Как работает электродвигатель: Как работает электродвигатель

Содержание

Как работает электродвигатель

Электродвигатель работает благодаря тому, что взаимодействуют сила тока и сила магнита вызывают вращение. Электродвигатели состоят из: неподвижной магнитной части (статора) и подвижного (вращающегося) электромагнита – ротора. Чаще всего в роли статора выступает постоянный магнит, а в роли ротора – катушка с обмоткой возбуждения

Особенности работы электродвигателей

Когда полюс ротора притягивается к противоположно заряженному полюсу статора, он меняет автоматически свой заряд на противоположный. Тогда возникает естественное отталкивание между одинаково заряженными полюсами, и ротор не замирает на месте, а, в силу инерции, поворачивается. Автоматически переключают полюса заряда ротора при помощи коллектора. Это такие пластинки, к которым подключается обмотка катушки. Когда ротор поворачивается на 180 градусов, пластинки меняются местами, вследствие чего меняется и направление тока.

Типы  электродвигателей:

  • Двигатель, работающий от постоянного электричества.
  • Двигатель переменчивого тока.

Электричество подается на обмотку катушки через щетки, расположенные на разных концах якоря (ротора). В результате он превращается в электромагнит, создающий вокруг себя магнитное поле. Когда магнитное поле взаимодействует со статором, якорь начинает вертеться, пытаясь вырваться из поля. Мощность двигателя постоянного тока напрямую зависит от обмотки якоря.

Двигатели второго типа получают питание от переменного тока, частотой 60 Гц, бывают они синхронными и асинхронными. Обычно их запускают вручную. Когда якорь двигателя вращается одновременно с магнитным полем напряжения от сети питания, двигатель называют синхронным. Асинхронным является двигатель, у которого скорость вращения якоря не совпадает с частотой магнитного поля, приводящего его в движение.

Типовые режимы работы электрических двигателей

В зависимости от предназначения и типа устройства электродвигатели имеют разные режимы работы. Выделим несколько самых распространенных из них:

  • Продолжительный с постоянной нагрузкой  — S1;
  • Временный с постоянной нагрузкой (отличается от первого четко ограниченной по времени фазой работы) —  S2;
  • Периодический кратковременный (состоит из нескольких кратковременных циклов между фазами покоя) S3;
  • Периодический режим с электрическим пуском S4;
  • Периодический кратковременный режим с электрическим торможением S5;

Всего есть 9 типовых режимов работы электродвигателей. Каждый режим используют для определенного вида нагрузки.

Просмотров: 4521

Дата: Воскресенье, 15 Декабрь 2013

Как работает двигатель постоянного тока? (анимация и видео): shkola30 — LiveJournal

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на  примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой,  если разобрать один из электродвигателей, то там много деталей, назначение которых не  очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем  случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.


Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:



  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;

  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;

  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.



Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.





Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.



Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.


Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.



Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.




Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.


Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.



Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора


Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. ВОТ ТУТ можно прочитать про него подробнее.


Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.



Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Принцип работы:







Сборка двигателя постоянного тока ПО ДЕТАЛЯМ:








Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=32677


СО-сообщества «2Академия», «Марсианский трактор», «Мир Полдня», «Школа Полдня», «ЗОНА СИНГУЛЯРНОСТИ».

Как работает асинхронный электродвигатель — ElectrikTop.ru

Электродвигатели, которые работают от сети переменного тока, называют асинхронными. Такое определение они получили из-за особенностей взаимодействия магнитных полей статора и ротора, в результате которого их скорость вращения различается.

Устройство этих электрических машин проще, чем работающих на постоянном токе, поскольку их статор не имеет электрического соединения с внешними устройствами, осуществляемого посредством токосъемных колец – коллектора, за что они получили и свое второе название «бесколлекторные электродвигатели».

Пальма первенства в их изобретении принадлежит русскому инженеру М. О. Доливо-Добровольскому, создавшему первый действующий трехфазный двигатель в 1890 году. Стоит отметить, что его конструкция не претерпела коренных изменений на протяжении более ста лет.

Почему он вращается

Принцип работы электродвигателя переменного тока основан на феномене возникновения вращающегося магнитного поля, в двух или трех соленоидах, определенным образом ориентированных в пространстве.

Направление вектора электромагнитного поля определяется правилом левой руки, согласно которому четыре пальца указывают направление движения тока, а пятый (большой) – движения самого проводника под действием сил электромагнитной индукции, входящих в открытую ладонь.

Если соленоид один, то при пропускании через него переменного тока стальной сердечник совершает колебательные движения. Чтобы он смог совершить оборот на 360°, нужны минимум две катушки, расположенные перпендикулярно друг другу, из-за чего суммарный вектор силы электромагнитной индукции будет описывать окружность.

Лучший, более стабильный, результат получается при использовании трех соленоидов, расположенных под углом друг к другу в 120°. Сдвиг фазы тока в катушках соленоида может быть достигнут не только позиционированием, но и включением в цепь одного из них активной нагрузки. Например, конденсатора.

Почему он асинхронный

Магнитное поле статора наводит в сердечнике ротора электрический ток, в результате чего он обзаводится собственным. Его полюса стремятся притянуться к тем, которые его породили, но это движение никогда не завершится по двум причинам:

  1. При совпадении полюсов пропадает разница электрических потенциалов между деталями машины, из-за чего ток в роторе прекращает течь, магнитное поле исчезает, а вал затормаживается. Эта своеобразная пульсация частоты вращения более выражена в двигателях, работающих от одной или двух фаз. Поэтому три катушки предпочтительнее.
  2. Статор больше ротора на величину магнитного зазора, поэтому создаваемое им магнитное поле имеет большую угловую скорость относительно центра вала.

Конструкция асинхронного электродвигателя

Оптимальным конструкторским решением расположения соленоидов является их размещение на внутренней поверхности цилиндра (трубы), внутри которого находится металлический вращающийся сердечник. Первый, поскольку он неподвижный, назвали статором электрической машины, а второй – ротором.

Постоянство расстояния между этими частями, называемого магнитным зазором, обеспечивается двумя крышками с подшипниками качения в центре. У асинхронных двигателей он не превышает трех миллиметров, поскольку при больших значениях сила электромагнитного взаимодействия между ротором и статором ослабевает настолько, что вал останавливается.

Конструкция ротора

Утверждение, что все асинхронные – это бесколлекторные электродвигатели, является допущением, в котором есть исключение. В действительности конструкция подвижной части электрической машины переменного тока бывает двух типов:

  1. Короткозамкнутый ротор.
  2. Ротор с фазными обмотками.

Короткозамкнутым называют ротор, устройство которого похоже на беличье колесо: он состоит из двух медных колец и нескольких толстых проводников, их соединяющих. Пространство между ними – сердечник – набирают из листов легированной стали, что уменьшает паразитные вихревые потоки. Во время пуска двигателя вращающееся поле статора провоцирует возникновение в нем электрического тока, а поскольку все проводники детали соединены друг с другом, возникает короткое замыкание.

Поэтому пусковой ток асинхронных двигателей в два — три раза номинального рабочего. После того как ротор тронется с места, ток расходуется на создание магнитного поля. Из-за простоты устройства мирятся и с падением напряжения, и с моментальным набором скорости, что делает нагрузочную характеристику двигателя жесткой.

Фазные обмотки на роторе устраивают для ликвидации всплеска пускового тока, что необходимо для защиты сети от перегрузки. Их три, они соединяются звездой, а свободные концы выводят на коллектор, состоящий из трех медных колец, разделенных диэлектриком и посаженных на хвостовик вала двигателя. Перед включением ротор шунтируют большим сопротивлением (реостатом), который гасит ток.

Передвигая ползунок реостата, допускают плавное возникновение тока в роторе и раскрутку вала двигателя. Асинхронность таких машин выше, поэтому у них ниже КПД. Зато появляется возможность плавной регулировки частоты вращения. Асинхронный двигатель с фазным ротором встречается очень редко из-за сложной конструкции, которая абсолютно идентична той, что имеет генератор переменного тока. Единственное его отличие – на коллекторные кольца подается постоянное напряжение, поэтому какую-то пару щеток можно замкнуть между собой.

Конструкция статора

Она двухслойная. Наружную «рубашку», которая обеспечивает механическую прочность конструкции, ранее отливали из чугуна. Сейчас все чаще используют легкие сплавы. Для эффективного отвода тепла на ней делают ребра жесткости. Внутри находится слой, набранный из листов легированной стали, которые изолированы друг от друга диэлектрическим лаком. На его внутренней поверхности устроены пазы. В них укладываются обмотки – медный проводник из нескольких витков, которые изолированы друг от друга во избежание пробоя, приводящего к снижению силы магнитного поля и аварии машины. Зазор между статором и ротором очень мал, поэтому витки скрыты в толще металла, чтобы не мешать вращению.

Однофазные двигатели

Однофазный асинхронный двигатель отличается лишь количеством статорных обмоток, которых две. Они всегда включены параллельно и расположены перпендикулярно друг другу. Для обеспечения начального фазного сдвига в цепь одной из них включена активная нагрузка. Обычно бумажный конденсатор большой емкости. После набора оборотов одна из обмоток отключается. Так делается в двигателях мощностью свыше пятидесяти ватт. У маломощных машин вторая обмотка выполняется короткозамкнутой. Фазу сдвигает индуцированный противоток.

Управление скоростью вращения

Явным недостатком асинхронных двигателей является сложность управления ими. Для изменения скорости вращения используются два метода:

  1. Частотное преобразование питающего напряжения. Практически никогда не применяется, поскольку по законам электротехники любая индуктивность (обмотка, соленоид, трансформатор) спокойно переносит только повышение частоты. При ее понижении она начинает работать в режиме нагревателя.
  1. Варианты с числом, способом укладки и размещением в пазах обмоток статора. Метод основан на том, что три фазных обмотки – это один условный двухполюсной вращающийся магнит, совершающий полный оборот за период, равный частоте сети. То есть, при самой простой конструкции статорной обмотки частота вращения будет равна 3 тыс. оборотов в минуту.

Если на статоре разместить шесть обмоток, сгруппировать их по три и подключить последовательно, то получим не два, а четыре полюса. Из-за этого частота вращения снизится в два раза – до 1500 оборотов в минуту.

При устройстве девяти обмоток, подключенных по тому же принципу, скорость снизится еще в два раза, до 750 оборотов в минуту, ведь полюсов станет шесть. Дальнейшее снижение скорости не производится, поскольку связано с большими техническими трудностями.

Нередко технология производства требует, чтобы привод мог вращаться с двумя или тремя скоростями. Эта проблема решается двумя путями:

  1. Подключением дополнительных независимых обмоток. Вместе с изменением скорости меняется и крутящий момент электродвигателя, поскольку индуктивность всякий раз разная.
  1. Устройством дополнительных выводов из одной обмотки. Так называемый метод Даландера. Имеет преимущество в том, что крутящий момент сохраняется неизменным.

Двухскоростной асинхронный электродвигатель имеет статорную обмотку, каждая из катушек поделена которой на две дополнительными выводами. Для наглядности обозначим 2U, 2V и 2W. В режиме тихого хода (1500 оборотов) обмотки соединены треугольником, питающее напряжение подается на выводы 1U, 1V и 1W, а 2U, 2V и 2W остаются свободными. Если требуется набрать 3 тыс. оборотов, то производится коммутация:

  • питание подается на 2U, 2V и 2W;
  • выводы 1U, 1V и 1W соединяются между собой.

В результате схема подключения обмоток меняется с «треугольника», в каждой стороне которого две последовательных катушки, на «звезду», в каждом луче которой две параллельных катушки. Число полюсов сократилось вдвое, а суммарная индуктивность осталась той же.

Существуют и трехскоростные электродвигатели, обмотки которых имеют по три вывода, поскольку должно получиться девять обмоток.

Обычно для управления многоскоростными асинхронными двигателями устраивают силовую релейную схему. Это позволяет изменять скорость вращения за несколько секунд.

Значимость изобретения в конце XIX века трехфазного асинхронного двигателя вполне можно сравнить с появлением компьютера и даже с полетом в космос. До сих пор человечество не сумело создать ничего более эффективного, ведь КПД этого устройства близко к ста процентам.

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 101049
  • Бесколлекторный двигатель постоянного тока: особенности и принцип работы

    Как работает бесколлекторный двигатель?

    Бесколлекторный двигатель постоянного тока имеет на статоре трёхфазную обмотку, и постоянный магнит на роторе. Вращающееся магнитное поле создаётся обмоткой статора, при взаимодействии с которым магнитный ротор приходит в движение. Для создания вращающегося магнитного поля на обмотку статора подаётся система трёхфазных напряжений, которая может иметь различную форму и формируется различными способами. Формирование питающих напряжений (коммутация обмоток) для бесколлекторного двигателя постоянного тока производиться специализированными блоками электроники – контроллером двигателя. 

    Заказать бесколлекторный двигатель в нашем каталоге

    В простейшем случае обмотки попарно подключаются к источнику постоянного напряжения и по мере того как ротор поворачивается в направлении вектора магнитного поля обмотки статора производится подключение напряжения к другой паре обмоток. Вектор магнитного поля статора при этом занимает другое положение и вращение ротора продолжается. Для определения нужного момента подключения следующих обмоток используется датчик положения ротора, чаще других используются датчики Холла. 


    Возможные варианты и специальные случаи

    Выпускаемые сейчас бесколлекторные двигатели могут иметь самую разную конструкцию. 

    По исполнению статорной обмотки можно выделить двигатели с классической обмоткой, намотанной на стальной сердечник, и двигатели с полой цилиндрической обмоткой без стального сердечника. Классическая обмотка обладает значительно большей индуктивностью, чем полая цилиндрическая обмотка, и соответственно большей постоянной времени. Из-за этого с одной стороны, полая цилиндрическая обмотка допускает более динамичное изменение тока (а, следовательно, и момента), с другой стороны при работе от контроллера двигателя, использующего ШИМ-модуляцию невысокой частоты для сглаживания пульсаций тока, требуются фильтрующие дроссели большего  номинала (а соответственно и большего размера). Кроме того, классическая обмотка, как правило, имеет заметно больший момент магнитной фиксации, а также меньший КПД, чем полая цилиндрическая обмотка.


    Ещё одно отличие, по которому разделяются различные модели двигателей – это взаимное расположение ротора и статора – существуют  двигатели с внутренним ротором и двигатели с внешним ротором. Двигатели с внутренним ротором, как правило, имеют более высокие скорости и меньший момент инерции ротора, чем модели с внешним ротором. Благодаря этому двигатели с внутренним ротором имеют более высокую динамику. Двигатели с внешним ротором часто имеют несколько больший номинальный момент при том же наружном диаметре двигателя. 

    Отличия от других типов двигателей

    Отличия от коллекторных ДПТ. Размещение обмотки на роторе позволило отказаться от щёток и коллектора и избавиться тем самым от подвижного электрического контакта, который значительно снижает надёжность ДПТ с постоянными магнитами. По этой же причине  скорость у бесколлекторных двигателей, как правило, значительно выше, чем у ДПТ с постоянными магнитами. С одной стороны это позволяет увеличить удельную мощность бесколлекторного двигателя, с другой стороны не для всех применений такая высокая скорость является действительно необходимой

    Отличия от синхронных двигателей с постоянными магнитами. Синхронные двигатели с постоянными магнитами на роторе очень похожи на бесколлекторные ДПТ по конструкции, однако есть и ряд различий. Во-первых термин синхронный двигатель объединяет в себе много различных видов двигателей, часть из которых предназначены для непосредственной работы от стандартной сети переменного тока, другая часть (например синхронные серводвигатели) может работать только от преобразователей частоты (контроллеров двигателей). Бесколлекторные двигатели, хотя и имеют на статоре трёхфазную обмотку, не допускают непосредственную работу от сетевого напряжения, и обязательно требуют наличия соответствующего контроллера. Кроме того синхронные двигатели предполагают питание напряжением синусоидальной формы в то время как бесколлекторные двигатели допускают питание переменным напряжением ступенчатой формы (блочная коммутация) и даже предполагают его использование в номинальных режимах работы.

    Когда нужен бесколлекторный двигатель?

    Ответ на этот вопрос достаточно прост – в тех случаях, когда он имеет преимущество перед остальными типами двигателей. Так, например, практически невозможно обойтись без бесколлекторного двигателя в применениях, где требуются большие скорости вращения: свыше 10000 об/мин. Оправдано применение бесколлекторных двигателей также и в тех случаях, когда требуется высокий срок службы двигателя. В тех случаях, когда требуется применять сборку из двигателя с редуктором, однозначно оправдано применение низкоскоростных бесколлекторных двигателей (с большим числом полюсов). Высокоскоростные бесколлекторные двигатели в этом случае будут иметь скорость выше, чем предельно допустимая скорость редуктора, и по этой причине не будет возможности использовать их мощность полностью. Для  применений, где требуется максимально простое управление двигателем (без использования контроллера двигателя) естественным выбором будет коллекторный ДПТ. 

    С другой стороны, в условиях повышенной температуры или повышенной радиации проявляется слабое место бесколлекторных двигателей – датчики Холла. Стандартные модели датчиков Холла имеют ограниченную стойкость к радиации и диапазон рабочих температур. Если в подобном применении всё же имеется необходимость использовать бесколлекторный двигатель, то неизбежными становятся заказные исполнения с заменой датчиков Холла на более стойкие к указанным факторам, что увеличивает цену двигателя и сроки поставки.

    Как работает электродвигатель TSLA?

    Важным фактором роста акций TSLA на Nasdaq стало то, как работает электродвигатель.

     

    Как работает электродвигатель Tesla?


    Tesla Roadster использует трёхфазный асинхронный электродвигатель с переменным напряжением. В отличие от некоторых других моторов, использующих постоянные магниты, двигатель Roadster основан на магнитном поле, созданном целиком за счёт электричества.

     

    У электромотора Tesla есть ротор и статор. Ротор — это стальная втулка, через которую пропущены медные пластины, позволяющие току перетекать с одной стороны ротора на другую. Электричество на ротор напрямую не подаётся. Ток возникает при прохождении проводника из медных пластин через магнитное поле, которое создаётся переменным током в статоре. Вращением втулки приводятся в движение колёса.
    Статор — это тонкие стальные пластины, через которые проведена медная обмотка из проволоки. По ней в двигатель поступает электричество из модуля питания. Провода делятся на три вида по числу фаз электричества, которые можно представить себе в виде волн синусоидальных колебаний, гладкое сочетание которых обеспечивает бесперебойную подачу электроэнергии.


    Переменный ток в медной обмотке статора создаёт вращающееся магнитное поле и вызывает поток частиц в роторе. Ток порождает второе магнитное поле в роторе, который следует за движущимся полем статора. Результатом этого процесса становится вращающий момент.


    Когда водитель нажимает на педаль газа, модуль питания ставит поле статора позади поля ротора. Вследствие этого ротору приходится замедлиться для того, чтобы его поле вышло на уровень поля статора. Направление тока в статоре меняется, и начинается поток энергии через модуль питания обратно в батарею. Это называется регенерацией энергии.

     

    Мотор выступает то генератором, то двигателем, в зависимости от действий водителя. При нажатии педали газа, модуль питания ощущает потребность во вращающем моменте. Если педаль нажата на 100%, доступный вращающий момент выбирается полностью, а если нет, тогда частично. Если не газовать, двигатель будет использоваться для восстановления энергии. Мотором он становится только тогда, когда модуль питания посылает нужное количество переменного тока на статор, что порождает вращающий момент.


    Мотор Tesla приспособлен для работы на высокой скорости, но даже при этом требует теплового отвода. В этих целях сделаны охлаждающие пластины, воздух по которым гоняет вентилятор.


    Тяговый электродвигатель очень мал, размером с арбуз, и максимально лёгок благодаря использованию алюминия. Модуль питания передаёт до 900 ампер тока на статор, обмотка которого сделана из значительно большего количества меди, чем в обычном моторе. Медные провода изолированы специальными полимерами, которые обеспечивают теплопередачу и устойчивость при вождении в экстремальных условиях.


    В отличие от обычных индукционных моторов, использующих в качестве проводника алюминий, в электродвигателе Roadster эту роль играет медь. Работать с ней сложнее, но у неё меньше сопротивление, поэтому она лучше проводит ток.

     

     

    Основные факторы роста акций TSLA на Nasdaq


    Ценные бумаги TSLA на Nasdaq растут под влиянием также и других факторов, помимо мотора:

     

      1. Урегулирование вопросов безопасности автомобилей.Государственное управление безопасности дорожного движения США подтвердило безопасность электромобилей Tesla.

     

      1. Рост китайского рынка электромобилей. Формирование рынка сбыта через объём заказов становится всё прозрачнее. Компании удалось получить значительное количество заказов в Китае. Китай — крупнейший рынок роскошных машин, несмотря на сложностью с зарядкой элетродвигателей и с получением автомобильных номеров.
      2. Препятствие в виде отсутствия готовых вариантов зарядки автомобиля, вероятно, будет устранено за счёт самих китайцев, которые согласны добиваться установки зарядок в гаражах. Регулирование выпуска номерных знаков в Китае сократило их выдачу с 500 тысяч до 150 тысяч в год, из которых 20 тысяч зарезервировано для автомобилей, ездящих на альтернативных источниках энергии. Общее число выдаваемых номеров останется без изменения, но число номеров, зарезервированных для автомобилей на альтернативных видах топлива, увеличится до 30 тысяч в 2015 году и 60 тысяч в 2016 году. В КНР мало доступных марок роскошных авто, поэтому расширение квоты даёт конкурентное преимущество TSLA.

     

    1. Повышение финансовой устойчивости компании. От TSLA можно ждать повышения рентабельности выручки по продажам за вычетом себестоимости. Целевые темпы сборки 800 авто в неделю, вероятно, будут превышены, и это при том, что в 3-м квартале 2013-го компания собирала по 510 машин в неделю. Управленческие расходы и траты на НИОКР во втором полугодии 2014 года должны сократиться в процентах от выручки. Уменьшится и себестоимость, так как поставщик батарей Panasonic сначала умеренно расширит предложение в середине 2014 года, а затем резко увеличит его после ввода переоборудованного завода, который позволит собрать около 1,8 млрд батарей с 2014 по 2017 годы.


    На основе прогнозной прибыли на акцию 10 долларов в 2017 году, по 30 прибылям на акцию, дисконтированным под 10% в год, можно ожидать роста бумаг TSLA до 205 долларов.

    Как работает двигатель автомобиля – «сердечные» дела вашей машины

    Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

    Как устроен двигатель автомобиля – изучаем схему устройства

    Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

    Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

    Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

    Как работает двигатель автомобиля – кратко о сложных процессах

    Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

    Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

    Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

    Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

    Принцип работы двигателя автомобиля – различия в моделях

    Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

    Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

    Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

    Оцените статью: Поделитесь с друзьями!

    Как работают двигатели и как правильно выбрать двигатель для любого проекта

    Как работают двигатели и как правильно выбрать двигатель

    Двигатели можно найти практически везде. Это руководство поможет вам узнать об электродвигателях, доступных типах и о том, как правильно выбрать двигатель. Основные вопросы, на которые необходимо ответить при принятии решения о том, какой двигатель наиболее подходит для применения, — это какой тип выбрать и какие технические характеристики имеют значение.

    Как работают двигатели?

    Электродвигатели работают путем преобразования электрической энергии в механическую для создания движения.Сила создается внутри двигателя за счет взаимодействия между магнитным полем и обмоткой переменного (AC) или постоянного (DC) тока. С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I*R); напряжение должно увеличиваться, чтобы поддерживать тот же ток, когда сопротивление увеличивается.

    Электродвигатели имеют множество применений. Традиционное промышленное использование включает воздуходувки, станки и электроинструменты, вентиляторы и насосы.Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.

    Типы двигателей:

    Существует много типов двигателей постоянного тока , но наиболее распространенными являются щеточные или бесщеточные. Существуют также вибрационные двигатели, шаговые двигатели и серводвигатели.

    Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые соединяются с коммутатором для изменения направления тока.Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об/мин). Несколько недостатков заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут генерировать электромагнитный шум из-за дугового разряда щеток.


    Щеточный двигатель постоянного тока

    Бесщеточные двигатели постоянного тока используют постоянные магниты в своем узле ротора. Они популярны на рынке хобби для самолетов и наземных транспортных средств.Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем коллекторные двигатели постоянного тока. Они также могут производиться серийно и напоминают двигатель переменного тока с постоянным числом оборотов в минуту, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими трудно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специальных редукторов в приводных приложениях, что приводит к более высоким капитальным затратам, сложности и экологическим ограничениям.


    Бесщеточный двигатель постоянного тока

    Вибрационные двигатели используются для приложений, требующих вибрации, таких как мобильные телефоны или игровые контроллеры. Они генерируются электродвигателем и имеют неуравновешенную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для подачи звука или для сигналов тревоги или дверных звонков.


    Вибрационный двигатель

    Всегда, когда требуется точное позиционирование, шаговые двигатели вам в помощь.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение с помощью сигнальных импульсов, отправляемых драйверу, который интерпретирует их и отправляет пропорциональное напряжение на двигатель. Они относительно просты в изготовлении и управлении, но они постоянно потребляют максимальный ток. Небольшое расстояние между шагами ограничивает максимальную скорость, и при высоких нагрузках шаги можно пропускать.


    Шаговый двигатель

    Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для управления положением без точности. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ) путем отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут выдерживать более высокие скачки тока и используются для промышленного оборудования, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервоприводах, ознакомьтесь с нашей статьей How Servo Motors Work .

    Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
    Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или медленнее, чем частота, подаваемая на питание. Скольжение , разница между фактической и синхронной скоростью, необходимо для создания крутящего момента , крутящей силы, вызывающей вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, вызвано наведенным током.

    Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем большой мощности, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других устройствах, таких как часы, вентиляторы и дисководы.

    На что обратить внимание при покупке двигателя:

    Есть несколько характеристик, на которые необходимо обратить внимание при выборе двигателя, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об/мин).

    Ток — это то, что питает двигатель, и слишком большой ток может повредить двигатель. Для двигателей постоянного тока важны рабочий ток и ток останова. Рабочий ток — это среднее значение тока, которое двигатель должен потреблять при обычном крутящем моменте. Ток останова прикладывает достаточный крутящий момент, чтобы двигатель работал на скорости останова или 0 об/мин. Это максимальный ток, который должен потреблять двигатель, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает при напряжении выше номинального, чтобы предотвратить плавление катушек.

    Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает наиболее эффективное напряжение во время работы. Обязательно примените рекомендуемое напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком много вольт может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.

    Рабочие значения и значения опрокидывания также необходимо учитывать при крутящем моменте.Рабочий крутящий момент — это величина крутящего момента, на которую рассчитан двигатель, а крутящий момент при остановке — это величина крутящего момента, создаваемого при подаче питания со скорости опрокидывания. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых приложениях вам нужно знать, насколько далеко вы можете толкать двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент достаточно велик, чтобы поднять вес робота. В данном случае крутящий момент важнее скорости.

    Скорость или скорость (об/мин) могут быть сложными для двигателей. Общее правило заключается в том, что двигатели работают наиболее эффективно на самых высоких скоростях, но это не всегда возможно, если требуется редуктор. Добавление шестерен снизит КПД двигателя, поэтому учитывайте также снижение скорости и крутящего момента.

    Это основные параметры, которые следует учитывать при выборе двигателя. Учитывайте назначение приложения и потребляемый им ток для выбора соответствующего типа двигателя. Характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, определят, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.

    Есть ли у вас дополнительные советы по выбору двигателей? Сообщите нам по телефону [email protected] .

    Электродвигатель — Технический центр Эдисона

    Электрический двигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до первого динамо или генератор.

    Выше: Первый мотор Davenport

    1.) История и изобретатели:

    1834 — Томас Давенпорт из Вермонта разработали первый настоящий электродвигатель («настоящий» означает достаточно силен, чтобы выполнить задачу), хотя Джозеф Генри и Майкл Фарадей создал устройства раннего движения, используя электромагнитные поля. Первые «моторы» создавали вращающиеся диски или рычаги, качался взад-вперед. Эти устройства не могли сделать никакой работы для человечества. но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были возможность запуска модели тележки по круговой дорожке и другие задачи. Тележка позже оказалась первым важным приложением электроэнергии (это была не лампочка). рудиментарный полноразмерные электрические тележки были окончательно построены через 30 лет после смерти Давенпорта в 1850-х годах.

    Свет электродвигателя перед лампочками:
    Тележки и подключенные энергосистемы стоили очень дорого построили, но перевезли миллионы людей на работу в 1880-х годах.До того как рост электросетей в 1890-х годах большинство людей (средний и низшие классы) даже в городах не было электрического света в дом.

    Только в 1873 году электрический двигатель наконец добился коммерческого успеха. С 1830-х годов тысячи инженеров-новаторов усовершенствовали двигатели и создали множество вариаций. См. другие страницы для более подробной информации об обширной истории электродвигателя.

    Провода двигателя к генератору:
    После слабые электродвигатели были разработаны Фарадеем и Генри, еще одним пионер по имени Ипполит Пикси понял, что, запустив мотор назад он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом питания потребности общества.Читать о генераторах а динамо здесь >

    2.) Как работают двигатели

    Электродвигатели могут питаться переменным (AC) током или постоянным током (DC). Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип двигателя работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

    переменный ток В электродвигателях используется вторичная и первичная обмотка (магнит), первичная подключается к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от основного, не касаясь его напрямую. Это делается с помощью сложные явления, называемые индукцией.

    Справа: инженер работает над индивидуальными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточную мощность, чтобы поднять фунты полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в меньших и более легких пакеты.

    Выше: универсальный двигатель, обычно используемый в большинстве электроинструментов.Он имеет тяжелый плотный ротор. Выше: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелая арматура.

    2.a) Части электродвигателя:

    Существует много видов электродвигателей, но в целом они имеют схожие детали. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано выше в «универсальном двигателе») или намотанным изолированным проводом. (электромагнит как на фото вверху-справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже, показывающее, как это работает. В этом видео рассказывается о бесщеточном двигателе постоянного тока, в котором ротор находится снаружи, в других двигателях. тот же принцип работает наоборот, с электромагнитами снаружи. Видео (1 минута):

    Мощность двигателя:
    Сила двигателя (крутящий момент) определяется напряжением и длина провода в электромагните в статоре, чем длиннее провод (что означает больше катушек в статоре), тем сильнее магнитное поле.Это означает большую мощность для повернуть ротор. Посмотрите наше видео, которое относится как к генераторам, так и к двигателям Узнать больше.

    Арматура — вращающаяся часть двигателя — раньше ее называли ротором, она поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

    Статор — Корпус и катушки, составляющие внешнюю часть двигателя. статор создает стационарное магнитное поле.

    Выше: в этом статоре отчетливо видны четыре отдельные катушки (якорь был удален)

    Обмотка или «Катушка» — медные провода, намотанные на сердечник, используемые для создания или получать электромагнитную энергию.

    Провод, используемый в обмотки ДОЛЖНЫ быть изолированы. На некоторых фотографиях вы увидите, как выглядит как оголенные обмотки медного провода, это не так, это просто эмалированная с прозрачным покрытием.

    Медь Самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести те же электрические загружайте безопасно.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди >

    Сгорел мотор, поиск неисправности:
    Если двигатель работает слишком долго или с чрезмерной нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки разрушается или расплавляется, обмотки замыкаются когда они соприкасаются и двигатель повреждается. Вы также можете сжечь двигатель, подав на него большее напряжение, чем Обмоточные провода рассчитаны на.В этом случае провод расплавится в самом слабом месте, разорвав соединение. Ты сможешь проверьте двигатель, чтобы увидеть, не сгорел ли он таким образом, проверяя Ом (сопротивление) на мультиметре. В общем, вы хотите искать черные метки в обмотках, когда проверяете двигатель.


    Беличья клетка — вторая катушка в асинхронном двигателе, см. ниже посмотреть, как это работает
    Индукция — генерация электродвижущей силы в замкнутом цепь переменным магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент, создающий магнитное поле. Когда мощность падает в цикле магнитное поле не может поддерживаться, и он разрушается. Это действие передает мощность через магнетизм в другую обмотку или катушку. УЧИТЬСЯ БОЛЬШЕ об индукции здесь.

    3.) Типы электродвигателей переменного тока

    Двигатели переменного тока (AC):

    3.а) индукция Двигатель
    3.b) Универсальный двигатель (может использовать постоянный или переменный ток)
    3.c) Синхронные двигатели
    3.d) Электродвигатели с экранированными полюсами


    См. нашу страницу, посвященную асинхронным двигателям, здесь >

    Это мощный двигатель, который можно использовать с как переменного, так и постоянного тока.

    Преимущества :
    — Высокий пусковой крутящий момент и малый размер (хорошо для обычного использования в бытовой электроинструмент)
    -Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

    Недостатки:
    — Щетки со временем изнашиваются

    Использование: приборы, ручные электроинструменты

    См. видео ниже:


    3.в) синхронный Моторы (Сельсин Мотор)

    Этот двигатель аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

    Мотор Сельсин был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь.


    Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота питающей сети переменного тока.
    Недостатки: Не выдерживает переменного крутящего момента, этот двигатель останавливаться или «вытягиваться» при заданном крутящем моменте.
    Применение: a часы использует синхронные двигатели для обеспечения точной скорости вращения для Руки. Это мотор , аналог , скорость точная, шаговый двигатель был бы лучше для работы с компьютерами, так как он работает на жестких «шагах» разворота.

    Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с вращающимся валом. в центре отставание потока, проходящего вокруг катушки, вызывает интенсивность магнита для перемещения вокруг катушки. Это получает центральный вал с вращающейся вторичной катушкой.

    Цилиндр изготовлен из стали и имеет медные стержни, встроенные в цилиндр вдоль поверхность.


    Преимущества: достигает высокого уровня крутящего момента после того, как ротор начал быстро вращаться.
    Используется в вентиляторах, приборах

    Недостатки: медленный запуск, низкий пусковой момент. Используется в вентиляторах, обратите внимание на медленный старт вентиляторов.
    Этот двигатель также используется в сливах стиральных машин, консервных ножах и прочая бытовая техника.
    Другие типы двигателей лучше подходят для более мощных потребностей выше 125 Вт.

    См. видео ниже:


    4.) Двигатели постоянного тока (DC):

    Двигатели постоянного тока были первым типом электродвигателей. Обычно они составляют 75-80%. эффективный. Они хорошо работают на переменных скоростях и имеют большой крутящий момент.

    4.a) Общая информация
    4.b) Коллекторные двигатели постоянного тока
    4.b.1) Двигатель постоянного тока с параллельным возбуждением
    4.b.2) Двигатель постоянного тока с последовательным возбуждением
    4.b.3) Блинчатые двигатели
    4.b.4) Двигатель постоянного тока с постоянными магнитами
    4.b.5) Отдельное возбуждение (Sepex)
    4.c) Бесщеточные двигатели постоянного тока
    4.c.1) Шаговый двигатель
    4.c.2) Электродвигатели постоянного тока без сердечника / без железа


    Матовый Двигатели постоянного тока:

    Первый DC двигатели использовали щетки для передачи тока на другую сторону двигателя. Щетка названа так, потому что сначала она напоминала форму метлы.Маленькие металлические волокна терлись о вращающуюся часть двигателя. поддерживать постоянный контакт. Проблема с кистями в том, что они изнашиваются. вышел со временем из-за механики. Щетки будут создавать искры из-за трения. В парках часто расплавлялась изоляция и вызывали шорты в якоре и даже расплавил коллектор.

    Первые моторы использовались на трамваях.

    Использует разделение кольцевой коллектор со щетками.
    Преимущества:
    -Используется во множестве приложений, легко регулируется скорость с помощью уровня напряжения для управления.
    — Имеет высокий пусковой момент (мощный пуск)
    Ограничения: щетки создают трение и искрение, это может привести к перегреву двигателя устройство и расплавить/сжечь щетки, поэтому максимальная скорость вращения ограничено. Искры также вызывают радиочастоту. вмешательство. (ЗП)

    Есть пять типов двигателей постоянного тока со щетками:
    Двигатель постоянного тока с шунтирующим возбуждением
    Двигатель постоянного тока с последовательным возбуждением
    Составной двигатель постоянного тока — составной и дифференциально-составной
    Двигатель постоянного тока с постоянными магнитами
    С независимым возбуждением
    Мотор-блинчик

    Бесщеточный Двигатели постоянного тока:

    Щетка есть заменен внешним электрическим выключателем, синхронизированным с положение двигателя (при необходимости он изменит полярность, чтобы сохранить вал двигателя вращается в одном направлении)
    -Более эффективен, чем щеточные двигатели
    -Используется, когда требуется точное регулирование скорости (например, в машины, электромобили и т.)
    — Долгий срок службы, так как работает при более низкой температуре и без щеток изнашиваться.

    Типы бесщеточные двигатели постоянного тока:
    Шаговый двигатель
    Электродвигатели постоянного тока без сердечника / без железа

     

    4.b) ЩЕТКА ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА:

    4.b.1) DC Двигатель с параллельным возбуждением

    Шунт постоянного тока двигатель подключен так, что катушка возбуждения подключена параллельно арматура.Обе обмотки получают одинаковое напряжение. Катушка шунтирующего поля намотан множеством витков тонкой проволоки для создания высокого сопротивления. Этот гарантирует, что катушка возбуждения будет потреблять меньше тока, чем якорь (ротор).

    Арматура (видно выше, это длинная толстая цилиндрическая вращающаяся часть) имеет толстую медные провода, это так, что большой ток может проходить через него к завести мотор.

    В качестве арматуры витков (см. фото ниже) ток ограничивается противоэлектродвижущей сила.

    Сила катушки шунтирующего поля определяет скорость и крутящий момент двигателя.

    Преимущества: Шунтирующий двигатель постоянного тока регулирует собственную скорость. Это означает, что если загрузить добавляется, якорь замедляется, CEMF уменьшается, что приводит к тому, что якорь ток увеличивается. Это приводит к увеличению крутящего момента, что помогает переместить тяжелый груз. При снятии нагрузки якорь ускоряется, CEMF увеличивается, что ограничивает ток, а крутящий момент уменьшается.

    Конвейер Пример ремня : Представьте, что конвейер движется с заданной скоростью, затем на пояс попадает тяжелая коробка. Этот тип двигателя будет поддерживать движение ленты. с постоянной скоростью независимо от того, сколько коробок движется по ленте.

    См. видео ниже о шунтирующем двигателе постоянного тока в действии!:

     

    4.б.2) постоянный ток двигатель с последовательным возбуждением

    Двигатель с обмоткой серии представляет собой двигатель постоянного тока с самовозбуждением. Обмотка возбуждения подключена внутри последовательно с обмоткой ротора. Таким образом, обмотка возбуждения в статоре подвергается воздействию к полному току, генерируемому обмоткой ротора.

    Этот тип двигателя похож на двигатель постоянного тока с параллельной обмоткой, за исключением того, что обмотки возбуждения сделаны из более толстого провода, поэтому они могут выдерживать более высокие токи.

    Использование: Этот тип двигателя используется в промышленности в качестве пускового двигателя из-за большого крутящего момента.

    Узнайте больше о двигателе с последовательным возбуждением:
    Статья 1
    Статья 2

    4.b.3) Блин Двигатель постоянного тока (также известный как двигатель с печатным якорем)

    Блин двигатель — безжелезный двигатель.Большинство двигателей имеют медную обмотку вокруг железное ядро.

    Демонстрация видео пример мотора блина:

     

    Преимущества:
    Точная регулировка скорости, плоский профиль, не имеет зазубрин, вызываемых железом в электромагните

    Недостатки:
    плоская форма подходит не для всех применений

    Имеет обмотку в форме плоского диска из эпоксидной смолы между двумя магнитами с высоким магнитным потоком.это полностью без железа, что делает большую эффективность. Используется в сервоприводах, был первым разработан как моторы стеклоочистителя и видеоиндустрии, так как он был очень плоским в профиле и имел хороший контроль скорости. Компьютеры и видео/аудио запись всей используемой магнитной ленты, точный и быстрый контроль скорости был нужен был поэтому блинный мотор для этого и разрабатывался. Сегодня он используется во множестве других приложений, включая робототехнику и сервосистемы.

     

    4.b.4) Составной двигатель постоянного тока (кумулятивный и дифференциально-составной)

    Это еще один двигатель с самовозбуждением как с последовательными, так и с шунтирующими катушками возбуждения. Он имеет эффективную регулировку скорости и приличный пусковой момент.

    Узнайте больше об этом типе двигателя здесь.

    4.b.5) Двигатель постоянного тока с постоянными магнитами

    Этот тип двигателя хорошо работает на высоких скоростях и может быть очень компактным.
    Применение: компрессоры, другое промышленное оборудование.

    Узнайте больше об этом типе двигателя здесь.

    4.б.6) Отдельно возбужденный (sepex)

    SepEx имеет обмотку возбуждения, которая питается отдельно от якоря с помощью прямого текущий сигнал. Полевой магнит также имеет собственный источник постоянного тока. В результате вы увидите это тип двигателя имеет четыре провода — 2 для возбуждения и 2 для якоря.

    Этот двигатель представляет собой коллекторный двигатель постоянного тока. который имеет более широкие кривые крутящего момента, чем двигатель постоянного тока с последовательной обмоткой.

    Узнайте больше об этом типе двигателя здесь.

    4.c) Бесщеточные двигатели постоянного тока:

    4.c.1 ) Степпер Мотор

    Шаговый двигатель двигатель представляет собой тип бесщеточного двигателя, который перемещает центральный вал на один часть оборота за раз.Это делается с помощью зубчатых электромагнитов. вокруг централизованного железяка в форме шестеренки. Есть много видов шаговых двигателей. Они используются в системах, которые перемещают объекты в точное положение, как сканер , дисковод и промышленная лазерная резьба устройства .

    См. видео шагового двигателя в действии ниже:

     

    4.c.2) без сердечника / Безжелезные двигатели постоянного тока

    Обмотка медная или алюминиевый сердечник вращается вокруг магнита без использования железа. Этот делается путем создания формы цилиндра.
    Преимущество: легкий и быстрый запуск вращения (используется в компьютерных жестких дисков)
    Недостаток: легко перегревается, так как железо обычно действует как теплоотвод, для охлаждения нужен вентилятор.

    Узнайте больше об этом типе двигателя здесь.

    Источники:
    Документы Джозефа Генри — Смитсоновский институт
    Denver Electric Motor Company
    Стив Нормандин
    Википедия
    Томас Дэвенпорт — доктор Фрэнк Уикс мл.
    Электромобиль своими руками


    Похожие темы:

    Электродвигатели — Как работают электродвигатели? — Высшее — OCR 21C — GCSE Combined Science Revision — OCR 21st Century

    Описание электродвигателя

    На схеме показан простой двигатель, работающий на постоянном токе (постоянного тока).

    Правило левой руки Флеминга может быть использовано для объяснения того, почему катушка вращается правая часть катушки создает направленную вверх силу
  • катушка вращается против часовой стрелки из-за сил, описанных выше
  • Когда катушка расположена вертикально, она движется параллельно магнитному полю, не создавая никакой силы. Это привело бы к остановке двигателя, но две особенности позволяют катушке продолжать вращение:

    • импульс двигателя заставляет его немного продолжать вращаться
    • коммутатор с разъемным кольцом меняет направление тока каждые половина оборота

    Это означает, что ток в левой части катушки по-прежнему вызывает направленную вниз силу, а ток в правой части катушки по-прежнему вызывает восходящую силу.

    Это означает, что силы воздействия двигателя продолжают вызывать вращение катушки против часовой стрелки.

    Электродвигатели влияют почти на все аспекты повседневной жизни. Их можно найти в домах, школах и даже в автомобилях.

    Как работают электродвигатели и генераторы

    Электромобили полагаются исключительно на электродвигатели для движения, а гибриды используют электродвигатели, чтобы помочь своим двигателям внутреннего сгорания передвигаться. Но это не все. Эти самые двигатели могут использоваться и используются для выработки электроэнергии (в процессе рекуперативного торможения) для зарядки бортовых аккумуляторов этих транспортных средств.

    Самый частый вопрос: «Как же так… как это работает?» Большинство людей понимают, что двигатель работает от электричества — они каждый день видят его в своей бытовой технике (стиральные машины, пылесосы, кухонные комбайны).

    Но идея о том, что двигатель может «работать в обратном направлении», фактически вырабатывая электричество, а не потребляя его, кажется почти волшебством. Но как только будет понята взаимосвязь между магнитами и электричеством (электромагнетизм) и концепция сохранения энергии, тайна исчезнет.

    Электромагнетизм

    Мощность двигателя и выработка электроэнергии начинаются со свойства электромагнетизма — физической связи между магнитом и электричеством. Электромагнит — это устройство, которое действует как магнит, но его магнитная сила проявляется и управляется электричеством.

    Когда провод из проводящего материала (например, из меди) движется через магнитное поле, в проводе возникает ток (элементарный генератор). И наоборот, когда электричество проходит через провод, намотанный на железный сердечник, и этот сердечник находится в присутствии магнитного поля, он будет двигаться и вращаться (очень простой двигатель).

    Электродвигатели/генераторы

    Моторы/генераторы на самом деле представляют собой одно устройство, которое может работать в двух противоположных режимах. Вопреки тому, что люди иногда думают, это не означает, что два режима двигателя/генератора работают в противоположном направлении (что как двигатель устройство вращается в одном направлении, а как генератор — в противоположном).

    Вал всегда крутится одинаково. «Изменение направления» происходит в потоке электричества. В качестве двигателя он потребляет электричество (втекает) для производства механической энергии, а в качестве генератора он потребляет механическую энергию для производства электричества (вытекает).

    Электромеханическое вращение

    Электродвигатели/генераторы, как правило, относятся к одному из двух типов: переменного тока (переменного тока) или постоянного тока (постоянного тока), и эти обозначения указывают на тип электроэнергии, которую они потребляют и генерируют.

    Не вдаваясь в подробности и не затуманивая проблему, разница заключается в следующем: переменный ток меняет направление (чередуется) по мере прохождения по цепи. Постоянные токи текут однонаправленно (остаются неизменными) при прохождении через цепь.

    Тип используемого тока в основном зависит от стоимости устройства и его эффективности (двигатель / генератор переменного тока, как правило, дороже, но также намного эффективнее). Достаточно сказать, что в большинстве гибридов и во многих более крупных полностью электрических транспортных средствах используются двигатели/генераторы переменного тока, так что именно на этом типе мы сосредоточимся в этом объяснении.

    Двигатель/генератор переменного тока состоит из 4 основных частей:

    • Установленный на валу проволочный якорь (ротор)
    • Поле магнитов, которые индуцируют электрическую энергию, сложенные бок о бок в корпусе (статоре)
    • Токосъемные кольца, передающие переменный ток к/от якоря
    • Щетки, контактирующие с контактными кольцами и передающие ток в/из электрической цепи

    Генератор переменного тока в действии

    Якорь приводится в движение механическим источником энергии (например, в промышленном производстве электроэнергии это будет паровая турбина).Когда этот ротор вращается, его проволочная катушка проходит над постоянными магнитами в статоре, и в проводах якоря создается электрический ток.

    Но поскольку каждый отдельный виток в катушке проходит сначала северный полюс, а затем южный полюс каждого магнита последовательно, когда он вращается вокруг своей оси, индуцированный ток постоянно и быстро меняет направление. Каждое изменение направления называется циклом и измеряется в циклах в секунду или герцах (Гц).

    В Соединенных Штатах частота циклов составляет 60 Гц (60 раз в секунду), в то время как в большинстве других развитых частей мира она составляет 50 Гц.Отдельные токосъемные кольца установлены на каждом из двух концов проволочной петли ротора, чтобы обеспечить путь для выхода тока из якоря. Щетки (которые на самом деле представляют собой угольные контакты) контактируют с токосъемными кольцами и завершают путь тока в цепь, к которой подключен генератор.

    Двигатель переменного тока в действии

    Действие двигателя (предоставление механической энергии) по сути является обратным действием генератора. Вместо того, чтобы вращать якорь для производства электричества, ток подается по цепи через щетки и контактные кольца в якорь.Этот ток, протекающий через обмотку ротора (якорь), превращает его в электромагнит. Постоянные магниты в статоре отталкивают эту электромагнитную силу, заставляя якорь вращаться. Пока электричество течет по цепи, двигатель будет работать.

    Как работает двигатель?

    Ранее было продемонстрировано, что электрический ток, протекающий по проводу, создает магнитное поле, направление которого зависит от направления тока.См. магнетизм от электричества.

    Можно также продемонстрировать, что магнитная сила действует на провод с током. Проденьте проволоку через магнит, как показано ниже, и прикрепите к тесту (Direct Cureent). Сила, направленная вниз, заставит проволоку тянуться вниз.

    СИЛА, ДЕЙСТВУЮЩАЯ НА ПРОВОД В МАГНИТНОМ ПОЛЕ

     

    ПРОСТАЯ СХЕМА КОНТУРА ДВИГАТЕЛЯ

    Если мы теперь вставим петлю вместо провода между магнитным полем (см. изображение ниже), левая сторона петли будет тянуться вниз, а правая сторона будет выталкиваться вверх.Но пока направление тока остается прежним, петля не будет вращаться — — она просто выровняется с магнитным полем магнита. Чтобы заставить петлю вращаться, нам нужно, чтобы ток постоянно менял направление. Если вместо постоянного тока подается переменный ток, проволочная петля будет вращаться.

     

     

    ПРОСТАЯ СХЕМА КОНТУРА ДВИГАТЕЛЯ С КОММУТАТОРОМ

    Однако есть способ заставить петлю вращаться с помощью постоянного тока (постоянный ток).При добавлении «раздельного» коммутатора направление тока в катушке будет меняться каждые пол-оборота, что обеспечивает условия, необходимые для поддержания постоянного вращения катушки.

     

    ЭЛЕКТРОДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

     

    В простом двигателе, показанном выше, ток во вращающейся катушке реверсируется каждые пол-оборота с помощью устройства автоматического переключения, состоящего из разъемного металлического кольца, называемого коммутатором .Вращающаяся часть двигателя называется якорем и состоит из катушки с множеством витков провода. Якорь установлен на оси между двумя неподвижными магнитными полюсами. Каждый конец якоря прикреплен к одному концу коммутатора (см. красные стрелки). Ток поступает в коммутатор через одну щетку, подключенную к аккумулятору. Ток выходит из якоря через вторую щетку, контактирующую с другой половиной коллектора. Так как при вращении коммутатора щетки неподвижны, то каждая щетка в течение одного полуоборота контактирует с одной половиной коллектора, а в течение второго полуоборота с противоположной половиной или коллектором.В результате ток в якоре меняет свое направление каждые пол-оборота и обеспечивает условия, необходимые для поддержания вращения якоря


    Что такое электродвигатель?

    Электродвигатель — это устройство, которое превращает поток электрического тока в механическое вращение шпинделя или ротора. Во многих приложениях вращение превращается в линейное движение.

     

    Как работает электродвигатель?

    Существует множество вариантов и вариантов электродвигателей; например, двигатели постоянного тока – щеточные или бесщеточные и двигатели переменного тока – асинхронные (или асинхронные) и синхронные.Двигатели могут работать при различных напряжениях в зависимости от области применения и доступного источника питания.

    Работа двигателя зависит от двух свойств электрического тока. Во-первых, электрический ток, протекающий по проводу или катушке, создает магнитное поле.

    Во-вторых, изменение тока в проводнике, например от источника переменного тока, вызовет появление напряжения в проводнике (самоиндукция) или во вторичном проводнике (взаимная индуктивность).Ток, протекающий в цепи вторичного проводника, также будет создавать магнитное поле, как указано выше.

    У магнита одинаковые полюса отталкиваются, а противоположные притягиваются. Во всех двигателях конструкция использует это свойство для обеспечения непрерывного вращения ротора.

     

     

     

    На приведенной ниже диаграмме показана кривая трехфазного переменного тока; каждая фаза разделена фазовым углом 120 0 , как показано на векторной диаграмме в середине.

     

     

    При определенном фазовом угле будет результирующее направление поля, которое можно вычислить путем сложения векторов; постоянный магнит(ы) в роторе будет выглядеть так, чтобы выровняться с направлением поля, и по мере того, как форма волны переменного тока «прогрессирует» во времени, ротор будет вращаться, как показано на рисунке.

    на 30 °:

    на 90 ° С

    на 180 ° С

    и так далее через один полный цикл (360 0 ), где ротор эффективно вернется в исходное положение и повторит процесс снова.

     

    Как выбрать электродвигатель?

    Не во всех случаях возможно использование трехфазного синхронного двигателя; хотя размер эффективен для его мощности, приведенный выше двигатель был бы слишком большим, например, для привода DVD-плеера.Кроме того, трехфазное питание не было бы идеальным для бытовых (или большинства коммерческих) ситуаций; Таким образом, применение является важным фактором при определении размера и напряжения питания.

    Мощность (через крутящий момент), требуемая от двигателя, является важным фактором; каковы динамические аспекты применения – нагрузка, ускорение/торможение и расстояния, которые необходимо переместить в радиальном или поперечном направлении?

    Также важна стабильность скорости вращения; двигатель должен работать с постоянной скоростью, даже при низких оборотах?

    Наконец, следует учитывать условия окружающей среды – какова рабочая температура и могут ли возникнуть проблемы с водой или пылью? Будет ли двигатель работать во взрывоопасной среде и будет ли требоваться класс ATEX?

     

    Типы электродвигателей

    Как указано выше, существует множество вариантов двигателей; с питанием от постоянного или переменного тока и различных напряжений, в зависимости от применения.

    Важным фактором при выборе двигателей является разница между серводвигателями и шаговыми двигателями. Серводвигатель имеет механизм обратной связи — сигнал обратной связи сравнивается с заданным значением до тех пор, пока не будет нулевой разницы, когда двигатель достигнет желаемого положения.

     

     

    Шаговый двигатель также обеспечивает управление, но его можно рассматривать как цифровую версию двигателя со специальной конструкцией. Несколько независимых катушек статора (статор является неподвижной частью двигателя) и специально разработанный ротор позволяют двигателю перемещаться в заданное положение или под углом в соответствии с командой.

    Шаговые двигатели идеально подходят для маломощных и недорогих приложений, таких как дисковод компакт-дисков. И наоборот, серводвигатели лучше подходят для приложений с более высокой мощностью, высоким ускорением и высокой точностью.

     

    Типичные области применения электродвигателей

    Электродвигатели находят широкое применение в быту, например, в стиральных машинах для компакт-дисков, DVD-дисков и т. д., и в коммерческих целях, например в медицинских учреждениях, офисах и промышленности.В сочетании с линейным исполнительным механизмом типичными приложениями являются, среди прочего, автомобилестроение, погрузочно-разгрузочные работы, робототехника, производство продуктов питания и напитков, а также упаковка.

     

    Нужно ли мне что-то еще, чтобы электродвигатели работали?

    Подходящее электропитание и соответствующие кабели к оборудованию крайне важны. В любом случае двигатель должен быть соединен с его приводными компонентами напрямую, через шестерни или ремни, и для этого может потребоваться демпфирование вибрации.Датчики температуры являются разумным дополнением, и в случае возможного перегрева потребуется вентилятор с подходящей вентиляцией.

    Кабели необходимы для подачи питания и сигналов управления между двигателем и приводом (см. статью «Что такое электропривод»).

    Как работает электродвигатель? — Урок для детей

    Индукция и правило правой руки

    Физики используют правило, называемое правилом правой руки , которое говорит нам, как протекающий электрический ток влияет на магнитное поле вокруг него.Это правило гласит, что если вы направите большой палец правой руки в направлении потока электричества, то вокруг него будет создано магнитное поле, которое движется в направлении ваших сгибающихся пальцев. Это так же просто, как поднять палец вверх (для правой руки)!

    Правило правой руки описывает взаимодействие электрического и магнитного полей.

    Этот процесс создания магнитного поля вокруг потока электричества называется индукцией .Индукцию можно использовать для управления направлением магнитного поля внутри электродвигателя. Всякий раз, когда мы используем электричество для создания движения, мы делаем электродвигатель. Майкл Фарадей и Уильям Стерджен были первыми английскими учеными, которые использовали индукцию для создания двигателя. Идею также независимо открыл американский ученый Джозеф Генри.

    Создание движения

    Магнитные поля могут создавать движение, прилагая силу. Эта сила является причиной того, что магниты прилипают к вашему холодильнику.Возможно, вы слышали выражение «противоположности притягиваются». Особенно это касается магнитов. В магните обычно есть два «полюса». Мы называем их «северным» и «южным» полюсами. Они возникают на противоположных концах магнита и притягиваются друг к другу. Если вы поместите северный конец одного магнита рядом с южным концом другого магнита, они будут стягиваться или притягиваться. Но если вы поместите северный конец одного магнита рядом с северным концом другого магнита или южный конец рядом с другим южным концом, они будут отброшены или оттолкнуты.Противоположности притягиваются, а симпатии отталкиваются.

    Когда мы пропускаем электричество по проводу, оно создает магнитное поле в соответствии с правилом правой руки, которое вы узнали выше. Если мы поместим рядом с этим проводом два магнита, они будут либо притягивать, либо отталкивать провод, в зависимости от того, каким путем мимо них течет электричество. Мы можем использовать этот факт для создания движения.

    Если мы поместим петлю провода с электрическим током в магнитное поле (как показано на анимации ниже), сторона рядом с северным полюсом испытает силу вверх, а сторона рядом с южным полюсом испытает силу вниз.Это заставит петлю начать вращаться. Если бы течение шло в другую сторону, эти силы были бы противоположными (из-за правила правой руки).

    Анимация электродвигателя. Петля вращается за счет магнитной силы. Стрелки в центре указывают направление магнитного поля.

    На каждом конце проволочной петли расположены щетки, замыкающие цепь, с батареей, обеспечивающей электричество.На анимации выше кисти — это серые полумесяцы, обведенные красным и синим цветом. Каждый раз, когда проволочная петля поворачивается наполовину, щетки меняются местами. Это гарантирует, что электрический ток будет течь в одном и том же направлении каждый раз, когда петля проходит мимо магнитов, и, следовательно, магнитные силы будут продолжать вращать петлю в том же направлении, пока течет электричество.

    Добавить комментарий

    Ваш адрес email не будет опубликован.