Какие сплавы бывают металлов: СПЛАВЫ | Энциклопедия Кругосвет

Содержание

сплавы металлов

Любое производство, от крупного до гаражного, имеет дело именно со сплавами металлов, а не с чистыми металлами (чистые металлы применяют лишь в атомной промышленности). Ведь даже широко распространённая сталь является сплавом, в котором содержится до двух процентов углерода, но об этих нюансах будет написано подробнее ниже. В этой статье будет описано большинство сплавов, их получение, основные и полезные свойства, применение и многие другие нюансы.

Эта статья о сплавах металлов, причём мы не будем особо углубляться в дебри материаловедения и описывать абсолютно все сплавы, да и нереально это в пределах одной статьи. Ведь если углубиться в эту тему, и затронуть хотя бы большинство, то можно растянуть статью в необъятное полотно. Здесь будут описаны самые популярные сплавы с точки зрения автомобилестроения и мотопрома (согласно тематике сайта), хотя немного будут затронуты и другие аспекты промышленности.

Но кроме сплавов, всё же следует написать пару слов о самих металлах, точнее о их удивительном свойстве, благодаря которому и появились различные сплавы. И главное свойство металлов в том, что они образуют сплавы, как с другими металлами, так и с неметаллами.

Само понятие сплав — это совсем не обязательное химическое соединение, ведь уникальные свойства кристаллической решётки заключаются в том, что часть атомов одного металла замещается атомами другого металла, либо две кристаллические решётки как бы встраиваются друг в друга.

И при этом получаются как бы неправильные сплавы, но самое удивительное в том, что эти неправильные сплавы, по своим свойствам получаются гораздо лучше чистых металлов. Причём экспериментируя и манипулируя с добавками, на выходе можно получить материалы (сплавы) с нужными и полезными качествами.

Следует отметить, что по технологии применения все сплавы делятся на две большие группы. Первая группа — это деформируемые сплавы, из которых многие детали изготавливают механической обработкой: ковка, штамповка, резание и т.д. И вторая группа сплавов — это литейные и из них получают детали с помощью литья в формы.

У первой группы сплавов имеются такие свойства, как хорошая пластичность в твёрдом виде, ну и высокая прочность, но литейные качества у первой группы не высоки. У второй группы напротив литейные свойства отличные, они хорошо заполняют форму при литье, но когда застынут, то прочность их оставляет желать лучшего.

А что такое прочность? — это ценное свойство оценивают по разным параметрам, которых более десяти, но самое ценное свойство — это предел прочности сплава при растяжении. Говоря научным языком — это напряжение сплава (измеряется в Н/м², ну или в кг/мм²) которое соответствует наибольшей нагрузке, предшествующей началу разрушения испытуемой детали, относительно изначальной площади поперечного сечения детали.

А теперь говоря более простым языком: берём специально изготовленную деталь (согласно стандарту испытаний) из испытываемого сплава и закрепив её в специальной машине растягиваем её, постепенно увеличивая нагрузку, пока не происходит разрушение детали (её разрыв).

Ну а приложенное усилие, (которое контролируется приборами и которое было приложено к детали, в самый момент перед её разрывом) разделенное на площадь поперечного сечения детали, и показывает предел её прочности (ну и разумеется предел прочности сплава, из которого изготовлена испытываемая деталь).

Самые распространённые на нашей планете металлы (и разумеется на их основе получаемые сплавы) — это железо, алюминий, магний и как ни странно для многих — титан. Все эти металлы в чистом виде не употребимы в технике, а вот их сплавы напротив — очень распространены.

И о сплавах будет описано далее, но всё же и о самих металлах я тоже кое что напишу, ведь без металлов не было бы и сплавов. К тому же при описании самих металлов будет понятно и из чего получают сплавы металлов.

Железо и сплавы металлов на его основе.

Металл железо — это «хлеб» всей мировой промышленности. Ведь большинство сплавов, используемых в мировой промышленности (более девяноста процентов) используют именно сплавы железа. Причём очень важной добавкой в железо является совсем не добавки металла, а неметалла — углерода.

Если в железо добавить не более двух процентов углерода, то получим самый востребованный сплав (сплав номер один) — это сталь. Ну а если в сплаве железа содержание углерода будет более двух процентов (от двух до пяти) то получим чугун, который тоже является важнейшим материалом в мировой промышленности. Теперь остановимся на сплавах железа более подробно.

Сталь.

Сплав железа с углеродом, в котором углерода содержится не более двух процентов. Так же содержит примеси кремния, марганца, фосфора, серы и др. Как было сказано выше, является важнейшим сплавом для промышленности, так как обладает отличной ковкостью и довольно высокой прочностью.

К какой бы детали автомобиля, мотоцикла, ну или оборудования (на заводе или в обычном гараже) мы бы не кинули взор, везде мы увидим присутствие стальных деталей. Те же элементы подвески машин и мотоциклов, кузовные элементы автомобиля, рамы, рули, подвеска и навеска большинства мотоциклов, внутренние детали двигателя, или коробки передач, да много ещё чего, начиная от сложнейших деталей различного оборудования и заканчивая обычными болтами и гайками.

Предел прочности на разрыв составляет от 30 до 115 кг/мм² — это для углеродистой стали, ну и предел прочности для легированной стали достигает 165 кг/мм².

Легированную сталь получают добавкой, кроме углерода, ещё и различных легирующих элементов, добавляющих стали различных важных и полезных свойств.

  • Так например добавка марганца увеличивает стойкость стали к ударным нагрузкам и добавляет твёрдости.
  • Добавка никеля повышает коррозионную стойкость и пластичность, ну и добавляет прочности.
  • Ванадий повышает сопротивление ударным нагрузкам, истиранию (уменьшает коэффициент трения) и тоже добавляет прочности стали.
  • Хром в составе стали тоже повышает коррозионную стойкость и прочность.

Ну а при добавке хрома и молибдена в определённых пропорциях, получают самую прочную и податливую хром-молибденовую сталь, которая используется для производства ответственных деталей, например для производства рам спортивных автомобилей и мотоциклов.

Ну и вершиной металлургической эволюции стала легендарная прочнейшая сталь «хромансиль» (хромо-кремне-марганцовая сталь) с самым высоким показателем прочности на разрыв.

И хотя новейшие технологии не стоят на месте и сейчас кроме хром-молибденовых и алюминиевых рам уже изготавливают (точнее склеивают) рамы из композитных материалов (тот же карбон, кевлар и т.п), но всё же стальные рамы кроме своей прочности ещё и ощутимо дешевле и поэтому используются до сих пор. Ну а большинство внутренних деталей двигателей, коробок передач и оборудования (станков) думаю ещё долго будут изготавливать из стали.

Выше были перечислены далеко не все компоненты, добавка которых может существенно улучшить свойства стали и при умелом подходе позволит достичь нужных и важных качеств стальных деталей, работающих в разных условиях.

Кроме множества плюсов, главными из которых являются прочность и ковкость, у стали имеются и минусы. Первый из них — это довольно высокая стоимость и ограничения по свариваемости легированных сталей (используют сложную технологию сварки), так как обычные способы электро-дуговой сварки «улетучивают» большинство легирующих элементов и ощутимо снижают прочность сварного шва.

Ну и у большинства сталей (кроме нержавеющих) ещё одним существенным минусом является малая стойкость к коррозии, хотя опять же при грамотной добавке нужных элементов можно существенно повысить коррозионную стойкость.

Сталь разных сортов выпускают в виде проката: полосы, ленты, листы, прутки (круглые и шестигранные) профильный материал, трубы, проволока и др.

По назначению сталь делят на конструкционную, инструментальную и специальную:

  • Конструкционная содержит до 0,7 процентов углерода и из неё изготавливают детали машин, оборудования, различных приборов и приспособлений.
  • Инструментальная сталь содержит от 0,7 до 1,7 процентов углерода и её используют как правило для изготовления различного инструмента.
  • Специальная сталь — это жаропрочная сталь, нержавеющая, немагнитная и другие стали с особыми свойствами.

По качеству разделяют сталь обыкновенного качества, качественную и высококачественную:

Углеродистая конструкционная сталь обыкновенного качества содержит от 0,08 до 0,63 процента углерода. Содержание углерода в каждой марке этой стали как правило точно не выдерживают и марку определяют по механическим свойствам этой стали.

Из стали №1 изготавливают листовой и полосовой материал, а так же различные прокладки, заклёпки, шайбы, бачки и т.п. А из стали №2 делают ручки, петли, крючки, болты, гайки и т.п. Из стали №3 и №4 изготавливают как правило строительные конструкции, а из стали №7 делают шпонки, кулачковые муфты, клинья, рельсы, рессоры, которые затем термически обрабатывают.

Углеродистая конструкционная качественная сталь содержит до 0,2 процентов углерода и из неё изготавливают детали, к которым предъявляются повышенные требования по их механическим свойствам и для термически обработанных деталей. Эта сталь имеет марку от №8 и вплоть до сталь №70. А число показывает примерно среднее содержание углерода в сотых долях процента.

Эта сталь довольно пластичная и вязкая и благодаря этому отлично штампуется и сваривается. А при изготовлении деталей работающих с ударными нагрузками, или подвергающиеся трению, такие детали из этой стали цементируют. А сталь с содержанием углерода свыше 0,3 процента не цементируют.

Из сталей марок Ст 30 или 35 делают гайки, болты, шпильки и шайбы (для ответственных конструкций), а из сталей 45 изготавливают валы, муфты, втулки и другие подобные детали, которые подвергают термической обработке (закалке и отпуску). Ну а из прочной и твёрдой стали марок Ст 50, 55 и 60 изготавливают шестерни, звёздочки (зубчатые колёса), шатуны, рессоры и другие детали, которые так же подвергаются термической обработке.

Углеродистую конструкционную качественную сталь, с повышенным содержанием марганца, который увеличивает твёрдость и прочность, выпускают марок от 15Г, 20Г, 30Г и вплоть до 70Г или марки с цифрой 2: 10Г2, 30Г2 и вплоть до 50Г2. Ну а цифра, стоящая перед буквой Г опять же показывает среднее процентное содержание углерода (в сотых долях процента). Буква Г означает, что марганца в этой стали около 1 процента, а если за буквой Г стоит цифра 2, то содержание марганца в такой стали около 2 процентов.

Из сталей 10Г2,  15Г и 20Г изготавливают цементируемые детали, из стали 45Г2 делают шатуны двигателей, вагонные оси, а из стали 65Г изготавливают клапанные пружины двигателей.

Из конструкционной легированной стали делают детали машин, у которых должна быть большая прочность, кислотостойкость, твёрдость (даже при сильном нагреве) и другие качества, которые достигаются добавкой легирующих компонентов.

Двузначное число, стоящее  в начале марки стали, указывает на процентное содержание углерода в сотых долях. А стоящие далее буквы обозначают легирующую добавку: Н — никель, Х-хром, С — кремний, В — вольфрам, К — кобальт, Т — титан, М — молибден, Г — марганец, Ю — алюминий, Д — медь …..

  • Добавка хрома способствует повышению твёрдости и прочности стали (атак же коррозионную стойкость) при этом сохраняется достаточная вязкость стали. Из хромистых сталей делают зубчатые колёса (шестерни) коленвалы, червяки и др. детали. Если же встали содержится хрома до 14 процентов, то она отлично сопротивляется коррозии. Из такой стали изготавливают контрольно-измерительные и медицинские инструменты. Ну а если процентное содержание хрома составляет более 17 процентов, то такая сталь становится кислотостойкой и нержавеющей.
  • Добавка никеля повышает прочность стали и также повышает коррозионную стойкость, ну и делает сталь более вязкой (менее хрупкой).
  • Добавка кремния повышает прочность и упругость стали и поэтому его добавляют в рессорную сталь Если же встали содержится значительное содержание кремния и хрома, то такая сталь называется сильхромовой и обладает высокой жаропрочностью. Из сильхромовой стали изготавливают клапаны двигателей.
  • Добавка Молибдена и вольфрама повышает твёрдость и прочность стали, причём эти качества сохраняются и при довольно высоких температурах и поэтому из такой стали изготавливают режущие инструменты.

Числа за буквой показывают процентное содержание легирующего компонента. Если же за буквой отсутствуют цифры, то значит легирующего компонента содержится в стали всего около 1 процента. Если же в конце маркировки стоит буква А, то значит эта сталь высококачественная.

Конструкционную сталь выпускают в виде листов, полос и лент, труб, разной толщины, а так же прутков (круглых, квадратных и шестигранных) в виде различных балок, которые имеют различное сечение (тавровое, двутавровое, угловое, швеллерное и др.).

Из углеродистой инструментальной стали делают различные слесарные инструменты: зубила, молотки, полотна, напильники, кернеры, бородки, свёрла, гаечные ключи, торцовые головки и другой различный инструмент.

Чугун.

Как было сказано выше, если содержание углерода в сплаве металла (точнее железа) содержится от двух до пяти процентов, то такой материал — чугун. Кроме углерода в чугун добавляются примеси фосфора, кремния, серы и др. компонентов. Чугун со специальными примесями (хром, никель, и др.) которые придают чугуну особые свойства , называют легированным. Температура плавления чугуна 1100 — 1200 градусов.

Литейный чугун бывает серый, белый, высокопрочный и ковкий.

  • Серый чугун содержит углерод в виде пластинчатого графита (и часть цементита) и обладает относительно небольшой твёрдостью и хрупкостью, легко обрабатывается резанием. Но благодаря малой стоимости и отличными литейными свойствами, из серого чугуна льют различные колонны, плиты, станины станков, корпуса электро-моторов, шкивы, маховики, зубчатые колёса, радиаторы отопления, и многие другие детали. Серый чугун обозначается буквами СЧ и двумя двухзначными цифрами. К примеру серый чугун марки СЧ21-40 имеет предел прочности при растяжении 210 Мн/м² (или 21 кгс/мм²) а при изгибе предел прочности составляет 400 Мн/м² (или 40 кгс/мм²).
  • Белый чугун  — в нём весь углерод содержится в виде цементита и это придаёт белому чугуну большую твёрдость, но и хрупкость и этот чугун трудно поддаётся обработке резанием.
  • Высокопрочный чугун содержит углерод в виде включений шаровидного свободного графита (с добавлением цементита) и  это придаёт высокопрочному чугуну бóльшую прочность, по с равнению с выше описанным серым чугуном. Прочность этого чугуна увеличивают добавками легирующих компонентов, таких как никель, хром, молибден, титан. Но высокопрочный чугун труднее обрабатывается резанием, чем серый чугун. Из этого чугуна отливают ответственные детали: блоки, головки, гильзы, поршни и цилиндры двигателей, компрессоров, зубчатые колёса и другие детали машин и оборудования. Маркируется этот чугун двумя буквами ВЧ и двумя числами. К примеру марка ВЧ40-10 говорит о том, что это высокопрочный чугун, спределом прочности при растяжении 400 Мн/м² (или 40 кгс/мм²) с относительным удлинением в 10 процентов.
  • Ковкий чугун производят с помощью длительного томления болванок (отливок) из белого чугуна при высокой температуре, которая способствует выжиганию части углерода и переходу остальной части в графит. Ковкий чугун при этом получает полезные качества: относительно большое сопротивление изгибу, хорошую обрабатываемость, меньшую плотность. Из ковкого чугуна делают детали механизмов, которые работают в условиях повышенных напряжений и ударных нагрузок, а так же работающих при высоком давлении пара, воды, газов. Делают картеры задних мостов и коробок передач автомобилей, корпуса редукторов промышленного оборудования, тормозные диски, суппорта и тормозные цилиндры, задвижки водопроводов, патроны и планшайбы токарных станков и другие детали. Обозначается ковкий чугун буквами КЧ и двумя цифрами. К примеру буквы и цифры марки КЧ45-6 означают, что такой чугун ковкий и имеет предел прочности при растяжении 450 Мн/м² (или 45 кгс/мм²) с относительным удлинением 6 процентов.

Он распространён в промышленности (особенно в станкостроительной при производстве станин металлорежущих станков) не менее стали, а его дешевизна (ведь он самый дешёвый из конструкционных материалов) наверное является одним из главных факторов его популярности.

К тому же у чугуна, кроме его минусов, имеется достаточно полезных свойств. Литейный чугун прекрасно заполняет различные формы, но один из главных его минусов — это хрупкость. Но несмотря на малую прочность, чугун издавна применяют в двигателестроении. Ещё не так давно из чугуна отливали блоки двигателей, картерные детали, картеры различных редукторов, гильзы цилиндров, головки блоков двигателей, поршни.

 

Кстати, оторвусь от темы: чугунные поршни, в отличие от алюминиевых, имеют такой же коэффициент расширения как и чугунная гильза и поэтому зазор поршень-цилиндр можно сделать минимальным, а это способствует повышению мощности и других полезных свойств. Конечно же алюминиевые поршни ощутимо легче чугунных и лучше ведут себя на больших оборотах и в алюминиевом блоке с никасилевым покрытием, но всё же поршни различных компрессоров предпочтительнее изготавливать из чугуна.

Ну и ещё, несмотря на то, что алюминиевые блоки с никасилевым покрытием сейчас уже изготавливают для современных машин, но всё же до сих пор многие заводы льют и чугунные блоки. Ведь если добавить в чугун немного графита, то можно существенно снизить коэффициент трения поршня о гильзу.

Но всё же чугунные блоки двигателей постепенно вытесняются лёгкосплавными, особенно блоки моторов мотоциклов. А всё из-за того, что у чугуна имеется ещё один существенный минус — он довольно тяжёлый. И поэтому блоки (и цилиндры) двигателей спортивных машин и мотоциклов уже с двадцатых готов прошлого века начали отливать из алюминия (об алюминии ниже).

Сначала делали алюминиевые блоки и цилиндры с чугунной гильзой, затем от чугунной гильзы отказались и сейчас начали покрывать стенки цилиндров различными твёрдыми и износостйкими гальваническими покрытиями, сначала хром, затем никасиль, далее более сложные металло-керамические композиции, самое продвинутое из которых керонайт, о котором подробнее я написал вот тут.

Но всё же чугун используют до сих пор, (особенно в станкостроительной промышленности) и особенно ковкий чугун. Ведь ковкий чугун пластичнее обычного и прочнее. Предел прочности ковкого чугуна от 30 до 60 кг/мм² и это позволяет использовать его не только в станкостроении, но и изготавливать даже детали машин и мотоциклов, ведь тормозные диски до сих пор изготавливают из ковкого чугуна.

Ну а некоторые марки чугуна до сих пор используют для изготовления коленвалов двигателей (например в двигателе Днепра), а также для изготовления поршневых колец, не забываем, что при добавке графита, чугунные кольца имеют малый коэффициент трения, а это важно для любого двигателя. Ну и ещё: многие наверное знают, что чугунная головка двигателя (несмотря на свой бóльший вес) меньше подвержена деформации при перегреве мотора, чем более лёгкая алюминиевая головка.

И всё же ещё достаточно долго чугун будет материалом номер два (после стали) практически в любой тяжёлой промышленности.

Цветные металлы и сплавы металлов.

Несмотря на то, что тема статьи сплавы металлов, обязательно следует упомянуть и о цветных металлах, на основе которых и получают большинство сплавов. К цветным металлам относятся практически все металлы кроме железа. И они делятся на:

  • лёгкие : рубидий, литий, натрий, калий, натрий, церий, бериллий, кальций, магний, титан и алюминий.
  • тяжёлые: свинец, цинк, медь, кобальт, никель, марганец, олово, сурьма, хром, висмут, мышьяк и ртуть.
  • благородные: платина, золото, серебро, палладий, родий, иридий, осьмий, рутений.
  • редкие: молибден, вольфрам, ванадий, тантал, теллур, селен, индий, цезий, германий, цирконий и т.д.

Но если начать описывать все, то как уже говорилось в начале статьи, она превратится в необъятное полотно. И ниже будут описаны только те металлы и их сплавы, которые наиболее распространены и используются в авто-мото промышленности.

Алюминий.

Как знают многие, железо знакомо человечеству несколько тысяч лет, но вот алюминий используют всего то пару сотен лет. И самое интересное то, что алюминий вначале считался ювелирным материалом, а технологии его добычи и получения были такими дорогостоящими, что он считался чуть ли не дороже серебра.

Многим известна история о том, как какой то правитель, получив в руки от ювелира изготовленный и отполированный им алюминиевый кубок, был настолько поражён красотой этого металла и изделия из него, что начал беспокоиться о своих запасах серебра и о том, что его серебро обесценится благодаря алюминию. От этого бедный ювелир был казнён, а кубок надёжно спрятан.

И наверное так и остался бы этот белый металл и его сплавы ювелирным материалом, если б не развитие авиации. Ведь рано или поздно первые летательные аппараты, изготовленные из дерева, должны были доказать свою непрочность, что и случилось и далее инженеры всерьёз взялись за усовершенствование добычи алюминия.

А постараться стоило, ведь этот конструкционный материал в три раза легче стали. Плотность алюминиевых сплавов составляет от 2,6 до 2,85 г/см² (в зависимости от состава). Конечно же инженеры вначале столкнулись и с тем, что механические свойства алюминия совсем не высокие, ведь предел прочности даже для литейных алюминиевых сплавов всего от 15 до 35 кг/мм², а для деформируемых сплавов от 20 до 50 кг/мм² и лишь для самых дорогих и многокомпонентных сплавов прочность достигает 65 кг/мм².

И если сравнивать со сталью, то на первый взгляд покажется, что ведь выигрыша вовсе нет: алюминий втрое легче стали, но зато и в трое слабее. Но ведь законы сопромата никто не отменял и они стали спасением для инженеров, ведь жёсткость конструкционной детали зависит не только от прочности материала, из которого она изготовлена, но ещё и от её геометрической формы и размеров.

И в итоге стал ясно, что алюминиевая деталь того же веса, что и стальная, гораздо жёстче её на кручение и изгибание. Ну а если показатели жесткости стальной и алюминиевой детали одинаковые, то при этом алюминиевая деталь всё равно будет легче по весу, что и нужно для авиации и не только для неё.

И примерно после первой мировой войны, алюминиевые сплавы начали завоёвывать мировую промышленность. Конечно же в начале алюминий хлынул в авиационную промышленность (корпуса, крылья самолётов), позже из него стали отливать картеры, поршни и не только для моторов самолётов, но и автомобилей и мотоциклов. А ещё позднее начали отливать головки цилиндров и сами цилиндры, или блоки двигателей практически для всего транспорта.

Кстати, деталями двигателей дело не ограничилось и ещё в конце двадцатых годов прошлого века были замечены попытки изготавливать из алюминиевых сплавов рамы спортивных автомобилей и мотоциклов, а так же и кузова, но всё же на поток для многих серийных машин и мотоциклов такие изделия удалось поставить лишь к концу 80-х годов прошлого столетия.

Ну а в современной технике алюминиевые детали (кроме перечисленных выше) можно перечислять почти бесконечно — это и детали подвески, как автомобилей, так и мотоциклов (скутеров, велосипедов), колёса, рамы, маятники, рули, траверсы, различные кронштейны, вплоть до багажников на крышу машины или на заднее крыло мотоцикла. Да мало ли ещё чего.

Ну и далее стоит сказать про одну особенность самого алюминия и сплавов металла алюминия. Алюминий очень активный металл к воздействию окружающей среды, но самое интересное, что сама супер активность и помогает ему сохраниться (уберечься от коррозии). Ведь алюминий настолько активный металл, что он мгновенно вступает в реакцию с кислородом воздуха (и влагой, присутствующей в нём).

И от этого на поверхности алюминиевой детали моментально образуется тончайшая окисная плёнка, и именно она и защищает любую алюминиевую деталь от коррозии. Хотя у разных сплавов, в зависимости от компонентов, различная стойкость к коррозии. Например литейные сплавы имеют хорошую защиту, а вот на деформируемых сплавах окисная плёнка очень тонка и слаба и её защитные свойства напрямую зависят от легирующих добавок в сплав.

Например широко известный и применяемый в авиации такой алюминиевый сплав как дюралюминий, имеет настолько слабую окисную плёнку, что очень быстро корродирует, покрываясь белым налётом, и если его не покрыть защитным покрытием, то коррозия его быстро «съест».

В качестве покрытия его ранее покрывали (плакировали) тонкой плёнкой чистого алюминия, но сейчас, при широком развитии гальваники, покрывают различными покрытиями всевозможных довольно ярких цветов (золотого, ярко-синего, красного и т.д).

Ну и ещё стоит написать несколько слов про сам алюминий — это металл с малой плотностью, который хорошо поддаётся ковке, штамповке, прессованию, обработке резанием, да к тому же он обладает довольно высокой электро и теплопроводностью. И поэтому он довольно широко используется в электротехнике (электропромышленности), приборостроении, машиностроении, авиации, как в чистом виде, так и в виде сплавов.

Обладающие относительно достаточной прочностью и твёрдостью сплавы алюминия с медью, марганцем, кремнием и магнием называют дюралюминием, который,как было упомянуто выше, используется в самолётостроении, в машиностроении и других отраслях.

Наряду с дюралюминием, практически все сплавы на основе алюминия (как и сталь) выпускают в виде проката: полосы, ленты, листы, прутки (круглые и шестигранные) профильный материал, трубы, проволока…

Магний. 

Наверное всем, кто держал в руках кусок этого интересного и одного из самых лёгких металлов, кажется что не металл это вовсе, а кусок пластика, настолько он лёгкий. Относится к числу самых лёгких металлов, из применяемых в технике. А его сплавы с цинком, алюминием, кремнием и марганцем используют при изготовлении различных деталей радиоаппаратуры, приборов и т.п.

Раньше этот металл называли модным словом электрон. Плотность этого металла в четыре с половиной раза меньше, чем у железа и составляет всего 1,74 г/см³, и в 1,5 раза меньше чем у сплавов алюминия. Но и прочность магния ниже и предел прочности для литейных сплавов магния составляет от 9 до 27 кг/мм², а для деформируемых от 18 до 32 кг/мм².

Казалось бы совсем небольшая прочность, но опять же не забываем, что законы сопромата никто не отменял, да и очень малый вес перекрывает казалось бы всё.

Но кроме малой прочности, у магния есть и более существенные минусы, первым из которых является высокая цена. И детали мотоциклов или автомобилей, выполненные из магния, существенно поднимают их цену. Но и это ещё не все минусы: пи производстве маний очень легко возгорается при его литье (ну или при сварке) и даже при его механической обработке!

К тому же магний ну уж очень нестойкий к воздействию окружающей среды (к коррозии) и каждую деталь, выполненную из магния, приходится дважды защищать от коррозии — сначала оксидировать, а затем наносить покрытие (лакокрасочное или гальваническое). Но в плохих условиях (например в агрессивной среде зимних дорог) достаточно небольшой царапины на покрытии магниевой детали и она начинает мгновенно корродировать и быстро разрушаться.

Но всё же слишком маленький вес затмевает все минусы и магниевые сплавы используют для изготовления дорогих деталей автомобилей и мотоциклов (и не только). И начали применять его ещё в двадцатые годы прошлого века, а в 80-е годы его применение почти удвоилось даже на серийной технике. Например некоторые не слишком ответственные детали — крышки картеров, сами картеры, крышки головок и другие детали (кстати, картер двигателя даже нашей самой дешёвой советской машины — Запорожца отливали из магниевого сплава).

Но всё же применяли и применяют сплавы магния до сих пор лишь для изготовления рам, шасси, колёс и других деталей спортивной техники, точнее некоторых дорогих серийных автомобилей и мотоциклов, например элитные спортбайки итальянской фирмы «Агуста», модель мотоцикла MV Agusta F4 750 Serie Oro, которая стоила вдвое дороже спортбайков этой же фирмы, но с алюминиевыми рамами, а разница в весе составляла всего лишь в 10 кг.

Но думаю в будущем, с развитием гальванотехники и применения более стойких покрытий, использование магния ещё больше увеличится.

Титан.

Ну это уж совсем интересный материал и само название говорит за себя. Кстати оно появилось из-за титанических сложностей его извлечения из земной коры, особенно на начальном этапе его добычи. На первый взгляд титан внешне похож на сталь, пока не возьмёшь в руки и не почувствуешь, что весит он ощутимо меньше.

Как я упомянул чуть выше, довольно сложная технология извлечения его из земной коры и определила его высокую цену и небольшую распространённость. Большинство металлов и сплавов добывали уже несколько столетий, а вот металлический титан удалось получить только лишь в 1910 году прошлого века. А к 50-м годам прошлого столетия на всей нашей планете было добыто всего то чуть более двух тонн титана!

Но после 50-х годов прошлого века, с развитием покорения космоса (космической техники и скоростной авиации) титан оказался лучшим из конструкционных материалов, благодаря своей большой прочности и лёгкости (об уникальных свойствах титана чуть ниже), и его добыча начала развиваться быстрыми темпами.

Несмотря на то, что титан ощутимо легче стали (4,51 г/см³) прочность его сплавов практически такая же, как и у лучших легированных сталей (75 — 180 кг/см²). К тому же, в отличие от стали, титан обладает отличной коррозионной стойкостью, так как его окисная плёнка имеет высокую прочность. Но и это ещё не всё: некоторые сплавы титана обладают довольно высокой жаростойкостью.

К тому же титановые сплавы нормально свариваются в нейтральной среде, не плохо обрабатываются, ну и обладают хорошими литейными свойствами. Короче плюсов у титана предостаточно, и если б не один существенный минус — его высокая цена, то про стали наверное все бы забыли.

И именно из-за высокой цены, применение титана в авто-мото промышленности пока ограниченно. Но на спортивной технике, которая никогда не отличалась скромной ценой, применение титана с каждым годом увеличивается. Ведь ни для кого не секрет, что из космической промышленности, практически все технические достижения плавно переходят в авто-мото спорт.

И со временем из титана и его сплавов начали изготавливать детали ходовой части спортивных машин и мотоциклов, но всё же чаще всего из него изготавливают детали форсированных оборотистых моторов : клапаны и их пружины, шатуны и другие детали, для которых основное требование — это высокая прочность и лёгкость. А на самых дорогих спортивных машинах из титана даже изготавливают детали крепежа (болты, шпильки и гайки).

Следует сказать ещё вот что: так же, как наблюдалось плавное «перетекание» титановых деталей из космической промышленности в спорт, думаю впоследствии так же будет и постепенное перетекание использования титана и для серийных автомобилей и мотоциклов, впрочем, поживём увидим…

Медь.

Этот металл обладает относительно большой плотностью, имеет характерный красноватый цвет и отличную пластичность. Также медь обладает довольно высоким коэффициентом трения, и отличной электро и теплопроводностью.

Благодаря этому свойству из меди и её сплавов изготавливают электропроводку, контакты, клеммы, детали радиоаппаратуры и приборов (вплоть до паяльников), используют для оборудования пищевой промышленности. Ну а благодаря высокому коэффициенту трения медь используют даже для изготовления различных фрикционных накладок муфт трения и добавки меди можно встретить даже в дисках сцепления автомобилей и мотоциклов.

Но в большинстве случаев чистую медь сейчас довольно редко используют в целях экономии, преимущественно в составе сплавов на её основе (латуни и бронзы — о них позже) или в качестве покрытий (кстати сейчас медное покрытие даже стало популярнее хрома, например на мотоциклах кастомах в стиле старой школы кастомайзинга — олдскул).

Но всё же чистую медь, даже для покрытий, сейчас используют редко, и поэтому не будем особо задерживаться на чистой меди и перейдём к её сплавам.

Латунь.

Как знают многие — это сплав меди с цинком. Причём цинк, в составе этого сплава, повышает прочность и вязкость, ну и что немаловажно — удешевляет сплав. Латунь широко используется из-за своей относительной мягкости, пластичности, так же она отлично обрабатывается резанием, хорошо поддаётся гибке, штамповке, протяжке (вытягиванию) отлично спаивается.

Выпускают латунь в виде болванок (отливок) листов, полос, прутков, труб и проволоки. А так как латунь (так же как и бронза), в отличии от меди имеет малый коэффициент трения, то из отливок (или из прутков) делают подшипники скольжения.

Так же довольно широко применяют латунь при изготовлении различных приборов. Ну и благодаря довольно высокой антикоррозийной стойкости латуни, её широко используют в сантехнике: различные втулки (сгоны, муфты) водопроводные краны, задвижки и т.п. А из тонких листов латуни изготавливают различные регулировочные прокладки.

Ну и кроме коррозионной стойкости латунь обладает ещё и отличной теплопроводностью и поэтому из неё (наряду с алюминием) делают радиаторы, из трубок делают трубки радиаторов и различные трубопроводы в промышленности.

Бронза.

Бронза — это сплав меди с алюминием, оловом, марганцем, кремнием, свинцом и другими металлами. Бронза более хрупкий и твёрдый материал, чем выше описанная латунь, но зато она имеет ещё более низкий коэффициент трения и поэтому чаще используется в подшипниках скольжения.

Наиболее качественная и ценная считается оловянистая бронза, которая имеет более полезные качества, так как олово в составе сплава повышает механические свойства бронзы (делает её менее хрупкой) и добавляет коррозионную стойкость бронзе, ну и ещё делает этот сплав ещё более скользким (повышает антифрикционные свойства). Из оловянистой бронзы изготавливают наиболее качественные и достаточно долговечные подшипники скольжения (наряду с баббитами).

Бронза отлично обрабатывается резанием и хорошо паяется, но она дороже латуни. Как было сказано выше, из бронзы чаще всего делают подшипники скольжения, различные втулки, а так же детали, работающие под давлением до 25 кг/см². Выпускают бронзу, как и латунь, в виде прутков, полос, проволоки, трубок, отливок и т.п.

Баббиты.

Эти сплавы обладают очень низким коэффициентом трения (если со смазкой то коэффициент трения всего 0,004 — 0,009) и довольно низкой температурой плавления (всего 240 — 320 градусов). И поэтому баббиты чаще всего используют для заливки трущихся поверхностей подшипников скольжения. А так как температура плавления баббитов достаточно низкая, то в двигателях их не используют, а чаще всего для подшипников скольжения коленвалов компрессоров.

В сплавах баббитов основной компонент — это олово и в самом качественном баббите марки Б83 содержится 83% олова. Так же были разработаны заменители баббитов (например Б16) с меньшим содержанием олова, которые отливают на свинцовой основе с добавками мышьяка и никеля — это БН и БТ и другие сплавы металлов.

Свинец.

Этот металл и сплавы на его основе (например припои) имеет относительно малую температуру плавления (327,46 °C) и серебристо-белый (с синеватым отливом) цвет. Обладает хорошей вязкостью (ковкостью) отличными литейными свойствами. Но он очень мягкий, легко режется острым ножом и даже царапается ногтем. Достаточно тяжёлый металл (имеет плотность 11,3415 г/см³, а с повышением температуры, плотность его падает.

Прочность этого металла очень маленькая (предел прочности на растяжение — 12—13 МПа (МН/м²) .Известен и применяется ещё с глубокой древности, так как имел небольшую температуру плавления и чаще применялся для отливки трубопроводов в Кремле и древнем Риме (там же в древнем Риме его производство достигало больших объёмов — около 80-ти тысяч тонн в год).

Свинец и его соединения токсичны и особенно ядовиты водорастворимые, например ацетат свинца, ну и летучие соединения, например, тетраэтилсвинец. А во времена отливки водопроводов в древнем Риме и Кремле никто не знал про вредность свинца и вода, проходящая по свинцовым трубопроводам, существенно сокращала жизнь людей.

Сейчас же основное использование свинца — это отливка решёток аккумуляторных батарей, а также он используется для изготовления листов (камер), защищающих от рентгеновского излучения в медицине. А сплавы свинца, сурьмы и олова используют в декоративном литье (затем фигурки покрывают медью), а так же для изготовления подшипников скольжения (см. выше баббиты) и для различных припоев для пайки.

Твёрдые сплавы металлов.

Это сплавы на основе тугоплавких карбидов вольфрама, ванадия, титана и эти сплавы отличаются высокой прочностью, твёрдостью и износоустойчивостью, даже при повышенных температурах. Применяют твёрдые сплавы чаще всего для изготовления рабочих частей режущего инструмента (токарных резцов, фрез и т.п.).

Кобальто-вольфрамовые твёрдые сплавы выпускают под маркой от ВК2, ВК3 и вплоть до ВК15. Цифры в маркировке указывают на процентное содержание кобальта в сплаве, а остальное как правило составляет карбид вольфрама.

Титано-вольфрамовые твёрдые сплавы цифры в маркировке указывают на процентное содержание кобальта и титана, а остальное составляет карбид вольфрама (Т5К10, Т15К6).

Вот вроде бы и всё. Конечно же в одной статье нереально описать всю массу полезных и интересных фактов, связанных с различными металлами и сплавами металлов, но всё же, надеюсь, что многие металловеды (материаловеды) простят меня, ведь нельзя объять необъятное, успехов всем!

Цветные металлы и сплавы | Стальной прокат в Одинцово – Стальной прокат в Одинцово

Цветные металлы и сплавы составляют порядка 3 % российского ВВП. Цветные металлы делятся на два типа: легкие и тяжелые. К первой категории относится алюминий, магний и титан. Во вторую группу входит медь, никель, свинец, олово и цинк.

Сплавы цветных металлов (силумины, бронзы, латунь и др.) широко используются в следующих областях:

  • производство;
  • сельское хозяйство;
  • медицина;
  • строительство и др.

Виды сплавов

Сплавы бывают литейные и деформируемые. В первом случае заготовки производят с помощью заливания металла в специальные формы. Из деформируемых составов изготавливают детали методом ковки, прессования и штамповки. Рассмотрим сферы применения цветных металлов и сплавов.

Применение магния

Металл используется для создания лёгких литейных сплавов, а также для производства осветительных ракет, зажигательных бомб и трассирующих пуль.

Помимо этого, магний применяется для производства конструкционных материалов для авиационной, космической и автомобильной промышленности.

Химические соединения цветного металла являются компонентом электрических батарей резервного питания. Также сплавы магния используют в качестве огнеупорного материала. Металл применяется в медицине для производства аспарагината, сульфата и цитрата магния. Эти лекарства применяются для лечения неврологических, кардиологических и гастроэнтерологических заболеваний.

Применение никеля

Сплавы цветного металла применяются для изготовления деталей самолетов и космических кораблей. Никель используется при производстве аккумуляторов, брекет-систем, монет и обмоток для струн. Никелевое покрытие предохраняет металлические поверхности от коррозии. Никель используется при производстве химических реактивов и некоторых марок нержавеющей стали.

Применение свинца

Металл используется для производства взрывчатых веществ, строительных материалов, а также катодных и термоэлектрических элементов. Арсенит свинца применяется для изготовления инсектицидов. Из хлорида свинца делают противоопухолевые мази, а хромат свинца применяется при изготовлении красящих веществ.

Цветной металл широко используется в атомной промышленности. Свинец применяют для радиационной защиты в рентгеновских аппаратах и ядерных реакторах. Из сплавов тяжелого металла производят пули, подшипники и оболочки для кабелей. Припой на основе свинца применяется для пайки проводов и электротехнических изделий.

Мы поставляем металлопрокат оперативно в день оплаты. Проходите на сайт и смотрите.

Цветные металлы и сплавы: состав, свойства, разновидности

Цветные металлы и сплавы известны людям давно. Кузнецы постоянно старались получить новые материалы, соединяя уже известные. Так появлялись новые соединения, которые обладали разными характеристиками. Они используются в разных направлениях промышленности.

Цветные металлы и сплавы

История открытия

Цветные металлы и их сплавы появлялись постепенно. После каменного века настала пора меди. Этот материал использовали для разных целей: изготавливали посуду, делали наконечники к орудиям труда, оружию. Век меди сменился эпохой бронзы. Это был первый сплав — соединение меди и свинца. Постепенно бронзу заменило железо.

С развитием металлургии, осваиванием новых земель, развитием торговли начали появляться драгоценные металлы. Изначально более популярным было серебро, а не золото. Из-за того что, средние века были эпохой войн, сражений, рыцарства, кузнецы искали новые материалы для изготовления доспехов, оружия. Так появлялись новые смеси.

Характеристики и маркировка

К цветным относятся все металлы, кроме тех, которые изготавливаются на основе железа. Они применяются в различных сферах промышленности. Чтобы различать материалы между собой, была создана специальная маркировка. По ней можно определить механические свойства сплавов, температуру расплавления, прочность и другие параметры.

Маркировка разных видов цветных металлов:

  1. Медь и соединения на её основе. Главный материал обозначается буквой «М». После буквы пишут цифры, которые обозначают чистоту металла. На конце маркировки могут указываться дополнительные буквы. К — обозначает катодный, Б — бескислородный, Р — раскисленный. Если речь идёт о соединении, легирующие добавки обозначаются заглавными буквами дополнительных компонентов.
  2. Латунь — чистый сплав, обозначающийся буквой «Л», после которой указывается две цифры. Это обозначение содержания меди. Многокомпонентная латунь в своей маркировке имеет дополнительные буквы, указывающие на наличие легирующих компонентов. Далее пишутся цифры, между которыми ставятся прочерки. Первая из них указывает на содержание меди, остальные на количество легирующих добавок по процентам.
  3. Бронза маркируется буквами «Бр». Если на поверхности изделий из этого материала присутствует буква «Л», это означает что он является литейным.
  4. Алюминий — материал, который обозначается буквой «А». После неё указываются цифры, которые говорят о количестве содержащихся примесей. Буква «Л» стоящая после указания на алюминий обозначает его литейные качества. Буква «В» говорит о высокой прочности материала.

Остальные цветные металлы и соединения на их основе имеют похожую маркировку. Легирующие добавки обозначаются начальными буквами.

Способы получения

Условия и цены на прием цветного металла: https://citylom.ru/priem-czvetnogo-metalla

Однородные материалы, смеси на их основе получаются по специальным технологиям. К ним относятся:

  1. Пирометаллургия — ряд технологический процессов, при которых происходит очистка, получение металлов их соединение под воздействием высокой температуры. По этой технологии изготавливается около 60% цинка, 100% свинца, 95% меди.
  2. Гидрометаллургия — технология получения металлов из руд с помощью химических растворов. Последующие этапы обработки подразумевают отделение основных компонентов от жидкости.
  3. Электрометаллургия — совокупность технологических операций, при которых материалы и соединения на их основе получаются под воздействием электрического тока. С помощью этой технологии чаще всего получают алюминий.
Добыча металла

Сферы применения

Цветные металлы и сплавы на их основе используются в различных направлениях промышленности. Из них изготавливают:

  1. Детали для электрооборудования, электроинструментов.
  2. Теплообменники, трубопроводы.
  3. Ювелирные изделия.
  4. Изготовление высоконагруженных деталей из титана.
  5. Провода, связывающие элементы для прохождения электрического тока.
  6. Проволоку, листы, прутья, арматура, крепёж.

Разновидности

Существуют основные сплавы цветных металлов, о которых следует поговорить более подробно. Они применяются чаще всего.

Алюминий и его сплавы

Алюминий — серебристый материал, который хорошо проводит электрический ток, имеет малую удельную массу, низкую температуру плавления. От коррозии он защищен оксидной плёнкой, которая образуется на его поверхности после взаимодействия с кислородом. Соединения на основе этого материала бывают двух типов.

Сплав алюминия
Деформируемые сплавы алюминия

Бывают упрочняемые и неупрочняемые:

  1. К первой группе относятся дюралюминий, смеси с высоким показателем прочности.
  2. Ко второй группе относятся соединения на основе алюминия, к которому добавляется магний или марганец.

Химический состав деформируемых алюминиевых сплавов зависит от группы. Упрочняемые соединения могут дополняться легирующими добавками.

Литейные сплавы на основе алюминия

Алюминиевые литейные сплавы называют силуминами. Это соединение основного металла и кремния. Обладают подобные соединение малой удельной массой, высокими литейными свойствами.

Сплавы на основе меди

Медь — материал красного оттенка. Имеет высокий параметр электропроводности, пластичности. Хорошо обрабатывается, однако имеет низкие литейные характеристики. Основным соединения на основе меди — бронза, латунь.

Бронза

Представляет собой смесь на основе меди, легирующими компонентами которой могут быть любые металлы кроме цинка.

Латунь

Соединение меди, цинка и других легирующих добавок. Дополнительных компонентов в составе — не более 8%.

Магний и его сплавы

Магний — металл серебристого оттенка. Плавится при низкой температуре, устойчив к развитию коррозии. Его не используют для конструкционных целей, так как материал обладает низкими механическими параметрами.

Магний
Деформируемые сплавы магния

К деформируемым соединениям на основе магния относятся:

  1. Смеси с марганцем — не более 2,5%.
  2. Смесь цинка, магния, алюминия, марганца.
  3. Соединения магния, цинка, циркония, кадмия.
Литейные сплавы магния

Смесь цинка, магния, алюминия применяется при изготовлении деталей для автомобилей, самолётов, кораблей, ракет. Такие материалы отличаются высокими механическими параметрами.

Цинк и его сплавы

Цинк — металл серых оттенков, с высокими параметрами пластичности, вязкости. Устойчив к воздействию влаги. Существует две группы соединений на основе цинка.

Деформируемые цинковые сплавы

Соединения цинка с алюминием, магнием, медью. Изготавливаются в процессе прокатки, опрессовывания, вытяжки. Во время проведения технологических операций отдельные компоненты нагреваются до 300 градусов. Готовые смеси имеют высокие показатели пластичности, прочности.

Литейные цинковые сплавы

Соединения цинка, меди, магния, алюминия. Обладают высоким показателем текучести. Из готовых соединений изготавливаются корпуса для различных приборов, измерительной аппаратуры.

Изделия

Цветных металлов и смесей на их основе огромное множество. Благодаря этому из них изготавливаются различные изделия:

  • крепёж, строительные материалы;
  • детали для электрооборудования;
  • соединительные элементы, провода, проволока, арматура, прутья, листы;
  • ювелирные украшения;
  • декоративные элементы для интерьера;
  • монеты, слитки;
  • статуэтки, элементы часов.

Цветные металлы и сплавы на их основе популярны в разных направлениях промышленности. Чтобы эффективнее работать с этими материалами, нужно знать их параметры. Это поможет избежать брака, сделать качественное изделие. Цветные металлы дороже черных, что делает их более ценными для производства.

Металлы и сплавы — Промышленные материалы


Металлы и сплавы

Категория:

Промышленные материалы



Металлы и сплавы

Металлы и изделия из них применяются для изготовления машин, станков и оборудования, для производства товаров народного потребления.

При изучении металлов и изделий из них необходимо знать их свойства, классификацию, факторы, влияющие на качество. Качество металлоизделий, срок их службы зависят от природы металла, его строения (структуры), от технологии изготовления, отделки, а также от условий эксплуатации, транспортирования и хранения. Одни и те же металлоизделия в одних условиях могут долго эксплуатироваться, а в других быстро выходят из строя.

Металлы. Металлы представляют собой кристаллические вещества неорганического происхождения, характеризующиеся высокой электро- и теплопроводностью, прочностью, вязкостью, пластичностью.

Примерно три четверти элементов таблицы Д. И. Менделеева приходится на долю металлов. Наиболее распространенные из них — железо, алюминий, медь, свинец, цинк, хром, титан, вольфрам, магний, молибден. К металлам относят также и их сплавы.

Металлы делятся на черные и цветные. К черным относятся железо и сплавы железа с углеродом (сталь и чугун), к цветным (нежелезным) — все остальные металлы.

По плотности нежелезные металлы подразделяют на тяжелые (>4,5 г/см3) и легкие (<4,5 г/см3). К первым относят свинец, медь, олово, цинк и др. Наиболее тяжелыми являются благородные металлы — золото и платина. К легким относят алюминий, титан, магний и др.

По температуре плавления металлы делят на легкоплавкие и тугоплавкие. К легкоплавким относят металлы с температурой плавления до 1539°С (свинец, олово, цинк, алюминий и др.), остальные— к тугоплавким (вольфрам, молибден, ниобий и др.).

По степени чистоты (наличию примесей) металлы подразделяют на шесть подгрупп. В первую подгруппу (пониженной чистоты) включены металлы с содержанием примесей от 1 до 5%. Во второй подгруппе (средней, технической чистоты) примесей допускается от 0,1 до 1%; в третьей (повышенной чистоты) —от 0,01 до 0,1%: в четвертой (высокой чистоты) —от 0,001 до 0,01%; в пятой (особой чистоты)—от 0,0001 до 0,001%; в шестой подгруппе (сверхчистых металлов) примесей должно содержаться не более 0,0000001%.

Металлы второй и третьей подгрупп применяют для производства металлоизделий, четвертой и пятой — для изготовления токо-ведущих жил, проводов, шнуров, клемм и самых разнообразных деталей в радио- и электротехнике, шестой — цля выработки полупроводниковых материалов и других специальных изделий.

По степени окисления металлы подразделяют на благородные и обыкновенные. К благородным металлам относятся золото, серебро, платина; к обыкновенным — все остальные. Все металлы в твердом состоянии имеют кристаллическое строение. Элементарные частицы, из которых состоят металлы, располагаются в определенном порядке, образуя при этом простые или сложные решетки (рис. 1). Каждая решетка имеет соответствующее число атомов и характеризуется определенным расстоянием между ними.

Каждый металл имеет определенную решетку. Но ряд металлов в зависимости от температуры, давления и других факторов может иметь несколько решеток. Существование одного металла в нескольких кристаллических формах называется аллотропией. Различные кристаллические формы одного металла называются аллотропическими модификациями. Переход одной модификации в другую может приводить в некоторых случаях к разрушению металла. Например, олово при охлаждении ниже, температуры — 18°С вследствие больших объемных изменений превращается в порошок.

Переход металла из жидкого состояния в твердое называется кристаллизацией, а из твердого в жидкое — плавлением. Кристаллизация металла начинается при наличии в расплаве атомов металла или других элементов, являющихся центрами кристаллизации. Чем больше в расплаве центров кристаллизации, тем меньших размеров образуются зерна. Металл с мелкозернистой структурой характеризуется более высокой прочностью, чем металл с крупнозернистой структурой. Поэтому в жидкий металл иногда вводят добавки, являющиеся дополнительными центрами кристаллизации. Такой процесс называется модифицированием. Он применяется для повышения механических свойств изделий.

Рис. 1. Основные виды кристаллических решеток: а — объемно-центрированная кубическая; б — гранецен’грированная кубическая; в — гексагональная

Свойства металлов разнообразны. Наиболее важными из них являются физические, химические и технологические свойства. К физическим свойствам относятся механические и электрические. Важнейшими показателями механических свойств металлов являются разрушающее напряжение (предел прочности), предел пропорциональности, предел текучести, ударная вязкость, твердость, пластичность и др.

Предел пропорциональности соответствует максимальному напряжению, при котором сохраняется прямая зависимость между нагрузкой и удлинением.

Твердость определяют методом вдавливания в образец стального закаленного шарика (метод Бринелля) или алмазного конуса (метод Роквелла). Твердость по Бринеллю (НВ) выражается в МПа. Твердость по Роквеллу (HR) выражается в условных единицах (по шкале А — HRA и шкале С — HRC). Этот метод применяют в тех случаях, когда твердость материалов 40 МПа и более.

Пластические свойства учитывают как при определении механических свойств, так и при обработке металлических заготовок при получении из них готовых изделий.

Электрические свойства металлов характеризуют их способность проводить электрический ток. Хорошо проводят электрический ток серебро, медь, алюминий. Металлы, имеющие высокое сопротивление прохождению электрического тока с выделением большого количества теплоты, широко применяют для изготовления электронагревательных элементов, нитей накаливания в осветительных приборах и т. п.

Металлы могут намагничиваться и притягиваться магнитом. Эти свойства металлов учитываются при изготовлении генераторов, электромоторов, трансформаторов, реле. Наиболее высокие магнитные свойства имеют железо, никель, кобальт и сплавы на их основе.

Важное значение имеют также и термические, свойства металлов — линейное и объемное расширение, теплопроводность и др. Линейное и объемное расширение широко используется при изготовлении биметаллических деталей для терморегуляторов и других приборов.

Химические свойства характеризуют способность металла сопротивляться разрушению от коррозии. Стойкость к коррозии зависит от природы металлов, степени легирования и состава внешней среды.

Технологические свойства металлов характеризуют их поведение при различных видах обработки — формовке, отделке и декорировании изделий из металлов. Различают литейные свойства металлов (жидкотекучесть, усадку, температуру плавления), ковкость, вытяжку, способность к обработке резанием и т. д.

Жидкотекучесть — свойство жидкого металла или сплава полностью заполнять форму.

Усадка — изменение объема металла при переходе его из жидкого состояния в твердое. Чем меньше усадка и ниже температура плавления металла, тем легче отливать из него высококачественные изделия.

Ковкость и вытяжка характеризуют возможность обработки металлов давлением.

Сплавы. Металлическими сплавами называют материалы, полученные соединением двух металлов или нескольких расплавленных металлов с неметаллами (с кремнием, углеродом и другими элементами) или выплавкой из руд. Сплавы благодаря своим свойствам применяются значительно шире, чем металлы.

Сплавы классифицируют по назначению, количеству элементов, входящих в их состав, наличию специальных примесей, структуре, способу получения из них изделий и другим признакам.

По назначению сплавы бывают общего применения и специальные (шарикоподшипниковые, для изготовления заклепок и др.).

По количеству элементов (компонентов) сплавы делят на двойные (бинарные) и сложные — тройные, четверные и т. д.

По наличию специальных примесей сплавы делят на легированные и нелегированные. К первым относят сплавы со специальными добавками, придающими им определенные свойства. По количеству легирующих добавок они бывают низколегированными (до 5%), среднелегированными (5—10%) и высоколегированными (более 10%). Нелегированные сплавы специальных добавок не имеют.

По структуре сплавы делят на эвтектические, твердые растворы и химические соединения. Эвтектические сплавы состоят из различных зерен с характерными для них решетками. Эти сплавы отличаются высокими литейными свойствами, что характерно для чугунов и алюминиевых сплавов.

Твердые растворы характеризуются тем, что их компоненты взаимно растворяются как в жидком, так и в твердом состояниях. В отличие от эвтектических сплавов они имеют однородное строение. Свойства твердых растворов зависят в основном от количества одного из элементов.

В химических соединениях атомы исходных компонентов образуют новую решетку. Свойства их резко отличаются от свойств исходных компонентов.

Сплавы по способу получения из них изделий делятся на деформируемые и литейные. Из первых изделия получают методами давления — прокаткой, ковкой, вытяжкой и т. п. К литейным относят сплавы, из которых изделия изготовляют литьем.

Кроме того, сплавы подразделяют на прецизионные и обыкновенные. К первым относят сплавы со строго определенным химическим составом и специфическими свойствами (магнито-мягкие, магнито-твердые, сплавы с особыми электрическими, тепловыми свойствами и др.).


Реклама:

Читать далее:
Черные металлы как промышленный материал

Статьи по теме:

Нержавеющие, быстрорежущие, износостойкие, прецизионные стали, медные и аллюминиевые сплавы

Номенклатура сплавов на основе железа и других металлов очень велика, что связано с многообразием условий эксплуатации деталей, технологических сред и технологий, используемых при их производстве. Современная промышленность требует разработки новых сплавов с особыми свойствами, которые удовлетворяют возрастающим и изменяющимся потребностям.

Это в свою очередь заставляет работать над созданием совершенных приборов, которые позволяют анализировать сложные сплавы быстро и точно. Атомная эмиссионная спектрометрия дает возможность решать любые аналитические задачи, и служит мощным инструментом в системе контроля качества.

Стали

Конструкционные стали получили наибольшее распространение в промышленности, и обладают комплексом механических свойств, среди которых значение какого-либо не слишком высоко. Основная задача таких железоуглеродистых сплавов — обеспечение достаточной прочности и надежности, а также сопротивляемость усталости и воздействию знакопеременных нагрузок. Такие характеристики достигаются путем легирования и термической обработки. Методики спектрального анализа углеродистых сталей отработаны и не представляют сложности.

Специальные стали обладают особым набором свойств, один из которых наиболее выражен, и определяет ее назначение. Особые свойства обуславливаются наличием одного или нескольких особых факторов: химический состав, способ производства, обработка. Высоколегированные стали также относятся к этой категории. Как правило, специальные стали имеют сложный химический состав, анализ которого требует использования современных методов и более совершенных приборов.

Нержавеющие стали

К этому виду сталей относятся свыше 120 марок, число которых постоянно растет. В сплаве содержится хром, который образует оксидный слой, служащий защитой от коррозии.

Коррозионно-стойкие стали бывают:

  • хромистые;
  • хромо-никелевые;
  • хромо-никель-молибденовые;
  • хромо-никель-молибден-медистые;
  • хром-никель-марганцевые.

Структура нержавеющих сталей различается в зависимости от соотношения в них углерода и хрома.

Инструментальные быстрорежущие стали

К быстрорежущим относят стали, из которых изготавливаются инструменты высокой производительности. Они обладают повышенной стойкостью к красноломкости, и отличаются высокой износостойкостью. Основные легирующие элементы: W, Mo, V, Cr, Co. В этих сплавах присутствуют сложные карбиды, массовая доля которых составляет около 30%, причем при повышении температуры содержание легирующих элементов снижается, так как они переходят в твердый раствор.

Износостойкие стали

Конструкционные износостойкие стали обладают высоким сопротивлением износу. К ним относят стали:

  • Шарикоподшипниковые. Они имеют повышенное содержание углерода (0,95-1,15%) и хром. Находят применения для изготовления элементов подшипников качения.
  • Высокомарганцовистые. В них высокое содержание не только марганца, но и углерода.

Существует ряд других марок сталей, относящихся к износостойким. Все они способны работать в условиях воздействия больших нагрузок, давлений и обладают сопротивлением к истиранию.

Мартенситно-стареющие стали

Эти стали обладают высокими прочностными и технологическими характеристиками, и в своем составе практически не содержат углерод. В их основу входят, кроме железа и никеля, кобальт, молибден, титан алюминий, ниобий и хром. Содержания Ni находится в диапазоне 7-20%.

Из мартенситно-стареющих сталей изготавливают ответственные детали с высокой прочностью, и обладающие вязкостью при низких температурах.

Подшипниковые стали

Характер нагрузок при работе подшипниковых сталей связан с высокими локальными нагрузками, поэтому к ним предъявляются повышенные требования по чистоте сплава. Они должны обеспечивать высокую статическую грузоподъемность и сопротивление контактной усталости. Требуемая износостойкость достигается введением углерода и хрома.

Прецизионные стали

Эта группа сталей характеризуется высоким уровнем определенных свойств, и подразделяется на следующие виды:

  • магнитомягкие и магнитотвердые;
  • с заданным коэффициентом теплового расширения;
  • с особыми упругими свойствами;
  • жаропрочные;
  • сверхпроводящие;
  • обладающие комплексом физических свойств.

Множество прецизионных сплавов получают на основе металлов, входящих в подгруппы: железа, кобальта, никеля. В настоящее время созданы сплавы, основу которых составляет: марганец, хром, титан, ниобий, ванадий, переходные и редкоземельные металлы.

Цветные металлы и сплавы

К черным металлам принято относить железо и сплавы на его основе, а к цветным — все остальные металлы. Последние находят ограниченное применение по сравнению с черными металлами, тем не менее роль их в промышленности велика, и новые сплавы создаются постоянно в соответствии с развитием технологий. Спектральный эмиссионный анализ играет большую роль в этих процессах, и позволяет решать задачи любой сложности.

Медь и сплавы

Медь (Cu) — цветной металл, который получил наибольшее распространение в промышленности. Чистая медь используется в электротехнике, а сплавы на ее основе — в различных отраслях техники.

Основные примеси технически чистой меди: висмут, сурьма, мышьяк, железо, никель, сера. Их источником служат руды. Эти примеси не удаляются даже после очистки меди. Медь обладает высокими показателями пластичности, что облегчает ее деформацию давлением, а присутствие Bi и Sn резко их снижают.  

Латуни — сплавы меди с цинком.

Они бывают:

  • Однофазные с содержанием цинка менее 39%. Они хорошо поддаются пластической деформации в холодном и горячем состоянии.
  • Двухфазные, в которых содержание цинка находится в диапазоне 39-50%. Прочность и износостойкость двухфазных латуней выше, чем у однофазных сплавов.

Латуни плохо обрабатываются резанием. Добавление в сплав свинца позволяет улучшить показатели обрабатываемости.

Специальные латуни обладают улучшенными механическими и химическими свойствами. Это достигается путем введения Sn, Si, Mn, Al и Fe.

Бронзы — это сплав на основе меди с другим элементом, за исключением цинка. Наибольшее распространение получили следующие бронзы:

  • Оловянные;
  • Безоловянные: алюминиевые, кремнистые, марганцовистые, бериллиевые, свинцовистые.

Алюминий и сплавы

Алюминий (Al) — легкий металл с высокой электропроводностью, который широко используется в электротехнике и машиностроении. Металл имеет низкую температуру плавления и высокую пластичность.

Железо и кремний — неизбежные примеси в алюминии, которые снижают его технологические характеристики. При одновременном присутствии в металле Fe и Si пластичность ухудшается.

Сплавы на основе алюминия с легирующими элементами очень разнообразны. Присутствие в сплаве меди, кремния, магния, цинка приводит к резкому изменению свойств. Марганец, никель, хром способны улучшить свойства, и добавляются при наличии в составе одного или нескольких указанных выше легирующих элементов. Натрий, бериллий, титан, церий, ниобий используются в малых количествах, и играют роль модификаторов, которые улучшают свойства.

Все алюминиевые сплавы подразделяются на две группы:

  • Деформируемые. Предназначены для производства изделий обработкой металла давлением.
  • Литейные. Используются для получения отливок.

Магний и сплавы

Магний — металл светло-серого цвета с малой плотностью и низкой температурой плавления. Он способен воспламеняться на воздухе. Область применения: пиротехника и химическая промышленность.

Сплавы на основе магния представляют соединение металла с алюминием, цинком, марганцем. Они бывают деформируемые и литейные. Магниевые сплавы обладают высокой прочностью и пластичностью, поэтому используются в машиностроении для изготовления ответственных деталей.

Титан и сплавы

Титан — полиморфный металл, который обладает малой плотностью и высокой прочностью. Уникальные свойства этого металла делают его ценным конструкционным материалом, и позволяют использовать его при строительстве летательных аппаратов, судов, ракет и в химической промышленности.

Для улучшения свойств технический титан легируют с использованием следующих металлов: алюминий, хром, железо, марганец, олово, ванадий. Присутствие того или иного элемента изменяет точку аллотропического превращения титана и структуру твердого раствора. Алюминий представляет особую ценность в титановых сплавах, и содержится в любом их них, так как улучшает свойства.

Методы анализа сложных сплавов

Из сказанного выше становится очевидно, насколько велика номенклатура сплавов, представляющих практический и научный интерес, и как разнообразны аналитические задачи. Современные подходы к построению системы контроля качества требуют использования измерительных средств, которые обеспечивают возможность оперативного получения точных результатов анализа элементного состава металла или сплава. При этом обязательно учитывается экономический эффект и окупаемость приборов.

Рентгено-флюоресцентный анализ

Возможности рентгено-флуоресцентного анализа при исследовании сложных сплавов впечатляют. Метод отличается экспрессностью, и позволяет с высокой степенью точности определить элементы от бериллия до урана, начиная с тысячных долей процента до 100%.

К преимуществам РФА относят:

  • Возможность проведения исследования твердых проб без изменения их агрегатного состояния, а жидких — без необходимости отделения органики.
  • Приборы не нуждаются в калибровке.
  • Неразрушающий характер возбуждения спектра.
  • Высокая скорость получения результатов анализа.

Несмотря на большие возможности рентгено-флуоресцентных спектрометров при решении аналитических задач любой сложности, существует ряд факторов, которые сдерживают массовое использование этого оборудования:

  • Высокая стоимость.
  • Необходимость придания пробе определенной формы и приведение к размерам, позволяющим поместить в измерительную кассету.
  • Дорогостоящая периферия прибора и его обслуживание.

Спектрометры с индуктивно-связанной плазмой

Приборы этого типа способны проводить спектральный анализ проб, находящихся в жидком состоянии. Эта особенность спектрометров с индуктивно-связанной плазмой определяет их достоинства и недостатки.

Преимущества ИСП-спектрометров:

  • Возможность одновременного определения десятков элементов.
  • Линейная зависимость градуировочных характеристик по всему спектру.
  • Доступная стоимость градуировочных растворов.

К недостаткам относят:

  • Необходима помощь химико-аналитической лаборатории.
  • Большая продолжительность исследования, которая связана с необходимостью перевода пробы в раствор.
  • Прибор не способен определять углерод.
  • При повышении концентрации снижается точность результатов исследования.
  • Недостаточная нормативная база.
  • Высокая стоимость оборудования.

Оптико-эмиссионная спектрометрия

Для анализа сложных сплавов широко используются оптико-эмиссионные спектрометры с низковольтной искрой в среде аргона. Они лишены недостатков приборов с высоковольтной искрой и дуговых спектрометров, и позволяют определять неограниченное число элементов при их концентрации от тысячных долей процента. Измерения отличаются стабильностью и имеют низкую погрешность. На подавляющее большинство металлов и сплавов разработана нормативная документация.

Основные достоинства ОЭС:

  • Возможность определения неограниченного числа элементов.
  • Низкий предел обнаружения и погрешность.
  • Экспрессность.
  • Невысокая стоимость оборудования по сравнению с РФА и ИСП-приборами.
  • Простота эксплуатации и обслуживания.

Оптико-эмиссионные спектрометры не лишены недостатков:

  • Повышенные требования к качеству аргона.
  • Проведение пробоподготовки должно выполняться в соответствии с требований ГОСТ.
  • При повышении концентрации происходит снижение надежности измерений.
  • Возможен анализ только монолитных токопроводящих проб.

Выводы

Выбор спектрального прибора для анализа сложных сплавов обусловлен особенностями производства и частотой проведения исследований:

  • При необходимости проведения анализа только цветных металлов и сплавов с невысокими требованиями к легитимности, можно обратить внимание на эмиссионный искровой спектрометр.
  • Если к указанным выше требованиям присоединяется необходимость определять большое число элементов и повышенные требования к погрешности, то оптимальный вариант — спектрометр с низковольтной искрой в среде аргона.
  • На производствах, занимающихся выпуском жаропрочных и жаростойких сталей может быть рассмотрен вариант применения спектрометров РФА. При этом его вероятно придется дополнить прибором для исследования легких элементов.

Сплавы металлов — презентация онлайн

Сплавы
.
Сплавы – это материалы с
характерными свойствами, состоящие
из двух или более компонентов, из
которых по крайней мере один –
металл.
Компонентами сплавов могут
неметаллы, и соединения.
быть
и
Сплавы. бывают:
Однородные
(когда при сплавлении
образуется
как
бы
раствор одного металла
в другом)
Неоднородные
(представляет
собой
механическую
смесь
металлов)
Однородные и неоднородные
сплавы
зеленое золото
(однородный сплав сплава золота с серебром
и добавками красной меди)
алюминиевая бронза
(неоднородный сплав)
.
Сплавы часто подразделяют
по составу:
медные
сплавы
алюминиевые
сплавы
никелевые
сплавы
титановые
сплавы
Сплавы бывают:
.
Сплавы черных
(железных) металлов
(железо и все его
сплавы)
Сплавы цветных
металлов
(остальные металлы и
их сплавы)
Черные (железные) сплавы
Чугун
чугунная посуда
Сталь
стальной мост
.
Чугун
— сплав на основе железа, содержащий от 2 до
4,5% углерода, а также марганец, кремний,
фосфор и серу. Чугун подразделяется на:
Литейный чугун
(применяют для
изготовления массивных
деталей методом литья)
Передельный чугун
(применяется для
переработки в сталь)
.
Сталь
— сплав на основе железа, содержащий менее 2%
углерода. По химическому составу стали
разделяют на два основных вида:
Углеродистая сталь
(сплав железа с
углеродом, но, в отличие
от чугуна, содержание
углерода, фосфора, серы,
марганца, кремния
гораздо меньше)
Легированная сталь
(сплав железа с углеродом,
а также специальные
легирующие добавки: хром,
никель, вольфрам,
молибден, ванадий и
другие.
Цветные сплавы:
Бронза – сплав на основе меди с
добавлением (до 20%) олова. Используют в
машиностроении,
а
также
для
художественного литья.
статуэтка, отлитая
из бронзы
.
Цветные сплавы:
Латунь – медный сплав, содержащий от 10
до
50%
цинка.
Применяют
в
моторостроении.
Для
изготовления
мебельной фурнитуры.
оконная фурнитура
из латуни
.
Цветные сплавы:
Мельхиор – сплав, содержащий около 80%
меди и 20% никеля, похож по внешнему виду на
серебро.
Используют
для
изготовления
недорогих столовых приборов и художественных
изделий.
художественное изделие
из мельхиора
Цветные сплавы:
Дюралюминий – сплав на основе
алюминия, содержащий медь, магний,
марганец и никель. Применяют в самолетои машиностроении.
техника, в состав
которой входит
дюралюминий
Применение сплавов
Машиностроение,
художественное литьё,
монеты
Литые детали,
переработка в сталь
Бронза
чугун
Моторостроение,
нержавеющие
изделия,
электрические
контакты
латунь
СПЛАВЫ
сталь
Основа
машиностроения,
оборонной
промышленности,
ракетостроения
мельхиор
дюралюминий
Самолёто- и машиностроение,
провода
Столовые приборы,
художественные
изделия, хирургические
инструменты
Рефлексия — тест
1. В металлургии металлы и их сплавы
делятся на:
1) Чёрные, цветные и драгоценные
2) Сталь и чугун
3) Цветные и чёрно-белые
4) Чёрные и цветные
тест
2. Сплавы металлов получают путём:
1). Смешивания одного металла с другими или
металла с неметаллическими элементами
2). Добавления одного металла к другим или к
металлу неметаллических элементов
3). Сплавления одного металла с другими или
металла с неметаллическими элементами
4). Сварки нескольких металлов с другими
металлами
тест
3. Цели получения сплавов:
1) Экономия расхода чистых металлов
2) Получение материалов с нужными
свойствами
3) Получение более дешевых материалов
4) Получение очень прочных материалов
тест
4. Чугун это:
1) Сплав железа с углеродом, содержащий
более 2% углерода
2) Сплав железа с углеродом, содержащий
менее 2% углерода
3) Сплав железа с водородом, содержащий
более 2% углерода
4) Чистое железо
тест
5. Сталь это:
1) Сплав железа с водородом, содержащий
до 2,1% углерода
2) Сплав железа с углеродом, содержащий
менее 2,1% углерода
3) Сплав железа с углеродом, содержащий
более 2,1% углерода
4) Сплав железа с углеродом, содержащий
менее 2% углерода
тест
6. К цветным сплавам относятся:
1) Сталь, алюминий, олово, цинк, железо
2) Медь, алюминий, олово, цинк, чугун,
золото
3) Медь, алюминий, олово, цинк, чугун,
золото, серебро
4) Медь, алюминий, олово, цинк, серебро
тест
7. Применяется в самолётостроении и
ракетостроении (лёгкий и прочный сплав):
1) Сталь
2) Чугун
3) Дюралюминий
4) Бронза
тест
8. Медный сплав, используется для
художественного литья:
1) Мельхиор
2) Дюралюминий
3) Бронза
4) Латунь
тест
9. Причины различия свойств металлов и
сплавов:
1) Способы получения
2) Строение кристаллической решётки
3) Температуры плавления
4) Внедрение, замещение атомов-ионов
тест
10. Основа современного машиностроения:
1) Сталь
2) Чугун
3) ДюралюминиЙ
4) Бронза

Доклад на тему Сплавы металлов 9 класс сообщение

Давным-давно люди приметили, говоря о биологии, например, что если совместить два организма, то третий превзойдёт своих родителей. Оказывается, тот же принцип работает и в химии, поэтому историю появления сплавов можно считать незамысловатой. Кто-то просто заметили, что при плавлении металлы смешиваются и получается что-то новое и более прочное.

По современному определению сплавы — это химическое соединение, в которое должен входить хотя бы один металл, при этом остальные компоненты металлами могут не являться.  

Например, бронза, являющаяся сплавом медь+олово, более прочная, поэтому чаще всего люди и используют сплавы. Тем более существует бесчисленное множество различных вариаций сплавов, хотя на данный момент известно всего восемьдесят с лишним видов металлов.

Также сплавы отличаются высокой стойкостью и твёрдостью помимо того, что они обладают превосходными литейными свойствами. Например, оловянная бронза (медь+олово) лучше поддаётся литью, чем просто медь, поэтому она часто используется в изваянии произведений искусства. К подобным литейным сплавам также относятся чугун (железо+углерод), дюралюминий (алюминий+медь+магний+марганец) и т.д.

Рассмотрим классификацию сплавов:

  • Состав. Сплавы подразделяются по преобладающим компонентам, например: титановые, медные, никелевые и т.д.
  • Ценность. Названия сплавов относятся к ценности компонентов, например: латунь, вольфрамовая сталь и т.д.
  • Черные металлы. Название чаще всего используется в металлургическом производстве. В эту группу входят абсолютно все сплавы, в составе которых есть железо.
  • Цветные металлы. Опять-таки название используется в металлургии и относится к остальным металлам, помимо железа.

Соответственно, вышеперечисленные группы делятся на подгруппы с более узким выбором общих компонентов или свойств, например.

Вариант №2

Сплавы

1) Причины использования
2) Классификации
3) Компоненты и лигатуры
4) Применение

Человек революционный шаг сделал, когда понял, что смесь меди и олова гораздо твёрже, чем любой из этих металлов в чистом виде. Считается, что это произошло не менее восьми тысяч лет назад.

В современном мире используются десятки тысяч сплавов, и продолжается разработка новых. Используют несколько критериев для классификации сплавов.

Прежде всего, выделяют две большие группы: чёрные металлы (т.е. сплавы на основе железа) и цветные металлы (на основе других элементов).

В зависимости от того, где будет использован данный металл, его относят к сплавам общего назначения или к специальным. Далее, различают двойные и сложные (тройные, четверные и т.д.) сплавы по числу элементов, входящих в его состав.

Выделяют легированные сплавы. В них вносят специальные примеси для получения нужных свойств. С точки зрения производственного процесса сплавы бывают литейные, порошковые (спекаемые) и деформируемые.

Степень связанности элементов в сплаве может быть разной, поэтому различают механическую смесь (каждый элемент образует отдельный кристалл), твёрдый раствор (разные элементы встраивается в общую кристаллическую решётку) и соединение (атомы образуют химическую связь).

Для придания железу большей твёрдости вносят углерод, но одновременно металл становится более хрупким. Сталь содержит 0.3-2.14% углерода. Малоуглеродистая сталь используется как конструкционный материал, более твёрдые сорта идут на изготовление инструментов. Легированная сталь применяется в машиностроении и изготовлении инструментов с большой скоростью резания. Легируют сталь введением хрома, марганца, титана, ванадия и др. Таким способом добиваются увеличения прочности без потери твёрдости.

Чугун содержит от 2 до 4% углерода. Из него литьём изготавливают изделия, обладающие хорошей стойкостью к истиранию, прочностью, жёсткостью.

Кадмий замедляет износ медных сплавов. В медных сплавах цинк увеличивает пластичность и устойчивость к коррозии. Титан намного увеличивает температурный предел эксплуатации. Никель и, в меньшей степени, хром увеличивают прочность феррита, не влияя на пластичность.

9 класс по химии

Сплавы металлов

Популярные темы сообщений

  • Древние славяне

    Наши предки-славяне были выходцами из балтославянских индоевропейских племён. Примерно в 5 веке нашей эры они начали активно селиться на землях Восточной Европы. Славянские вожди были людьми мудрыми и дальновидными,

  • Сера

    В периодической таблице Менделеева сера находится в VIA группе (шестая группа, подгруппа А), в третьем периоде. Она относится к немногочисленной группе неметаллов: Периодическая система насчитывает их всего 22, в том числе инертные газы.

  • Дорожно-транспортное происшествие

    Тема дорожно — транспортного происшествия на сегодня очень актуальна, ведь достаточно часто приходится видеть на дорогах последствия разного рода аварий. Происходит подобное из-за недостаточного знания ПДД,

Что такое сплав?

Металлический сплав представляет собой вещество, которое объединяет более одного металла или смешивает металл с другими неметаллическими элементами.

Например, латунь представляет собой сплав двух металлов: меди и цинка. Сталь представляет собой сплав металлического элемента (железа) и небольшого количества — до 2 % — неметаллического элемента (углерода).

Сплавы являются примером того, что «работа в команде заставляет мечту работать», поскольку каждое вещество в составе сплава придает свои свойства раствору или смеси.Некоторые сплавы сочетают в себе лучшие качества каждого элемента и создают конечный продукт, более твердый, долговечный и/или более устойчивый к коррозии.

Тщательная химия, которая используется для создания этих точных соотношений, в конечном итоге дает вещества с уникальными полезными свойствами.

Как делают сплавы? Как работают сплавы?

Более глубокое изучение химии сплавов показывает, почему сплавы так полезны в самых разных отраслях промышленности.

Поскольку сплавы сочетают в себе разные элементы, они содержат атомы разного размера.То, как эти атомы объединяются и взаимодействуют друг с другом, определяет классификацию сплавов. В химии сплавов сплав можно классифицировать как замещающий или внедренный в зависимости от его атомного расположения.

замещающие сплавы

Сплав замещения образуется по механизмам обмена атомами. Металлические компоненты имеют одинаковые атомные радиусы и способность к химическому связыванию, поэтому атомы одного металла могут занимать те же места, что и их аналог в атомной решетке металла.Хорошо известные замещающие сплавы включают латунь и бронзу.

Сплавы внедрения

Сплав внедрения образуется, когда более мелкие атомы одного элемента заполняют отверстия в металлической решетке. Атомы каждого элемента не занимают одни и те же места. Сталь является примером междоузельного сплава. В случае стали меньшие атомы углерода заполняют промежутки между атомами железа.

Химия увлекательна, но мы перейдем к сути: в обоих случаях атомы в сплаве не могут скользить друг по другу так же легко, как атомы в чистом металле, а это означает, что сплав прочнее и тверже, чем любой из чистые металлы, используемые для его создания.Думайте об этом как о липучке: если у вас есть только одна сторона липучки, она не будет прилипать сама к себе так прочно, как контрастные петли и крючки будут сцепляться друг с другом.

Чем полезны сплавы металлов?

Чистые металлы редко используются в производстве, так как они слишком ковкие или мягкие. Но, как мы показали выше, легирование металла часто улучшает его свойства. Некоторые сплавы созданы, чтобы иметь лучшую устойчивость к коррозии или лучшую проводимость, а некоторые созданы, чтобы значительно увеличить их несущую способность.

Физические свойства сплава, такие как проводимость, реакционная способность и плотность, могут незначительно отличаться от составляющих его элементов. Однако технические свойства сплава, такие как прочность на сдвиг и прочность на растяжение, могут существенно различаться.

Из-за этого металлические сплавы пользуются большим спросом в различных областях и отраслях, таких как производство, электроника, товары для дома, архитектура, сантехника, а также автомобильная и аэрокосмическая промышленность.

Примеры популярных сплавов и их применения:

Латунь

Латунь представляет собой сплав меди и цинка. Латунь имеет низкую температуру плавления и чрезвычайно удобна в обработке и долговечна. Он используется в тех случаях, когда требуется низкое трение и устойчивость к коррозии, например:

  • Замки
  • Подшипники
  • Компоненты боеприпасов
  • Части прибора
  • Украшение

Фосфористая бронза

Фосфористая бронза состоит из меди, легированной 0.5-11% олова и 0,01% фосфора. Он устойчив к коррозии и усталости и должен использоваться в:

  • Сварочные стержни
  • Втулки
  • Подшипники
  • Пружины
  • Детали переключателя
  • Судовые гребные винты и другие применения в морской среде

Сталь

Сталь

представляет собой сплав железа и углерода. Обладает высокой прочностью на растяжение и низкой стоимостью. Mead Metals предлагает множество классификаций стали, таких как нержавеющая сталь, отожженная и отпущенная пружинная сталь и холоднокатаная сталь.Часто используется в:

  • Автозапчасти
  • Инфраструктура
  • Строительство
  • Товары для дома
  • Кухонные приборы

Бериллиевая медь

Бериллиевая медь, также известная как Alloy 25 или BeCu, представляет собой медный сплав с содержанием бериллия от 0,5% до 3%. Он поддается сварке, пластичен, обладает немагнитными и искробезопасными свойствами. Он устойчив к окислению, коррозии и неокисляющим кислотам. Кроме того, бериллиевая медь обладает отличными тепловыми и электрическими свойствами.Часто используется в:

  • Контакты электронного разъема
  • Малые пружины
  • Музыкальные инструменты
  • Компьютерные компоненты
  • Инструменты для опасных сред, таких как аэрокосмическая техника и металлообработка

Металлические сплавы дорогие?

Распространенное заблуждение состоит в том, что металлические сплавы дороги из-за множества этапов, необходимых для их производства. Однако многие металлические сплавы, такие как латунь и бронза, использовались в течение столь долгого времени, что их часто можно было получить по более низкой цене, чем входящие в их состав чистые металлы.

Наш опыт означает, что вы экономите.

По нашему опыту, ненужные расходы для производителя возникают, когда поставщик имеет высокий MOQ для специального металла, такого как бериллиевая медь. Мы понимаем, что производители часто нуждаются в меньшем количестве нишевого сырья и недостаточно обслуживаются крупными дистрибьюторами.

Если вы ищете поставщика, который предлагает низкий минимальный объем заказа на специальные металлы, сохраняя при этом конкурентоспособные сроки поставки и непревзойденное обслуживание клиентов, свяжитесь с Mead Metals, чтобы получить быстрое предложение сегодня.

Что такое сплав? | Металлические супермаркеты

Сплав представляет собой комбинацию металла по крайней мере с одним другим металлом или неметаллом. Комбинация должна быть частью твердого раствора, соединения или смеси с другим металлом или неметаллом, чтобы ее можно было считать сплавом. Наиболее распространенный способ соединения металлов в сплав — это расплавление их, смешивание вместе, последующее затвердевание и охлаждение до комнатной температуры.

Почему используются сплавы?

Металлические сплавы

используются потому, что они обычно обладают улучшенными механическими или химическими свойствами.Легирующие элементы могут быть добавлены к металлу для повышения ряда свойств, включая твердость, прочность, коррозионную стойкость, обрабатываемость и многое другое.

Что такое обычные сплавы?

Сплавы

настолько распространены в металлообрабатывающей промышленности, что их слишком много, чтобы перечислить. На самом деле гораздо менее вероятно, что он будет работать с нелегированным или «чистым металлом». Даже низкоуглеродистая мягкая сталь — возможно, наиболее часто используемый материал в производстве металлов — представляет собой сплав железа и углерода.Примером стального сплава может быть AISI 1018. Чугун — это еще один сплав железа и углерода с еще более высоким содержанием углерода, чем в мягкой стали.

Алюминий

часто также сплавляют с другими элементами, что придает ему свойства, необходимые для желаемого применения. Например, алюминий 6061 и 2024 имеют высокие добавки марганца или меди соответственно.

Сплавы

также могут быть чрезвычайно сложными. Аустенитные нержавеющие стали, такие как марка 316, представляют собой синтез железа, хрома, никеля и некоторых других металлов и неметаллов.Бронза (которая сама по себе является сплавом меди и олова) часто дополнительно сплавляется с такими элементами, как алюминий. Марка C954 является примером сплава алюминиевой бронзы.

Инструментальные стали, такие как D2, в основном состоят из железа, но имеют множество различных добавок других металлов и неметаллов, таких как хром, ванадий, марганец, кремний и углерод, в зависимости от желаемых механических свойств.

Каковы некоторые распространенные легирующие элементы?

Существует широкий спектр легирующих элементов, которые служат различным целям для различных основных материалов.

  • Хром — это металл, который часто используется для защиты сплавов от коррозии. В зависимости от материала, он также может увеличить твердость и прочность.
  • Никель — это металл, который часто добавляют в материалы для повышения прочности. Аустенитные нержавеющие стали содержат большое количество никеля, который также действует как активатор аустенита.
  • Медь — это металл, используемый для изготовления таких материалов, как алюминий, дисперсионно-твердеющих. В стали медь может повысить коррозионную стойкость, но может снизить коррозионную стойкость алюминия.
  • Марганец — это металл, который обычно легируют для повышения прочности. Сам по себе марганец как легирующий элемент не очень сильно зависит от термической обработки, что делает его пригодным для применения при более высоких температурах.
  • Вольфрам — это металлический легирующий элемент, используемый для повышения износостойкости (особенно при высоких температурах), ударной вязкости и прочности.
  • Свинец — это металлический легирующий элемент, используемый для улучшения обрабатываемости.
  • Кремний является неметаллическим легирующим элементом. Он часто используется в качестве раскислителя в металлах.Кремний также увеличивает прочность и может снизить температуру плавления.
  • Углерод — это неметаллический легирующий элемент, необходимый для производства стали. Добавки углерода часто используются в стальных и чугунных сплавах для повышения прочности и твердости.

Хотите узнать больше о распространенных легирующих элементах? Ознакомьтесь с нашей частью 1 и частью 2 нашей серии «Общие легирующие элементы».

Металлические супермаркеты

Metal Supermarkets — крупнейший в мире поставщик мелких партий металла с более чем 100 обычными магазинами в США, Канаде и Великобритании.Мы являемся экспертами в области металлов и предоставляем качественное обслуживание клиентов и продукцию с 1985 года.

В супермаркетах металлов мы поставляем широкий ассортимент металлов для различных применений. Наш склад включает в себя: мягкую сталь, нержавеющую сталь, алюминий, инструментальную сталь, легированную сталь, латунь, бронзу и медь.

У нас есть широкий ассортимент форм, включая стержни, трубы, листы, пластины и многое другое. И мы можем порезать металл по вашим точным спецификациям.

Посетите сегодня один из наших более чем 100 офисов в Северной Америке.

20 распространенных металлических сплавов и из чего они сделаны

50 полезных ископаемых, имеющих решающее значение для безопасности США

Первоначально это было опубликовано на Elements. Подпишитесь на бесплатный список рассылки, чтобы каждую неделю получать красивые визуализации мегатенденций в области природных ресурсов по электронной почте.

США стремятся вдвое сократить выбросы парниковых газов к 2030 году в рамках своих обязательств по борьбе с изменением климата, но им может не хватать критически важных полезных ископаемых, необходимых для достижения этих целей.

Американская зеленая экономика будет полагаться на возобновляемые источники энергии, такие как ветер и солнце, а также на электрификацию транспорта. Однако местное производство сырья, необходимого для производства этих технологий, включая солнечные панели, ветряные турбины и электромобили, отсутствует. Понятно, что это вызвало обеспокоенность в Вашингтоне.

На этом графике, основанном на данных Геологической службы США, мы перечисляем все полезные ископаемые, которые правительство считает критически важными как для экономической, так и для национальной безопасности Соединенных Штатов.

Что такое критические минералы?

Критический минерал определяется как нетопливный материал, который считается жизненно важным для экономического благополучия крупнейших мировых экономик и стран с развивающейся экономикой, предложение которого может оказаться под угрозой. Это может быть связано с геологической нехваткой, геополитическими проблемами, торговой политикой или другими факторами.

В 2018 году Министерство внутренних дел США опубликовало список 35 важнейших минералов. Новый список, выпущенный в феврале 2022 года, содержит еще 15 товаров.

Большая часть увеличения в новом списке является результатом разделения редкоземельных элементов и элементов платиновой группы на отдельные позиции, а не включения их в качестве «минеральных групп».Кроме того, в список критических минералов на 2022 год добавлены никель и цинк, но исключены гелий, калий, рений и стронций.

Минеральное сырье Примеры использования Чистая зависимость от импорта
Бериллий Легирующий агент в аэрокосмической, оборонной промышленности 11%
Алюминий Линии электропередач, строительство, электроника 13%
Цирконий Производство высокотемпературной керамики 25%
Палладий Катализаторы 40%
Германий Волоконная оптика, приборы ночного видения 50%
Литиевые Аккумуляторы 50%
Магний Сплавы, электроника 50%
Никель Нержавеющая сталь, аккумуляторы 50%
Вольфрам Износостойкие металлы 50%
Барит Добыча углеводородов 75%
Хром Нержавеющая сталь 75%
Олово Покрытия, сплавы для стали 75%
Кобальт Аккумуляторы, суперсплавы 76%
Платина Катализаторы 79%
Сурьма Свинцово-кислотные батареи, антипирены 81%
Цинк Металлургия для производства оцинкованной стали 83%
Титан Белый пигмент, сплавы металлов 88%
Висмут Медицина, атомные исследования 94%
Теллур Солнечные элементы, термоэлектрические устройства 95%
Ванадий Легирующий агент для железа и стали 96%
Мышьяк Полупроводники, консерванты для пиломатериалов, пестициды 100%
Церий Катализаторы, керамика, стекло, металлургия 100%
Цезий Исследования, разработки 100%
Диспрозий Устройства хранения данных, лазеры 100%
Эрбий Волоконная оптика, оптические усилители, лазеры 100%
Европий Люминофоры, ядерные регулирующие стержни 100%
Плавиковый шпат Производство алюминия, цемента, стали, бензина 100%
Гадолиний Медицинская визуализация, производство стали 100%
Галлий Интегральные схемы, светодиоды 100%
Графит Смазочные материалы, батареи 100%
Гольмий Постоянные магниты, ядерные управляющие стержни 100%
Индий Экраны на жидких кристаллах 100%
Лантан Катализаторы, керамика, стекло, полирующие составы 100%
Лютеций Сцинтилляторы для медицинской визуализации, лечения рака 100%
Марганец Производство стали, батареи 100%
Неодим Резиновые катализаторы, медицинские, промышленные лазеры 100%
Ниобий Сталь, суперсплавы 100%
Празеодим Постоянные магниты, батареи, аэрокосмические сплавы 100%
Рубидий Исследования, разработки в области электроники 100%
Самарий Лечение рака, поглотитель в ядерных реакторах 100%
Скандий Сплавы, керамика, топливные элементы 100%
Тантал Электронные компоненты, суперсплавы 100%
Тербий Постоянные магниты, волоконная оптика, лазеры 100%
Тулий Металлические сплавы, лазеры 100%
Иттербий Катализаторы, сцинтилметры, лазеры, металлургия 100%
Иттрий Керамика, катализаторы, лазеры, металлургия, люминофоры 100%
Иридий Покрытие анодов для электрохимических процессов Нет данных
Родий Катализаторы, электрические компоненты Нет данных
Рутений Электрические контакты, чип-резисторы в компьютерах Нет данных
Гафний Стержни ядерного контроля, сплавы Чистый экспортер

Задача для США.С. заключается в том, что местное производство этого сырья крайне ограничено.

Например, в 2021 году в стране действовал только один никелевый рудник — рудник Игл в Мичигане. Предприятие отправляет концентраты за границу для переработки, и его закрытие планируется в 2025 году. Аналогичным образом, в стране находится только один литиевый рудник — рудник Сильвер Пик в Неваде.

В то же время большая часть снабжения страны критическими полезными ископаемыми зависит от стран, которые исторически конкурировали с Америкой.

Доминирование Китая в минеральном сырье

Возможно, неудивительно, что Китай является единственным крупнейшим источником минерального сырья для Соединенных Штатов.

Одним из примеров является цезий

, важнейший металл, используемый в самых разных отраслях промышленности. В мире всего три пегматитовых рудника, которые могут производить цезий, и все они в 2021 году контролировались китайскими компаниями.

Кроме того, Китай перерабатывает почти 90% редких земель в мире. Несмотря на название, эти элементы широко распространены в земной коре и составляют большинство перечисленных критических минералов.Они необходимы для различных продуктов, таких как электромобили, современная керамика, компьютеры, смартфоны, ветряные турбины, мониторы и оптоволокно.

Следующим после Китая крупнейшим источником полезных ископаемых в Соединенных Штатах была Канада, которая в 2021 году предоставила Соединенным Штатам 16 различных элементов.

Растущий спрос на критически важные минералы

Ожидается, что по мере того, как в мире набирает обороты переход к экологически чистой энергетике, спрос на важнейшие минералы будет быстро расти.

По данным Международной энергетической ассоциации, прогнозируется, что к 2040 году рост производства электроэнергии с низким уровнем выбросов углерода утроит спрос на полезные ископаемые в этом секторе.

Переход к устойчивой экономике важен, и, следовательно, обеспечение критически важных полезных ископаемых, необходимых для этого, столь же жизненно важно.

Сплавы – определение, состав, свойства и применение

Вещество, полученное в результате смешивания двух или более металлов, называется сплавом.Комбинации металлов и других элементов также могут быть использованы для создания сплавов. Свойства сплавов часто отличаются от свойств составляющих их компонентов. По сравнению с чистыми металлами сплавы часто обладают большей прочностью и твердостью. Красное золото, полученное путем соединения меди и золота, является примером сплава. Белое золото, изготовленное путем соединения серебра и золота, является еще одним важным сплавом золота. Некоторые свойства металлов, такие как ковкость, пластичность, прочность и т., можно улучшить, смешав с ними другие металлы. Смесь различных металлов называется сплавом.

Что такое сплавы?

Сплав представляет собой смесь двух или более металлов или сплав представляет собой смесь металла и небольшого количества неметаллов.

Чистые металлы никогда не используются в промышленности для производственных целей. Комбинация металлов используется для улучшения свойств одного металла, и эта комбинация металлов известна как сплав. Он также может содержать металл и неметалл.Как правило, сплав металлов получают путем плавления различных металлов в соответствующих пропорциях и последующего охлаждения смеси до комнатной температуры. Сплав металла и неметалла можно приготовить, сначала расплавив металл, а затем растворив в нем неметалл с последующим охлаждением до комнатной температуры. По сравнению с металлами сплавы обладают большей прочностью и служат дольше.

Например- 

  1. Металлический алюминий легкий, но не прочный, но сплав алюминия с медью, магнием и марганцем легкий и прочный.
  2. Металлический алюминий легкий, но не твердый, а сплав алюминия с магнием легкий и твердый.
  3. Железо является наиболее широко используемым металлом. Но в чистом виде его никогда не используют, потому что чистое железо очень мягкое и очень легко растягивается в горячем состоянии. Когда небольшое количество углерода смешивается с железом, получается сплав, называемый сталью. Также, когда железо смешивается с хромом и никелем, мы получаем сплав, называемый нержавеющей сталью, который является прочным, жестким и совсем не ржавеет.

Различные составы сплавов

Некоторые из распространенных сплавов: латунь, сталь, нержавеющая сталь, бронза, припой, амальгама и т. д. Составы различных сплавов приведены ниже:

  • Бронза была первым обнаруженным сплавом. Он состоит из меди и олова. Он имеет содержание меди 90% и содержание олова 10%. Для улучшения общих характеристик могут быть добавлены очень небольшие количества цинка, никеля или марганца.
  • Из меди и цинка получают латунь.Он содержит примерно 80 % меди и 20 % цинка. Другие компоненты могут быть добавлены в меньших количествах. Латунь используется для улучшения электрических характеристик меди.
  • Сталь производится путем смешивания 90 % железа и 1 % углерода. Он более устойчив к коррозии и долговечен.
  • Нержавеющая сталь производится путем смешивания железа с хромом и никелем. Он содержит примерно 18 % хрома и 5 % никеля.
  • Alnico представляет собой металлический сплав, состоящий из железа, никеля, кобальта и алюминия.
  • Сплавы олова и свинца используются для изготовления припоя.Он состоит из 50 % свинца и 50 % олова.
  • Чугун получают путем смешивания железа с углеродом. Содержит 96-98% железа и 2-4% углерода. Также могут быть обнаружены следы кремния.
  • Стерлинговое серебро производится путем соединения 92,5 % серебра и 7,5 % других металлов, чаще всего меди. Если воздух содержит соединения серы, серебро разъедает и чернеет. Медь или другие металлы можно смешать с серебром, чтобы получить этот сплав, уменьшающий потускнение.
  • Никель, хром и железо используются для изготовления нихрома.Обладает высокими сопротивлением, температурой плавления, пластичностью и другими свойствами. Он имеет высокое сопротивление потоку электронов и трудно окисляется.
  • Амальгама представляет собой сплав ртути, включающий один или несколько дополнительных металлов. Раствор металлического натрия в жидкой металлической ртути известен как амальгама натрия.
  • Золото чистотой 24 карата считается самым чистым. Чистое золото очень мягкое, из-за чего не подходит для изготовления украшений. Чтобы сделать золото более твердым, его смешивают с небольшим количеством серебра или меди.В Индии золотые украшения изготавливаются из 22-каратного золота, что означает, что 22 части чистого золота сплавляются с 2 частями серебра или меди.

Свойства сплавов

Каждый сплав обладает определенными полезными свойствами. Свойства сплава отличаются от свойств отдельных металлов, из которых он изготовлен. Некоторые свойства сплавов приведены ниже.

  1. Сплавы тверже металлов, входящих в их состав.
  2. Сплавы более устойчивы к коррозии, чем чистые металлы.
  3. Сплавы более долговечны, чем металлы, из которых они сделаны.
  4. Электропроводность сплавов ниже, чем у чистых металлов.
  5. Сплавы имеют более низкую температуру плавления, чем металлы, из которых они сделаны.
  6. Сплавы обладают большей пластичностью, чем составляющие их металлы.

Использование сплавов

Сплавы используются в нашей повседневной жизни по-разному. Некоторые из наиболее распространенных применений сплавов приведены ниже.

  • Латунь используется для изготовления кухонной утвари, винтов, замков, дверных ручек, электроприборов, застежек-молний, ​​музыкальных инструментов, декоративных и подарочных изделий
  • Бронза используется для изготовления статуй, монет, медалей, кухонной утвари и музыкальных инструментов, в том числе другие вещи.
  • Альнико представляет собой ферромагнитное вещество и используется в постоянных магнитах.
  • Припой используется для ремонта или соединения двух металлических деталей, т. е. для неразъемного соединения электрических компонентов.
  • Хирургические инструменты, музыкальные инструменты, столовые приборы и украшения изготовлены из стерлингового серебра.
  • Нержавеющая сталь используется для строительства железных дорог, мостов, автомобильных дорог, аэропортов и т. д. Она также используется для изготовления посуды и других изделий.
  • Сплавы алюминия легкие, поэтому их используют для изготовления корпусов самолетов и их деталей.
  • Благодаря своей жаропрочности и сверхпластичности титановые сплавы широко используются в аэрокосмической промышленности.
  • Амальгама представляет собой сплав ртути, используемый в медицинских процедурах. Стоматологи также используют его для исправления полостей в зубах.
  • Некоторые сплавы золота, такие как розовое золото, используются для изготовления ювелирных изделий.

Железная колонна в Дели

Железная колонна возле Кутуб-Минар в Дели состоит из кованого железа, представляющего собой низкоуглеродистую сталь.Его высота 8 метров, а вес 6000 кг. Индийские мастера по железу построили эту колонну в 400 г. до н.э. Хотя кованое железо медленно ржавеет со временем, мастера по металлу разработали процесс, который предотвратил ржавчину колонны из кованого железа даже через тысячи лет.

Образование тонкой пленки магнитного оксида железа на поверхности предотвращает коррозию. Этот тонкий слой образовался на поверхности столба в результате финишной обработки столба путем окрашивания его смесью различных солей с последующим нагревом и быстрым охлаждением.Эта колонна стоит в хорошем состоянии более 2000 лет после того, как была сделана. Этот столб совсем не заржавел. Это говорит о том, что древние индийцы хорошо разбирались в металлах и сплавах.

Примеры вопросов

Вопрос 1: Что подразумевается под 22-каратным золотом?

Ответ:

22 карата золота означает, что 22 части чистого золота сплавлены с 2 частями серебра или меди.

Вопрос 2: Как изготавливается сплав?

Ответ:

Сплав металлов получают путем смешивания различных металлов в расплавленном состоянии в необходимых пропорциях и последующего охлаждения их смеси до комнатной температуры.

Вопрос 3: Как сплавы используются в аэрокосмической промышленности?

Ответ:

Алюминий — легкий металл, его сплавы используются в аэрокосмической промышленности. Эти сплавы используются для изготовления корпусов самолетов и изготовления высокопрочных деталей реактивных двигателей. Эти части имеют дело с крайностями температуры, давления и вибрации. Они обеспечивают высокую прочность и способность функционировать при очень высоких температурах.

Вопрос 4: Какой сплав используют стоматологи?

Ответ:

Амальгама представляет собой сплав металлической ртути.Амальгама, состоящая из ртути, серебра, олова и цинка, используется стоматологами для пломбирования зубов.

Вопрос 5: Почему Железный столб в Дели до сих пор не заржавел?

Ответ:

Образование тонкой пленки магнитного оксида железа на поверхности столба предотвратило ржавление железного столба в результате финишной обработки столба путем окраски его смесь различных солей, затем нагревание и быстрое охлаждение.

Вопрос 6: Из каких компонентов состоит нержавеющая сталь?

Ответ:

Нержавеющая сталь представляет собой смесь железа с хромом и никелем. Он очень прочный и не ржавеет. Чаще всего используется для изготовления посуды.



Преимущества сплавов по сравнению с чистым металлом

Сплавы

решают многие проблемы, связанные с использованием чистых металлов для различных проектов. Чистые металлы мягче, подвержены коррозии и дороже, чем сплавы.Таким образом, свойства сплавов допускают больше вариантов и применений, чем чистые металлы. Чтобы оценить эти преимущества, узнайте, чем эти материалы отличаются по своим свойствам и применению. Выбирая сплавы, вы получаете лучшие возможности для литья и других металлических проектов, чем при использовании чистых металлов.

Что такое сплав?

Сплавы объединяют два или более вещества для создания продукта с лучшими свойствами, чем любая из его частей. Как правило, сплавы представляют собой продукт смешивания металлов, хотя существуют и другие сплавы, в которых используются металлы и неметаллы.Например, углерод является неметаллическим компонентом стали.

Большинство сплавов начинаются с плавления и объединения двух или более металлов. Во время этого процесса смешивания металлы также могут подвергаться очистке для удаления загрязняющих веществ, которые могут негативно повлиять на продукт. Различные методы производства сплавов направлены на защиту расплавленной смеси от окисления. При плавлении на воздухе шлак, образующийся сверху, не позволяет кислороду загрязнять сплав под ним. Плавление сплавов в вакууме также предотвращает окисление.Дуговая плавка и индукционная плавка — это два варианта создания сплавов, использующих электричество для облегчения процессов плавления и смешивания.

Сплавы настолько важны для производства и промышленности, что названия эпох человеческой истории связаны с конкретными материалами. Например, бронзовый век ознаменовал эпоху, когда люди открыли, как сделать этот сплав, соединив медь и олово. Латунь смешивает цинк и медь. Хотя эти сплавы были жизненно важны для древнего мира и до сих пор находят множество применений, стальные сплавы являются наиболее часто используемыми типами в промышленности.Алюминиевые сплавы также ценны в производстве, особенно для автомобильных компонентов. Латунь и бронза — другие сплавы, часто используемые для фитингов, компонентов сантехники и подшипников.

Свойства сплавов

Особые свойства сплавов

зависят от металлов, из которых они изготовлены. Например, когда золото плавится с цинком, полученный сплав имеет блеск золота, но с дополнительной прочностью, обеспечиваемой добавлением цинка. Металлурги выбирают типы металлов для объединения в сплавы на основе желаемых характеристик конечного продукта.

По сравнению с чистыми металлами сплавы имеют лучшую коррозионную стойкость, более низкую стоимость, более высокую прочность и лучшую обрабатываемость. Производство и состав сплавов определяют такие особенности, как обрабатываемость, пластичность и хрупкость.

Преимущество сплавов

Сплавы

предлагают множество преимуществ, которых нет у чистых металлов. Используя сплавы, вы получаете преимущество индивидуальной смеси металлов, которая сочетает в себе положительные свойства материалов. В зависимости от компонентов сплава изделия, в которых они используются, могут иметь следующие преимущества по сравнению с предметами, изготовленными из чистых металлов:

  • Коррозионная стойкость
  • Лучшая способность к пайке
  • Прочные детали
  • Легкий вес для прочности
  • Теплопроводность
  • Электропроводность

Специалисты по выбору сплавов и комбинированию металлов для получения идеальных пропорций могут оптимизировать их свойства для используемого продукта.

Примеры сплавов

Сплавы включают несколько типов комбинаций металлов. Вот несколько примеров сплавов и их применения.

  • Композиционная латунь: Этот универсальный сплав, когда-то называемый красной латунью, лучше всего подходит для отливок, требующих умеренной обрабатываемости и прочности, таких как сантехника или трубная арматура.
  • Композитная латунь для клапана: Имеет аналогичный состав и используется как композиционная латунь.
  • Марганцевая бронза: Высокопрочный сплав для тяжелых условий эксплуатации, за исключением сред, требующих коррозионной стойкости.
  • Оловянная бронза: Используется в различных втулках, деталях клапанов, шестернях, насосах, поршневых кольцах и подшипниках.
  • Алюминиевая бронза: По прочности равна марганцевой бронзе. Кроме того, он обладает отличной коррозионной стойкостью.
  • 713.0 алюминиевый сплав: Не требует термической обработки для придания прочности и может работать в приложениях, предъявляющих высокие требования к сплаву.
  • Алюминиевый сплав A356.0: Стойкий к горячему растрескиванию, легко поддающийся сварке и средней механической обработке, этот алюминиевый сплав подходит для автомобильных компонентов, таких как картеры трансмиссии, картеры заднего моста и масляные поддоны.
  • Титановые сплавы: Устойчивость титана к коррозии делает эти сплавы особенно подходящими для использования на море, например, для компонентов подводных лодок.
  • Прочие сплавы цветных металлов
  • Другие сплавы латуни и бронзы
  • Другие алюминиевые сплавы

Что такое чистый металл?

Чистые металлы не содержат других примесей. Эти металлы проявляют только свои природные свойства. Однако многие металлы обладают нежелательными свойствами, которые делают их использование в чистом виде неприемлемым для промышленного применения.Например, многие чистые металлы, такие как золото, по своей природе мягкие из-за их однородной атомной структуры. Однако, смешивая их с разными металлами, в сплавы вводятся новые атомы, укрепляющие материал.

Свойства чистых металлов

Чистые металлы обладают различными свойствами. Однако многие из них подвержены коррозии или ржавчине, например, железо. Смешивание железа с другими металлами позволяет получить устойчивую к ржавчине нержавеющую сталь.

Вес – еще одно свойство чистых металлов, скорректированное легированием.Некоторые металлы, такие как золото или железо, обладают естественной плотностью. Однако их сочетание с алюминием или титаном повышает прочность при одновременном снижении веса. Многие аэрокосмические проекты используют титановые сплавы для дополнительной прочности и легкого веса, что было бы невозможно с чистыми металлами.

Примеры чистых металлов

В природе появляются чистые металлы. Рассмотрим эти примеры чистых металлов и то, как они улучшают сплавы.

  • Золото: Может служить основным металлом в сплаве для придания красоты ювелирным изделиям или проводимости в электронике.
  • Титан: Увеличивает прочность без увеличения веса сплавов.
  • Медь: Этот металл обладает коррозионной стойкостью, тепло- и электропроводностью и пластичностью по сравнению с легированными металлами.
  • Алюминий: Как и титан, алюминий является основным металлом, добавляемым в сплавы для улучшения обрабатываемости, коррозионной стойкости и снижения веса.
  • Цинк: Цинк чаще всего используется при цинковании стали для защиты ее от коррозии.
  • Олово: Олово хорошо подходит для многих операций холодной обработки, включая прядение, прокатку и экструзию. Кроме того, он обеспечивает защиту от коррозии других металлов при их легировании.

Вышеупомянутые чистые металлы также можно комбинировать друг с другом или с другими металлами для получения сплавов.

Чем сплав отличается от чистого металла?

Комбинация металлов дает сплавы с более желательными свойствами, чем у чистых металлов.Физические и химические свойства делают сплавы предпочтительными для многих промышленных применений в различных секторах. Отличия сплавов и чистых металлов заключаются в следующем.

Сплавы и чистые металлы: физические свойства

Сплавы имеют отличные от чистых металлов физические свойства. Эти изменения включают изменения массы, проводимости, удобоукладываемости и термостойкости.

По массе легированные металлы могут быть менее плотными, чем чистые металлы, при сохранении такой же прочности.В автомобильной и аэрокосмической промышленности алюминиевые и титановые сплавы ценятся за их легкость и прочность.

Проводимость определяет, насколько хорошо металлы или сплавы могут передавать электроны для передачи тепла или электричества. Интеграция различных металлов может увеличить или уменьшить передачу тепла или электричества в зависимости от конечного использования продукта. Например, медные сплавы обладают высокой проводимостью благодаря врожденной способности меди хорошо переносить электроны.

Удобообрабатываемость показывает, насколько хорошо материалы могут выдерживать изменение своей формы при использовании холодных или горячих методов.Некоторые чистые металлы настолько мягки, что обладают хорошей обрабатываемостью, но низкой прочностью. Легирование этих материалов обеспечивает прочность и работоспособность. Например, холодная обработка и включение в сплавы быстро придают чистому олову дополнительную прочность.

Наконец, термостойкость или температура плавления чистых металлов изменяются при их сплавлении с другими материалами. Чистые металлы имеют одну температуру плавления, температуру, при которой их твердая форма превращается в жидкость. Однако сплавы имеют диапазон температур, который может вызвать изменения в структуре материала.Часто этот диапазон выше, чем для отдельных металлов. Таким образом, сплавы в большинстве случаев обладают превосходной стойкостью к термическому напряжению по сравнению с чистыми металлами.

Легирование чистого металла изменяет физические свойства, чтобы улучшить их для увеличения числа возможных применений сплавов.

Сплавы и чистые металлы: химические свойства

Наиболее существенное различие между сплавами и чистыми металлами происходит на молекулярном уровне. У них нет одинаковой химии.Чистые металлы содержат атомы только этого элемента — например, все железо или золото. Эти чистые металлы обычно подвергаются обработке для удаления примесей других материалов. Сплавы имеют атомарные компоненты нескольких элементов. Поэтому они имеют химическую структуру, отличную от чистых металлов.

Физические свойства изменяются из-за изменений на атомарном уровне. Эти изменения происходят потому, что химический состав металлов становится другим при сплавлении. Например, чистые металлы часто легко реагируют с другими химическими веществами в окружающей среде, что приводит к ржавчине.Смешивание этих металлов с другими для предотвращения коррозии увеличивает их долговечность.

Другим типом химических изменений, происходящих при смешивании металлов, является повышенная молекулярная стабильность материала. Движение атомов внутри структуры металла может повлиять на прочность материала. Атомы легко проходят через чистые металлы, потому что все они одинаковы. Однако смешивание одного металла с другим приводит к появлению атомов разного размера, которые препятствуют движению, делая сплавы прочнее.

Преимущества сплавов в отливках — почему сплавы более полезны, чем чистые металлы?

Различия между чистыми металлами и сплавами делают сплавы гораздо более полезными для нескольких применений.Выбирая смесь металлов в сплаве, можно подобрать материал, отвечающий требованиям его конечного использования. Например, выбирая нержавеющую сталь вместо железа, вы получаете более долговечный, устойчивый к коррозии металл, который лучше противостоит погодным условиям.

Сплавы обладают коррозионной стойкостью, которую не могут обеспечить чистые металлы. Поэтому они полезны в ситуациях, когда они могут подвергаться воздействию химикатов, воды, морской соли или пара. Эти условия быстро изнашивают многие чистые металлы, такие как железо.

Еще одним преимуществом сплавов перед чистыми металлами является их дополнительная прочность. Комбинирование металлов повышает структурную целостность готового изделия. Это качество делает сплавы пригодными для применения в тяжелых условиях или при высоких нагрузках, например, внутри двигателей.

Наконец, выбор сплавов вместо чистых металлов дает вам больший контроль над весом готовой детали. Сплавы могут обеспечить прочность, не утяжеляя автомобили, самолеты или другие транспортные средства, в конструкции которых используются легкие и прочные металлы.

Почему мы должны использовать сплавы вместо чистых металлов для отливок?

Хотя преимущества сплавов по сравнению с чистыми металлами очевидны, многие люди до сих пор задаются вопросом: «Почему в отливках сплавы предпочтительнее чистых металлов?» Этот распространенный вопрос требует решения, чтобы клиенты могли выбрать правильный металл для своего продукта.

Из-за структуры чистых металлов в готовой продукции могут возникать некоторые проблемы. Металлы могут легко подвергаться коррозии или не соответствовать требованиям прочности.Кроме того, использование чистых металлов может сделать детали слишком дорогими или слишком тяжелыми для массового производства. Сплавы преодолевают эти проблемы из чистых металлов, создавая прочные компоненты, детали с большей коррозионной стойкостью, меньшим весом, большей термостойкостью или меньшими затратами. Поэтому при выборе отливок лучшим вариантом являются сплавы.

Сплавы

превосходят чистые металлы для отливок по многим параметрам. Следующим выбором является определение типа используемых сплавов. Комбинация металлов, их пропорции и процесс литья будут влиять на свойства создаваемых компонентов.Поэтому тщательно выбирайте сплавы, исходя из того, что вам от них нужно. Например, для некоторых деталей может потребоваться дополнительная прочность, меньший вес, большая термостойкость, лучшая защита от коррозии или улучшенное функционирование под нагрузкой.

Как контроль качества в процессе литья имеет значение

Конкретный процесс литья также влияет на качество почти так же, как выбор между использованием сплава и чистого металла. Чистые металлы имеют присущие им проблемы, которые решает объединение их в сплавы.Однако при литье из сплавов необходимо соблюдать тщательные методы, чтобы обеспечить качество готовой детали.

Во-первых, размер и форма зерен в материале определяют качество отливки. В процессе должны использоваться более низкие температуры сплава, заливаемого в отливку, и более высокие скорости охлаждения для оптимизации конечного продукта. При литье под давлением охлаждение формы ускоряет охлаждение металла по сравнению с литьем в песчаные формы, что приводит к образованию более мелких зерен. В некоторых случаях добавление измельчителей зерна также может помочь уменьшить размер частиц в сплавах.

Во-вторых, изменение состояния сплавов также влияет на конечное качество. Фазовые изменения, такие как замерзание, заставляют включения проникать в промежутки между ветвями дендритов. Большее расстояние между этими плечами отрицательно влияет на качество заброса.

В-третьих, сведение к минимуму проникновения воздуха в отливку снижает пористость. Быстрое охлаждение отливки может уменьшить проникновение воздуха в металл. Однако при литье под давлением воздух все равно попадет в деталь. Однако есть способы свести к минимуму загрязнение воздуха.Варианты сделать это включают использование методов, отличных от литья под давлением. Гравитационное литье или литье под низким давлением может решить проблему пористости и связанной с этим хрупкости.

Отливки из литейного сплава Warner Brothers

Раскройте свой источник высококачественных отливок из сплавов, доставленных в кратчайшие сроки. Узнайте больше о наших предложениях по цветному литью и их преимуществах. Мы используем уникальный процесс, известный только нашей компании по литью металлов. Поэтому никто другой не может обеспечить такое качество, как мы.Интегрируя первоклассные материалы в наш запатентованный процесс, мы можем добиться непревзойденных результатов в литье из сплавов и многом другом. После того, как вы определились с параметрами своего проекта, свяжитесь с нами в Warner Brothers Foundry, чтобы получить предложение.

MetalsAndAlloysBlog – Металлы и сплавы, изменившие мир

Деформируемые сплавы

Алюминиевые сплавы традиционно подразделяются на (i) литейные сплавы и (ii) деформируемые сплавы. Этот пост касается одного из самых прочных кованых сплавов.Прежде чем объяснять, почему этот сплав имеет такую ​​высокую прочность, необходимо объяснить термин «деформируемый».

Термин «кованый» в качестве прилагательного, применяемого к металлам, восходит к промышленной революции. В то время было обнаружено, что кованое железо — железо, которому придали механическую форму при высокой температуре — обладает превосходной пластичностью и ударной вязкостью по сравнению с чугуном. Кованый, в общем, означает «сформированный» или «сделанный». В материаловедении это относится к пластическому формованию металлов при повышенной температуре. Более конкретно, когда этот термин используется для обозначения алюминиевых сплавов, он подразумевает более сложную историю.Перед ковкой алюминиевые сплавы этого типа отливают в виде больших слитков (или производят методом непрерывного литья). Затем эти большие плиты обрабатываются горячей обработкой. Горячая обработка чаще всего представляет собой горячую ковку (удары большим молотом) или горячую прокатку. Термин «горячий» также имеет очень специфическое значение. Это относится к материалу, находящемуся выше температуры рекристаллизации. Это будет предметом нового поста на следующей неделе или около того. Эта горячая прокатка является этапом, который делает этот сплав деформируемым.После горячей прокатки материал обычно обрабатывается (придается его окончательная форма) путем холодной прокатки. Термин «холодный» означает, что температура материала ниже его температуры рекристаллизации.

7075 и его друзья

Деформируемые сплавы делятся на несколько серий. Один из них Durals обозначен как серия 2000 благодаря согласованной на международном уровне схеме нумерации кованого алюминия. Вы можете узнать больше об этой серии в разделе «D означает дюралюминий». Совершенно очевидно, что 7075 принадлежит к 7000-й серии.Эта серия сплавов, как и серия 2000, упрочняется старением, как мы объясним ниже. Составы 7075 и 7475 (аналогичный сплав) представлены в таблице 1.

Таблица 1 Типичные составы AA7075 и AA7475 в % масс.

Таблица 1 показывает, что эти два сплава очень похожи по составу. На самом деле они настолько похожи, что их можно ошибочно принять за одно и то же. Они не. Они имеют существенно разные значения вязкости разрушения при плоской деформации.Прежде чем мы объясним это, необходимо объяснить возрастное закаливание.

Старение и 7075

Три элемента Cu, Mg и Zn являются тремя элементами, ответственными за реакцию на старение сплавов 7075 и 7475. Поскольку оба сплава имеют номинально очень схожие количества этих элементов, обозначенных зеленым цветом в таблице 1, они имеют очень похожие реакции на старение. Эти три элемента имеют две ключевые особенности в отношении их растворимости в алюминии:

  1. При высокой температуре (ок.480 °С) они обладают высокой растворимостью в алюминии — в количествах, указанных в таблице 1, они будут полностью в растворе.
  2. При обычной температуре окружающей среды (от –40 до +40°C) они имеют очень ограниченную растворимость в алюминии. Значительная их часть по массе имеет тенденцию к образованию интерметаллических осадков при более низких температурах.

Результатом этих двух фактов является возможность применения к материалу трехступенчатой ​​термообработки, см. рис. 1.

Рисунок 1 Три этапа термообработки T6 сплава 7075.

Аналогичная термообработка описана в других местах на этих страницах (см., например, «D для дюралюминия» и «X для X-750» ). Цель первого шага на рис. 1 — просто убедиться, что Cu, Mg и Zn находятся в растворе. Требуется достаточно времени, чтобы убедиться, что любые ранее существовавшие осадки, содержащие эти элементы, растворились. Эта простая микроструктура показана на рис. 2(а). Второй этап — это быстрое охлаждение, известное как закалка. Целью этого является удержание или «замораживание» растворенного вещества (т.е. Cu, Mg и Zn) в растворе. Микроструктура по-прежнему будет выглядеть так, как показано на рис. 2(а), после успешного охлаждения, потому что для осаждения недостаточно времени. Необходимо быстрое охлаждение, так как три элемента хотят образовывать осадки при охлаждении материала. Иногда бывает трудно отвести тепло от материала достаточно быстро, чтобы удержать все растворенное вещество в растворе. В других случаях быстрое охлаждение может вызвать другие проблемы, такие как деформация и/или коррозионное растрескивание под напряжением.Обе эти проблемы возникают из-за «вмороженных» напряжений, возникающих при дифференциальном охлаждении. Если закалка не удалась, может произойти неконтролируемое осаждение. В крайнем случае, медленное охлаждение приводит к образованию больших, но неэффективных осадков, см. рис. 2(b).

Третий этап – это само старение. Старение называется так потому, что оно, как правило, является длительным лечением по сравнению с другими видами термической обработки. 24 часа, например, вполне типичны для 7075. Старение — это этап, который повышает твердость и прочность, но он работает только благодаря двум предыдущим этапам.Ключевой вопрос, касающийся старения, заключается в том, что время и температура были тщательно подобраны, чтобы обеспечить контроль над осаждением и, таким образом, желаемый баланс свойств. На рис. 2(c) показаны мелкие осадки, которые обеспечивают желаемую высокую прочность, для которой был разработан 7075.

Рис. 2 Некоторые схематические микроструктуры 7075. (a) Высокотемпературная микроструктура, возникающая при обработке раствором после растворения любых предшествующих осадков, (b) нежелательные крупные осадки, возникающие при медленном охлаждении, (c) желательные мелкие осадки которые образуются при старении, (d) более реалистичная микроструктура, включающая включения, которые не могут быть изменены термической обработкой.

Концепция баланса свойств очень важна, поскольку иногда прочность требуется за счет других свойств, но в других случаях необходимо учитывать эти другие свойства. Одним из наиболее сложных аспектов обработки на рис. 1, известной как термообработка Т6, является то, что пик прочности совпадает с очень плохой коррозионной стойкостью. Такое же распределение осадка, которое дает высокую прочность, дает плохие коррозионные характеристики. На практике возможно большое количество вариаций T6, чтобы гарантировать, что такие свойства, как предел прочности при растяжении, предел прочности при растяжении, усталостная прочность, пластичность, вязкость разрушения и коррозионная стойкость, могут быть сбалансированы для различных применений.

Примеси и вязкость разрушения при плоской деформации

Cu, Mg и Zn являются элементами, выбранными для упрочнения сплава 7075 и многих других высокоэффективных сплавов серии 7000. Эти элементы показаны зеленым цветом в Таблице 1, так как они являются хорошей новостью для сплава, предназначенного для повышения прочности. Три элемента показаны красным цветом. Красный сигнализирует о плохих новостях. Элементы Fe, Si и Mn являются примесями в алюминиевых сплавах, образующимися в результате производства первичного алюминия. Они ухудшают пластичность и особенно вязкость разрушения.Причина, по которой они снижают вязкость разрушения, заключается в их склонности к образованию крупных и хрупких частиц, см. рис. 2(d). Здесь есть три отдельных плохих новости:

.
  1. Такие хрупкие частицы являются концентраторами напряжений и часто имеют трещины, возникающие в результате предыдущих этапов механической обработки. Оба эти фактора повышают вероятность зарождения и распространения проблемных трещин.
  2. Они образуются при литье сплава и не могут быть изменены термической обработкой.
  3. Снижение содержания Fe, Si и Mn (рафинирование) требует больших затрат.

Хотя удаление этих элементов стоит дорого, иногда это стоит сделать. Сплав 7475 был создан как усовершенствование сплава 7075. Философия дизайна заключалась в снижении объемной доли и размера включений. Они были достигнуты за счет ограничения содержания Fe, Si и Mn в этом сплаве гораздо более строго, чем в 7075, см. Таблицу 1 выше.

Прочие легирующие добавки

Восторженный читатель заметит, что роль Cr, Ti и Zr не рассматривалась.Полную историю придется ждать в другом посте. На данный момент мы можем отметить, что они помогают ограничить размер зерна сплава.

Заключительные комментарии

Изложенная здесь основная история служит отправной точкой для понимания всех дисперсионно-упрочняемых алюминиевых сплавов. Кроме того, этапы обработки на твердый раствор, быстрого охлаждения и старения являются центральными для некоторых сталей, некоторых титановых сплавов и жаропрочных никелевых сплавов.

 

 

 

сплавов | Безграничная химия

Сплавы

Сплав представляет собой смесь или металлический твердый раствор, состоящий из двух или более элементов.

Цели обучения

Дайте определение термину сплав.

Ключевые выводы

Ключевые моменты
  • Сплав представляет собой смесь или металлический твердый раствор, состоящий из двух или более элементов.
  • Свойства сплава обычно отличаются от свойств составляющих его элементов.
  • Компоненты сплава обычно измеряются по массе.
  • В отличие от чистых металлов, у большинства сплавов нет единой точки плавления; скорее, у них есть диапазон плавления, в котором вещество представляет собой смесь твердого и жидкого состояния.
Основные термины
  • амальгама : сплав, содержащий ртуть
  • микроструктура : тонкая структура чистого металла или сплава, выявляемая при увеличении в 25 раз или более
  • рацемическая смесь : смесь, содержащая равные количества левых и правых энантиомеров хиральной молекулы
  • эвтектическая смесь : смесь веществ, температура плавления которых ниже, чем у любого из ее компонентов

Сплав представляет собой смесь или металлический твердый раствор, состоящий из двух или более элементов.Примеры сплавов включают такие материалы, как латунь, олово, фосфористая бронза, амальгама и сталь. Сплавы с полным твердым раствором дают единую микроструктуру твердой фазы. Частичные растворы дают две или более фаз, которые могут быть или не быть однородными по распределению, в зависимости от термической истории. Свойства сплава обычно отличаются от свойств составляющих его элементов.

Примеры сплавов включают такие материалы, как латунь, олово, фосфористая бронза, амальгама и сталь. Сплавы с полным твердым раствором дают единую микроструктуру твердой фазы.Частичные растворы дают две или более фаз, которые могут быть или не быть однородными по распределению, в зависимости от термической истории. Свойства сплава обычно отличаются от свойств составляющих его элементов.

Сталь : Сталь представляет собой сплав, основным компонентом которого является железо.

Компоненты сплава обычно измеряются по массе. Сплав обычно классифицируется как замещающий или внедренный, в зависимости от его атомного расположения. В сплаве замещения атомы каждого элемента могут занимать те же места, что и их аналог.В сплавах внедрения атомы не занимают одни и те же позиции. Сплавы можно дополнительно классифицировать на гомогенные (состоящие из одной фазы), гетерогенные (состоящие из двух и более фаз) или интерметаллические (где нет четкой границы между фазами).

Легирование металла включает его объединение с одним или несколькими другими металлами или неметаллами, что часто улучшает его свойства. Например, сталь прочнее железа, ее основного элемента. Физические свойства (плотность, реакционная способность, проводимость) сплава могут не сильно отличаться от свойств составляющих его элементов, но его технические свойства (прочность на растяжение и сопротивление сдвигу) могут существенно отличаться.

В отличие от чистых металлов, у большинства сплавов нет единой температуры плавления; скорее, они имеют диапазон плавления , в котором вещество представляет собой смесь твердого и жидкого состояния.

Добавить комментарий

Ваш адрес email не будет опубликован.