий слой имеет более отрицательный потенциал и за счёт электрохимической защиты существенно тормозит развитие таких опасных видов коррозии, как коррозионное растрескивание и расслаивающая коррозия. Для повышения жаростойкости жаропрочных материалов, используемых в авиационных двигателях при температурах выше 1000°С, применяются такие методы формирования покрытий, как электронно-лучевое напыление, термодиффузионная обработка и некоторые другие.

См. также Абляция.

Литература:
Чеботаревский В. В., Кондрашов Э. К., Технология лакокрасочных покрытий в машиностроении, М., 1978;
Коррозия. Справочник, пер. с англ., М., 1981.

В. С. Синявский.

Энциклопедия «Авиация». — М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

avia.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *