Электропроводность материалов таблица: Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.

Содержание

объяснение, формулы, единица измерения, таблица

Почему медь проводит электричество лучше, чем вода? Прочитав эту статью, вы больше не будете задавать себе больше этот вопрос. Далее мы обсудим электропроводность и рассмотрим формулы, которые описывают это понятие. Наконец, вы можете проверить свои знания на двух примерах.

Простое объяснение.

Электропроводность — это физическая величина, которая описывает насколько хорошо определенный материал проводит электричество.

Формулы

Существует три различных формульных обозначения удельной электропроводности σ (греч. сигма), k (каппа) и γ (гамма). В дальнейшем мы будем использовать σ. Формула электропроводности, также называемой удельной электропроводностью, описывается формулой:

σ = 1 / ρ .

Здесь ρ называется удельным сопротивлением. Вы можете рассчитать электрическое сопротивление R проводника с учетом его параметров следующим образом: R = ( ρ * l ) / S

.

Таким образом, сопротивление R равно удельному сопротивлению ρ , умноженному на длину проводника l, деленному на площадь поперечного сечения S. Если теперь вы хотите выразить эту формулу через удельную электропроводность σ = 1 / ρ , полезно знать, что электрическая проводимость G проводника выражается следующим образом: G = 1 / R .

Если в верхнюю формулу подставить удельную электропроводность σ и электрическую проводимость G, то получится следующее: 1 / G = ( 1 / σ ) * ( l / S ) .

Путем дальнейшего преобразования можно получить выражение: G = σ * S / l .

С помощью электропроводности можно также описать важную зависимость между плотностью электрического тока и напряженностью электрического поля с помощью выражения: J = σ * E .

Единица измерения

Единицей удельной электропроводности σ в СИ является: [ σ ] = 1 См/м ( Сименс на метр ).

Эти единицы определяются по формуле G = σ * S / l . Если решить эту формулу в соответствии с σ, то получим

σ = G * l / S .

Единица измерения электрической проводимости G задается как: [ G ] = 1 / σ = 1 См ( Сименс, международное обозначение: S ).

Если теперь ввести в формулу все единицы измерения, то получится:

[ σ ] = 1 См * 1 м / м2 = 1 См / м .

Вы также будете чаще использовать единицы измерения См / см , м / Ом * мм2 или См * м / мм2 . Вы можете преобразовать отдельные измеряемые переменные так: См / см = См / 10-2 м и так: м / Ом * мм2 = См * м / мм2 = См * м / 10-3 м * 10-3 м = 106 См / м .

Электропроводность металлов

В зависимости от количества свободно перемещающихся электронов один материал проводит лучше, чем другой. В принципе, любой материал является проводящим, но в изоляторах, например, протекающий электрический ток ничтожно мал, поэтому здесь мы говорим о непроводниках.

В металлических связях валентные электроны, т.е. крайние электроны в атоме, свободно подвижны. Они расположены в так называемой полосе проводимости. Находящиеся там электроны образуют так называемый электронный газ. Соответственно, металлы являются сравнительно хорошими проводниками. Если теперь подать электрическое напряжение на металл, валентные электроны медленно движутся к положительному полюсу, потому что он их притягивает.

Рис. 1. Движение электронов в металле

На рисунке 1 видно, что некоторые электроны не могут быть притянуты непосредственно к положительному полюсу, потому что на пути стоит, так сказать, твердое атомное ядро. Там они замедляются и в некоторой степени отклоняются. Именно поэтому электроны не могут ускоряться в металле бесконечно, и именно так возникает удельное сопротивление или электропроводность.

Теперь вы также можете измерить удельную электропроводность в металле с помощью следующей формулы: σ = ( n * e2

* τ ) / m .

В этой формуле n означает число электронов, e — заряд электрона, m — массу электрона, а τ — среднее время полета электрона между двумя столкновениями.

Таблица удельной электропроводности

Для большинства веществ уже известны значения удельной электропроводности. Некоторые из них вы можете найти в следующей таблице ниже. Все значения в этой таблице действительны для комнатной температуры, т.е. 25°C.

ВеществоУдельная электропроводность в См / м
Серебро62 · 106
Медь58 · 106
Золото45,2 · 106
Алюминий37,7 · 106
Вольфрам19 · 106
Латунь15,5 · 106
Железо9,93 · 106
Нержавеющая сталь (WNr. 1,4301)1,36 · 106
Германий (легирование <10
-9
)
2
Кремний (легирование <10-12)0,5 · 10-3
Морская водапримерно 5
Водопроводная водапримерно 0,05
Дистиллированная вода5 · 10-6
Изоляторобычно <10-8
Таблица удельной электропроводности некоторых веществ при температуре 25 °C

Удельная электропроводность сильно зависит от температуры, поэтому указанные значения применимы только при 25°C. При повышении температуры вибрация решетки в веществе становится выше. Это нарушает поток электронов, и поэтому электропроводность уменьшается с ростом температуры.

Из таблицы видно, что медь имеет вторую по величине электропроводность, поэтому медные кабели очень часто используются в электротехнике. Серебро обладает еще более высокой проводимостью, но стоит намного дороже меди.

Интересно также сравнение между морской и дистиллированной водой. Здесь электропроводность возникает благодаря растворенным в воде ионам. Морская вода имеет очень высокую долю соли, которая растворяется в воде. Эти ионы передают электрический ток. В дистиллированной воде нет растворенных ионов, поэтому в ней практически не может протекать электрический ток. Поэтому электропроводность морской воды намного выше, чем дистиллированной.

Примеры задач

Для более детального рассмотрения приведём два примера расчетов.

Задача 1.

В первой задаче представьте, что у вас есть провод длиной 2 м с поперечным сечением 0,5 мм2. Электрическое сопротивление провода при комнатной температуре составляет 106 мОм. Из какого материала изготовлен провод?

Решение.

Решение данной задачи можно найти с помощью формулы: R = ( 1 / σ ) * ( l / S ). Из этой формулы найдём σ = l / ( S * R ) .

Теперь вы можете вставить заданные значения, убедившись, что вы перевели сечение в м

2.

σ = l / ( S * R ) = 2 м / ( ( 0,5 * 10-6 м2 ) * ( 1 / 106 * 10-3 Ом ) ) = 37, 7 * 106 См / м .

Наконец, вы ищите в таблице, какой материал имеет удельную электропроводность σ = 37, 7 * 106 См / м и приходите к выводу, что провод сделан из алюминия.

Задача 2.

В задаче 2 вам дано только удельное сопротивление образца с 735 * 10-9 Ом * м. Из какого материла изготовлен образец?

Решение.

Вы можете использовать формулу σ = 1 / ρ для расчёта удельной электропроводности. После подстановки значений в эту формулу вы получите: σ = 1 / ρ = 1 / 735 * 10-9 Ом * м = 1,36 * 106 См / м .

Если вы снова заглянете в таблицу, то обнаружите, что образец должен быть изготовлен из нержавеющей стали.

Удельное электрическое сопротивление обычных электроизоляционных материалов при 20 ° C. Ом*м. Таблица.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость.  / / Удельное электрическое сопротивление обычных электроизоляционных материалов при 20 ° C. Ом*м. Таблица.

Удельное электрическое сопротивление обычных электроизоляционных материалов при 20 ° C. Таблица.

Удельное электрическое сопротивление обычных электроизоляционных материалов при 20 ° C.

Материал

Удельное электрическое

сопротивление, Ом*м

Битум

1013-1014

Воск пчелиный

1011-1012

Гетинакс

108-109

Сухая древесина (дерево)

106-107

Канифоль

1012-1013

Капрон

1010-1011

Лавсан

1014-1016

Мрамор

105-109

Парафин

1014-1016

Полистирол

1013-1015

Полиэтилен

1013-1015

Резина электроизоляционная

1013

Слюда

1013-1016

Стекло

106-1015

Текстолит

108-109

Фарфор электротехнический

7*1010-4*1011

Фибра

1011

Фторопласт-4 (Ф-4, PTFE)

1016-1017

Церазин

1013

Шифер

104-106

Эбонит

(2,6-8,4)*1018

Эскапон

1013-1015

Эпоксидные смолы

1011-1013




Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Материалы высокой электропроводности

 

К материалам высокой электропроводности предъявляются следующие требования:

· высокая электропроводность;

· высокая механическая прочность;

· технологичность – т. е. способность к сварке, пайке, пластичность;

· коррозионная стойкость;

· низкая стоимость.

Высокой электропроводностью обладают чистые непереходные металлы с ГЦК решеткой (Ag, Cu, Al, Au).

Высокой механической прочностью будут обладать металлы с низкой энергией дефекта упаковки или сплавы металлов. Однако в случае образования твердого раствора помимо роста прочности увеличивается и удельное электросопротивление. Поэтому для материалов высокой электропроводности используют лишь такое легирование, когда компоненты не растворяются друг в друге. Так, например, алюминий легируют магнием и кремнием, которые образуют интерметаллидное соединение, или легируют плохо растворяющимся в алюминии марганцем.

Что касается технологичности, то у всех металлов с ГЦК решеткой высокая пластичность, следовательно, из них легко получаются изделия методами обработки давлением. Поэтому проблема технологичности сводится к легкости пайки и сварки.

Рассмотрим свойства наиболее часто применяемых материалов высокой электропроводности (табл. 3.1).

 

Серебро

Наибольшую электропроводность из всех металлов имеет серебро. При комнатной температуре его удельное электрическое сопротивление составляет 0,0150 мкОмґм. Серебро пластично — относительное удлинение при растяжении порядка 50%. Кроме того, серебро обладает высокой теплоемкостью и теплопроводностью и высокой коррозионной стойкостью. У серебра высокая плотность — 10,49 г/см3, что в сочетании с плотноупакованной ГЦК решеткой свидетельствует о малом радиусе иона. Поэтому серебро активно диффундирует в керамику, что позволяет создавать прочные покрытия керамики серебром (керамические конденсаторы).

К недостаткам серебра как проводникового материала относятся его стоимость, а также взаимодействие серебра с серой с образованием Ag2S. Сульфид серебра относится к вырожденным полупроводникам. С одной стороны, образование сульфида серебра повышает электрическое сопротивление поверхностных слоев, что недопустимо в высокочастотной технике. С другой стороны, в определенных условиях кристаллы сульфида серебра растут в виде тонких усов и в ходе роста могут замыкать участки электрической цепи. Поэтому не рекомендуется применять серебро по соседству с эбонитом, резиной и другими материалами, содержащими серу.

 

 

Материалы высокой электропроводности Таблица 3.1

Металл r, г/см3 tпл , оС Rуд, нОм´м s, МПа d, %
Серебро 10,5
Медь 8,94
Алюминий 2,7
Железо 7,86
Никель 8,9
Золото 19,3
Свинец 11,4

Медь

Медь обладает достаточно малым удельным электросопротивлением (0,0168 мкОмґм), пластична и обладает высокой прочностью. Хотя медь относится к той же подгруппе, что и серебро и золото, но она более активна и образует соединения с О2, СО2, Н2О. Поэтому при пайке и сварке меди приходится использовать флюсы – вещества, удаляющие с поверхности материала оксиды. Важно отметить, что химические соединения меди нестойки и удаляются простейшим флюсом – раствором канифоли в спирте или ацетоне. Поэтому медь достаточно технологична.

Наибольшее распространение получила медь марок М1 (99,90% Cu) и М0 (99,95% Cu). Основной примесью в меди является кислород, присутствующий в виде закиси меди. В электровакуумной технике применяют бескислородную медь.

Алюминий

Удельное сопротивление алюминия в 1,6 раз выше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря этому при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных, несмотря на большее поперечное сечение. К тому же алюминий дешевле меди. Указанные обстоятельства привели к широкому применению алюминия в электротехнике.

Недостатком алюминия является низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь. Для повышения прочности алюминий легируют элементами, плохо растворяющимися в основном металле или образующими интерметаллидные соединения. Так, при легировании алюминия магнием и кремнием в алюминиевой матрице образуются частицы силицида магния, затрудняющие движение дислокаций. При таком легировании решетка алюминия остается неискаженной и электропроводность алюминия практически не изменяется.

Характерной особенностью алюминия является наличие на его поверхности химически стабильной пленки Al2O3. Окисная пленка затрудняет пайку алюминия.


Сплавы для проводников и элементов сопротивления :: Технология металлов

Проводниковые материалы должны изготовляться из возможно чистых металлов, а материалы высокого сопротивления — из сплавов, структура которых пред­ставляет твердый раствор.

Основными проводниковыми материалами являются медь и алюминий. Понятие «чистого» металла условно, так как чистота получаемых металлов повы­шается из года в год по мере роста технических средств в производстве и в лабораториях. С другой стороны, электрическое сопротивление чистых металлов резко возрастает при наличии малых количеств растворенных примесей. Из рис.  видно, как значительно падает проводимость меди при введении в ее состав таких примесей, как кремний, железо, мышьяк, бериллий в количествах <0,2%. Для проводниковой техники разработан интернациональный стан­дарт технически чистой отожженной меди (1913 г.), удельное сопротивление которой при 20° С равно 1,7241 мкОм-см. С тех пор добились дальнейшего очи­щения меди и повышения ее проводимости.

Для повышения прочности медного провода в его состав вводят примеси Cd, Sn, Αl, Ρ, Cr, Be. Электропроводность при этом, естественно, понижается.

Рис. 1. Влияние примесей на электропроводность меди

Наиболее распространенной является так называемая кадмиевая бронза (0,9% Cd, остальное медь), которая в твердотянутом состоянии обладает проводимостью до 90% от проводимости меди при временном сопротивлении при растяжении, в 2—2,5 раза большем, чем у меди. В табл. 25 приведены составы и свойства медных проводниковых материалов.

Проводниковый алюминий имеет электропроводность, равную 65% от про­водимости меди. Однако ввиду малой плотности алюминия его проводимость, рассчитанная на 1 кг проводника, составляет 214% от таковой для меди. Это позволяет облегчить конструкцию опор на линиях передач с алюминиевыми про­водами. Для повышения прочности алюминиевых проводов в их состав вводят магний и кремний (совместно), которые образуют соединение Mg2Si, очень мало растворимое в алюминии при комнатной температуре (меньше 0,25%). Путем закалки и старения удается повысить временное сопротивление такого сплава в 2 раза при электропроводности 90% от проводимости чистого алюминия. Сплавы такого типа (альдрей и альмелек) содержат 0,4 и 0,7% Mg, 0,5—0,6% Si и до 0,3% Fe. Альдрей (0,4% Mg, 0,6% Si и 0,3% Fe) имеет температурный коэф­фициент электрического спротивления, равный 3,6 * 10-4, т. е. весьма близкий к температурному коэффициенту чистого алюминия (4,0 * 10-4). Это еще раз свидетельствует о том, что при обработке путем дисперсионного твердения Mg2Si выделяется из раствора почти нацело.

Для реостатов в нагревательных приборах, а также там, где необходимо высокое электрическое сопротивление и малый температурный коэффициент, применяют сплавы железа с примесями, образующими твердые растворы. В табл. 2 приводятся типичные железные сплавы, а также для сравнения сплавы на никелевой основе.

Эти сплавы являются не только сплавами высокого сопротивления, но и жаростойкими. Для придания жаростойкости в железные сплавы вводятся хром и алюминий. Железные сплавы дешевле никелевых, однако они не только не яв­ляются заменителями, но имеют также и более высокую рабочую температуру.

В качестве элементов сопротивления применяются  медноникелевые сплавы— константан и никелин. Рабочая температура константана до 400° С, никелина — до 200° С.

Таблица 1

Медные  проводниковые  сплавы

Сплав

Состояние

Электро­провод­ность, %

Временное сопротивле­ние при рас­тяжении, МПа

Удлине­ние,  %

Чистая медь

Отожженная

101

220—270

50

Твердотянутая

98

До 480

4

Кадмиевая     бронза

(0,9% Cd)

Отожженная

95

310—380

50  

Твердотянутая

83—90

До 730

4

Бронза     (0,75% Sn

или 0,8% Cd и 0,6% Sn)

Отожженная

55—60

290 .

55

Твердотянутая

50—55

До 730

4

Бронза      (2,5% А1, 2% Sn)

Отожженная

15—18

370

45

Твердотянутая

15—18

До 970

4

Фосфористая  бронза

(7% Sn, 0,1% Ρ)

Отожженная

10—15

400

60

Твердотянутая

10—15

1050

3

Таблица 2

Сплавы  для   реостатов  и  нагревательных  приборов

Сплав

Состав (средний),  %

Удельное электро­сопроти­вление, мкОм · см

Темпера­турный коэффи­циент α

Наивыс­шая ра­бочая темпера­тура, °С

Х13Ю4 (фехраль)

13,5 Сr; 4,5 Аl; остальное Fe

126

0,00005

1000

0Х23Ю5

23 Сr; 5 Аl; остальное Fe

137

1200

0Х27Ю5А

27 Сr; 5,5 Аl; остальное Fe

142

0,00002

1300

Сверхмегапир

37 Сr; 7,5 Аl; остальное Fe

180

0,00012

1350

Х15Н60 (нихром)

16,5 Сr: 58 Ni: остальное Fe

110

0,00017

1000

Х20Н80

21,5 Сr; остальное Ni

100

1100

 

Таблица 3.

Влияние   различных  элементов   на  удельное электросопротивление  железа

Элемент

 

 

Пределы концентрации и

температуры

Средние  значения   возрастания

удельного сопротивления, мкОм.см

% (по массе)

°с

на 1 % (по массе)

на 1 % (ат.)

Аl

0—2,0

18—23

11,1—14,4

6,0—7,7

As

0—2,6

6,8

9,10

Au

1.1

5,80

В

0—0,45

6,2

1,25

С

0—0,9

20

34,0

7,6

Со

0,5

18—30

1,0—3,0

1,1—3,2

Сг

0,3

12

2,5—5,4

2,3—5,0

Сu

0—1

3,0—4,0

3,4—4,6

Μn

0—2

18—30

5,0—10,5

4,9—10,3

Mo

0—1

17

3,4

5,8

Ν

0—0,1

20

14,6

3,8

Ni

0—5

18—30

1,55—4,45

1,7-4,7

Ρ

0—0,3

11,4

6,1

S

0—0,1

20

12,0

6,9

Si

0—1

20

13—15,8

6,5—8,0

Ti

1,0

0,9

V

0—1

6,7

6,1

W

0—2

15—20

2,0—3,6

6,5—11,8

 

 

 

Источник:
Лившиц Б.Г., Крапошин В.С, Липецкий Я.Л. «Физические свойства металлов и сплавов». М. «Металлургия», 1980.

Удельное сопротивление материала проводника таблица

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд. Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:. Если напряженность электрического поля Е в металле очень большая, а плотность тока J очень маленькая, это означает, что металл имеет высокое удельное сопротивление. Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Расчёт сопротивления проводника. Видеоурок по физике 8 класс

Что такое удельное сопротивление проводника?


Раздел недели: Символы и обозначения оборудования на чертежах и схемах Техническая информация тут. Перевод единиц измерения величин Таблицы числовых значений Алфавиты, номиналы, единицы Математический справочник Физический справочник тут Химический справочник Материалы Рабочие среды Оборудование Инженерное ремесло Инженерные системы Технологии и чертежи Личная жизнь инженеров Калькуляторы.

Поставщики оборудования. Полезные ссылки. Адрес этой страницы вложенность в справочнике dpva. Таблица удельных сопротивлений металлов. Таблица удельных сопротивлений проводников. Зависимость сопротивления металлов от температуры. Поиск в инженерном справочнике DPVA. Введите свой запрос:. Дополнительная информация от Инженерного cправочника DPVA, а именно — другие подразделы данного раздела:.

Удельное электрическое сопротивление основных типов почв, грунта, земли, камня. Электрическое сопротивление r Ом 1м проволоки провода Длина проводника провода, проволоки Температура в зависимости от тока. Электропроводимость электрическая проводимость и электрическое сопротивление магния и магниевых сплавов. Электропроводимость электрическая проводимость и электрическое сопротивление никеля и никелевых сплавов. Электропроводимость электрическая проводимость и электрическое сопротивление титана и титановых сплавов.

Размеры и электрическое сопротивление. Реактивное сопротивление емкости конденсатора в зависимости от частоты. Реактивное сопротивление индуктивности катушки в зависимости от частоты.

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста. Коды баннеров проекта DPVA. Раздел недели: Символы и обозначения оборудования на чертежах и схемах. Техническая информация тут Перевод единиц измерения величин Таблицы числовых значений Алфавиты, номиналы, единицы Математический справочник Физический справочник тут Химический справочник Материалы Рабочие среды Оборудование Инженерное ремесло Инженерные системы Технологии и чертежи Личная жизнь инженеров Калькуляторы Поиск на сайте DPVA Поставщики оборудования Полезные ссылки О проекте Обратная связь Ответы на вопросы.

Оглавление Адрес этой страницы вложенность в справочнике dpva. Справка проекта:. Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.


Удельное сопротивление проводников: меди, алюминия, стали

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов напряжением на его концах. Формулировка для участка электрической цепи проводника , не содержащего источников электродвижущей силы ЭДС : сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в году. В случае переменного тока, величины, входящие в расчётные формулы — становятся комплексными. Закон Ома в дифференциальной форме — описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Задание 1: Определить удельное сопротивление провода реостата. По справочной таблице можно определить материал проводника. На практике.

Определение удельного сопротивления проводника (Лабораторная работа № 8)

Понятие об электрическом сопротивлении и проводимости. Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением. Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току. Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Удельное электрическое сопротивление стали при различных температурах

Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в г раствора. При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.

Раздел недели: Символы и обозначения оборудования на чертежах и схемах Техническая информация тут.

Удельное сопротивлене меди и ее влияние на свойства металла

Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока. Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества. Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру.

Удельное сопротивление меди

Электрическое сопротивление — характерная для данного проводника величина, определяющая силу тока, проходящего по проводнику и вызываемого приложенным к его концам напряжением. При этом напряжение U , сила тока I и сопротивление R связаны между собой законом Ома:. Зависимость электрического сопротивления постоянному току от длины проводника l в м и площади его поперечного сечения S в м 2 выражается формулой. Зависимость электрического сопротивления металлических проводников от температуры может быть выражена в ограниченном интервале температур формулой. Числом переноса i -го иона, t i , называется доля общего количества электричества, проходящего через электролит расплав, раствор , переносимая данным ионом:. В табл. Информация об удельной электрической проводимости воды, органических и неорганических веществ, твердых и расплавленных солей, а также о числах переноса катиона и аниона в твердых солях содержится в табл.

Таблица. Длина проводника (провода, проволоки) имеющего электрическое сопротивление 1 Ом. all-audio.pro — Инженерный справочник. Удельное электрическое сопротивление обычных электроизоляционных материалов при 20 ° C. Ом*м. Таблица. Удельное электрическое сопротивление основных.

Удельное сопротивлене меди и ее влияние на свойства металла

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд. Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:.

Удельное сопротивление меди

Вход Регистрация. Поиск по сайту. Учебные заведения. Проверочные работы. Отправить отзыв. Поэтому чем больше сопротивление, тем меньше сила тока, протекающего в проводнике.

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов.

Решение задач на тему: «Электрическое сопротивление. Закон Ома»

Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления. Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление далее — у. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление — это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:.

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении свободные электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.


Единица измерения электропроводимости. Электрическая проводимость различных веществ. Электронная проводимость металлов. Удельное электрическое сопротивление

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l .

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l )/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Видео

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Удельное сопротивление и температура

Удельное сопротивление проводника является величиной, которая меняется с температурой, поэтому ее точно рассчитывают для показателя 20°. Если температура отличается, значение ρ необходимо отрегулировать на основе другого коэффициента, называемого температурным и обозначаемым α (единица – 1/°С). Это тоже характерное значение для каждого материала.

Модифицированный коэффициент рассчитывается на основе значений ρ, α и отклонения температуры от 20 ° Δt:

ρ1 = ρ х (1 + α х Δt).

Если до этого сопротивление было известно, то можно напрямую произвести его расчет:

R1 = R x (1 + α х Δt).

Практическое использование различных материалов в электротехнике напрямую зависит от их удельного сопротивления.

Видео

Вещество (металл) из которого сделан проводник влияет на прохождение через него электрического тока и характеризуется с помощью такого понятия, как электрическое сопротивление.Электрическое сопротивление зависит от размеров проводника, его материала, температуры:

    • -чем длиннее провод, тем чаще движущиеся свободные электроны (носители тока) будут сталкиваться на своем пути с атомами и молекулами вещества — сопротивление проводника возрастaет;
    • — чем больше поперечное сечение проводника, тем свободным электронам становится просторнее, число столкновений уменьшается — электрическое сопротивление проводника уменьшается.

Вывод: чем длиннее проводник и меньше его сечение, тем больше его сопротивление и наоборот — чем провод короче и толще, тем сопротивление его меньше , а проводимость (способность пропускать эл. ток) его лучше.

Упрощенно, зависимость сопротивления проводника от температуры можно представить так: электроны, движущиеся вдоль проводника, сталкиваются с атомами и молекулами самого проводника и передают им свою энергию. В результате проводник нагревается, тепловое, беспорядочное движение атомов и молекул увеличивается. Это еще больше тормозит основной поток электронов вдоль проводника. Этим объясняется увеличение сопротивления проводника прохождению электрического тока при нагреве.

При нагреве или охлаждении проводников — металлов, сопротивление их соответственно увеличивается или уменьшается, из расчета 0,4 % на каждый 1 градус. Это свойство металлов используется при изготовлении датчиков температуры.

Полупроводники и электролиты имеют противоположное свойство, чем проводники — с увеличением температуры нагрева их сопротивление уменьшается.

За единицу измерения электрического сопротивления принят 1 Ом (в честь ученого Г.Ома). Сопротивлению в 1 Ом равен участок электрической цепи, по которому проходит ток в 1 Ампер при падении на нем напряжения в 1 Вольт,

Иногда пользуются величиной обратной электрическому сопротивлению. Это электрическая проводимость, обозначается буквой g или G – Сименс (в честь ученого Э.Сименса).

Электрической проводимостью называется способность вещества пропускать через себя электрический ток. Чем больше сопротивление R проводника, тем меньше его проводимость G и наоборот. 1 Ом = 1 Сим

Производные единицы:

1Сим = 1000мСим,
1Сим = 1000000мкСим.

Когда необходимо посчитать общее сопротивление последовательно соединенных проводников, то удобнее оперировать с Омами. если вычисляется общее сопротивление параллельно соединенных проводников, удобней считать в Симах, а потом преобразовать в Омы.

Наибольшей проводимостью обладают металлы: серебро, медь, алюминий и др., а также растворы солей, кислот и др.
Наименьшая проводимость (наибольшее сопротивление) у изоляторов: слюда, стекло, асбест, керамика и т.д…

Чтобы удобнее проводить расчеты электрического сопротивления проводников, изготовленных из различных металлов, ввели понятие удельного сопротивления проводника.
Сопротивление проводника длиной 1 метр, сечением 1 мм. кв. при температуре + 20 градусов, это будет удельное сопротивление проводника «p» .

Удельные сопротивления проводников некоторых металлов приведены в таблице.

Из таблицы видно: из металлов, наилучшей проводимостью обладает серебро. Но оно очень дорого и в качестве проводников используется в исключительных случаях.

Медь и алюминий — наиболее распространенные материалы в электротехнике. Из них изготавливаются провода и кабели, электрические шины и пр. Вольфрам, константан, манганин используются в различных нагревательных приборах, при изготовлении проволочных резисторов.

Используя провода и кабели в электроустановках, необходимо учитывать их сечение, чтобы предотвратить их нагрев и, как правило, порчу изоляции, а также уменьшить падение напряжения и потерю мощности при передаче электрической энергии от источника до потребителя.

Ниже приведена таблица допустимых величин тока в проводнике в зависимости от его диаметра (сечения в мм.кв.), а так же сопротивление 1 метра провода, изготовленного из разных материалов.


Примеры расчето внекоторых электрических цепей можно посмотреть здесь.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает . Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает .

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 условная единица электропроводности = 0,0001 сименс на метр [См/м]

Исходная величина

Преобразованная величина

сименс на метр пикосименс на метр мо на метр мо на сантиметр абмо на метр абмо на сантиметр статмо на метр статмо на сантиметр сименс на сантиметр миллисименс на метр миллисименс на сантиметр микросименс на метр микросименс на сантиметр условная единица электропроводности условный коэффициент электропроводности миллионных долей, коэф. пересчета 700 миллионных долей, коэф. пересчета 500 миллионных долей, коэф. пересчета 640 TDS, миллионных долей, коэф. пересчета 640 TDS, миллионных долей, коэф. пересчета 550 TDS, миллионных долей, коэф. пересчета 500 TDS, миллионных долей, коэф. пересчета 700

Объемная плотность заряда

Введение и определения

Удельная электрическая проводимость (или удельная электропроводность) является мерой способности вещества проводить электрический ток или перемещать электрические заряды в нем. Это отношение плотности тока к напряженности электрического поля. Если рассмотреть куб из проводящего материала со стороной 1 метр, то удельная проводимость будет равна электрической проводимости, измеренной между двумя противоположными сторонами этого куба.

Удельная проводимость связана с проводимостью следующей формулой:

G = σ(A/l)

где G — электрическая проводимость, σ — удельная электрическая проводимость, А — поперечное сечение проводника, перпендикулярное направлению электрического тока и l — длина проводника. Эту формулу можно использовать с любым проводником в форме цилиндра или призмы. Отметим, что эту формулу можно использовать и для прямоугольного параллелепипеда, потому что он является частным случаем призмы, основанием которой является прямоугольник. Напомним, что удельная электрическая проводимость — величина, обратная удельному электрическому сопротивлению.

Людям, далеким от физики и техники, бывает сложно понять разницу между проводимостью проводника и удельной проводимостью вещества. Между тем, конечно, это разные физические величины. Проводимость — это свойство данного проводника или устройства (например, резистора или гальванической ванны), в то время как удельная проводимость — это неотъемлемое свойство материала, из которого изготовлены этот проводник или устройство. Например, удельная проводимость меди всегда одинаковая, независимо от того как изменяется форма и размеры предмета из меди. В то же время, проводимость медного провода зависит от его длины, диаметра, массы, формы и некоторых других факторов. Конечно, похожие объекты из материалов с более высокой удельной проводимостью имеют более высокую проводимость (хотя и не всегда).

В Международной системе единиц (СИ) единицей удельной электрической проводимости является сименс на метр (См/м) . Входящая в нее единица проводимости названа в честь немецкого ученого, изобретателя, предпринимателя Вернера фон Сименса (1816–1892 гг.). Основанная им в 1847 г. компания Siemens AG (Сименс) является одной из самых больших компаний, выпускающих электротехническое, электронное, энергетическое, транспортное и медицинское оборудование.

Диапазон удельных электрических проводимостей очень широк: от материалов, обладающих высоким удельным сопротивлением, таких как стекло (которое, между прочим, хорошо проводит электрический ток, если его нагреть докрасна) или полиметилметакрилат (органическое стекло) до очень хороших проводников, таких как серебро, медь или золото. Удельная электрическая проводимость определяется количеством зарядов (электронов и ионов), скоростью их движения и количеством энергии, которое они могут переносить. Средними значениями удельной проводимости обладают водные растворы различных веществ, которые используются, например, в гальванических ваннах. Другим примером электролитов со средними значениями удельной проводимости является внутренняя среда организма (кровь, плазма, лимфа и другие жидкости).

Проводимость металлов, полупроводников и диэлектриков подробно обсуждается в следующих статьях Конвертера физических величин сайт: , и Электрическая проводимость . В этой статье мы обсудим подробнее удельную проводимость электролитов, а также методы и простое оборудование для ее измерения.

Удельная электрическая проводимость электролитов и ее измерение

Удельная проводимость водных растворов, в которых электрический ток возникает в результате движения заряженных ионов, определяется количеством носителей заряда (концентрацией вещества в растворе), скоростью их движения (подвижность ионов зависит от температуры) и зарядом, которые они несут (определяемой валентностью ионов). Поэтому в большинстве водных растворов повышение концентрации приводит к увеличению числа ионов и, следовательно, к увеличению удельной проводимости. Однако после достижения определенного максимума удельная проводимость раствора может начать уменьшаться при дальнейшем увеличении концентрации раствора. Поэтому растворы с двумя различными концентрациями одной и той же соли могут иметь одинаковую удельную проводимость.

Температура также влияет на проводимость, так как при повышении температуры ионы движутся быстрее, что приводит к увеличению удельной проводимости. Чистая вода — плохой проводник электричества. Обычная дистиллированная вода, в которой содержится в равновесном состоянии углекислый газ из воздуха и общая минерализация менее 10 мг/л, имеет удельную электрическую проводимость около 20 мСм/см. Удельная проводимость различных растворов приведена ниже в таблице.

Для определения удельной проводимости раствора используется измеритель сопротивления (омметр) или проводимости. Это практически одинаковые устройства, отличающиеся только шкалой. Оба измеряют падение напряжения на участке цепи, по которому протекает электрический ток от батареи прибора. Измеренное значение проводимости вручную или автоматически пересчитывается в удельную проводимость. Это осуществляется с учетом физических характеристик измерительного устройства или датчика. Датчики удельной проводимости устроены просто: это пара (или две пары) электродов, погруженных в электролит. Датчики для измерения удельной проводимости характеризуются постоянной датчика удельной проводимости , которая в простейшем случае определяется как отношение расстояния между электродами D к площади (электрода), перпендикулярной течению тока А

Эта формула хорошо работает, если площадь электродов значительно больше расстояния между ними, так как в этом случае большая часть электрического тока протекает между электродами. Пример: для 1 кубического сантиметра жидкости K = D/A = 1 см/1 см² = 1 см⁻¹. Отметим, что датчики удельной проводимости с маленькими электродами, раздвинутыми на относительно большое расстояние, характеризуются значениями постоянной датчика 1.0 cm⁻¹ и выше. В то же время, датчики с относительно большими электродами, расположенными близко друг к другу, имеют постоянную 0,1 cm⁻¹ или менее. Постоянная датчика для измерения удельной электрической проводимости различных устройств находится в пределах от 0,01 до 100 cm⁻¹.

Теоретическая постоянная датчика: слева — K = 0,01 см⁻¹ , справа — K = 1 см⁻¹

Для получения удельной проводимости из измеренной проводимости используется следующая формула:

σ = K ∙ G

σ — удельная проводимость раствора в См/см;

K — постоянная датчика в см⁻¹;

G — проводимость датчика в сименсах.

Постоянную датчика обычно не рассчитывают по его геометрическим размерам, а измеряют в конкретном измерительном устройстве или в конкретной измерительной установке с использованием раствора с известной проводимостью. Эта измеренная величина и вводится в прибор для измерения удельной проводимости, который автоматически рассчитывает удельную проводимость по измеренным значениям проводимости или сопротивления раствора. В связи с тем, что удельная проводимость зависит от температуры раствора, устройства для ее измерения часто содержат датчик температуры, который измеряет температуру и обеспечивает автоматическую температурную компенсацию измерений, то есть, приведение результатов к стандартной температуре 25°C.

Самый простой способ измерения проводимости — приложить напряжение к двум плоским электродам, погруженным в раствор, и измерить протекающий ток. Этот метод называется потенциометрическим. По закону Ома, проводимость G является отношением тока I к напряжению U :

Однако не все так просто, как описано выше — при измерении проводимости имеется много проблем. Если используется постоянный ток, ионы собираются у поверхностей электродов. Также у поверхностей электродов может возникнуть химическая реакция. Это приводит к увеличению поляризационного сопротивления на поверхностях электродов, что, в свою очередь, приводит к получению ошибочных результатов. Если попробовать измерить обычным тестером сопротивление, например, раствора хлористого натрия, будет хорошо видно, как показания на дисплее цифрового прибора довольно быстро изменяются в сторону увеличения сопротивления. Чтобы исключить влияние поляризации, часто используют конструкцию датчика из четырех электродов.

Поляризацию также можно предотвратить или, во всяком случае, уменьшить, если использовать при измерении переменный ток вместо постоянного, да еще и подстраивать частоту в зависимости от проводимости. Низкие частоты используются для измерения низкой удельной проводимости, при которой влияние поляризации невелико. Более высокие частоты используются для измерения высоких проводимостей. Обычно частота подстраивается в процессе измерения автоматически, с учетом полученных значений проводимости раствора. Современные цифровые двухэлектродные измерители проводимости обычно используют переменный ток сложной формы и температурную компенсацию. Они откалиброваны на заводе-изготовителе, однако в процессе эксплуатации часто требуется повторная калибровка, так как постоянная измерительной ячейки (датчика) изменяется со временем. Например, она может измениться при загрязнении датчики или при физико-химических изменениях электродов.

В традиционном двухэлектродном измерителе удельной проводимости (именно такой мы будем использовать в нашем эксперименте) между двумя электродами приложено переменное напряжение и измеряется протекающий между электродами ток. Этот простой метод имеет один недостаток — измеряется не только сопротивление раствора, но и сопротивление, вызванное поляризацией электродов. Для сведения влияния поляризации к минимуму используют четырехэлектродную конструкцию датчика, а также покрытие электродов платиновой чернью.

Общая минерализация

Устройства для измерения удельной электрической проводимости часто используют для определения общей минерализации или содержания твёрдых веществ (англ. total dissolved solids, TDS). Это мера общего количества органических и неорганических веществ, содержащихся в жидкости в различных формах: ионизированной, молекулярной (растворенной), коллоидной и в виде суспензии (нерастворенной). К растворенным веществам относятся любые неорганические соли. Главным образом, это хлориды, бикарбонаты и сульфаты кальция, калия, магния, натрия, а также некоторые органические вещества, растворенные в воде. Чтобы относиться к общей минерализации, вещества должны быть или растворенными, или в форме очень мелких частиц, которые проходят сквозь фильтры с диаметром пор менее 2 микрометров. Вещества, которые постоянно находятся в растворе во взвешенном состоянии, но не могут пройти сквозь такой фильтр, называется взвешенными твердыми веществами (англ. total suspended solids, TSS). Общее количество взвешенных веществ обычно измеряется для определения качества воды.

Существует два метода измерения содержания твердых веществ: гравиметрический анализ , являющийся наиболее точным методом, и измерение удельной проводимости . Первый метод — самый точный, но требует больших затрат времени и наличия лабораторного оборудования, так как воду нужно выпарить до получения сухого остатка. Обычно это производится при температуре 180°C в лабораторных условиях. После полного испарения остаток взвешивается на точных весах.

Второй метод не такой точный, как гравиметрический анализ. Однако он очень удобен, широко распространен и является наиболее быстрым методом, так как представляет собой простое измерение проводимости и температуры, выполняемое за несколько секунд недорогим измерительным прибором. Метод измерения удельной электропроводности можно использовать в связи с тем, что удельная проводимость воды прямо зависит от количества растворенных в ней ионизированных веществ. Данный метод особенно удобен для контроля качества питьевой воды или оценки общего количества ионов в растворе.

Измеренная проводимость зависит от температуры раствора. То есть, чем выше температура, тем выше проводимость, так как ионы в растворе при повышении температуры движутся быстрее. Для получения измерений, независимых от температуры, используется концепция стандартной (опорной) температуры, к которой приводятся результаты измерения. Опорная температура позволяет сравнить результаты, полученные при разных температурах. Таким образом, измеритель удельной проводимости может измерять реальную проводимость, а затем использовать корректирующую функцию, которая автоматически приведет результат к опорной температуре 20 или 25°C. Если необходима очень высокая точность, образец можно поместить в термостат, затем откалибровать измерительный прибор при той же температуре, которая будет использоваться при измерениях.

Большинство современных измерителей удельной проводимости снабжены встроенным датчиком температуры, который используется как для температурной коррекции, так и для измерения температуры. Самые совершенные приборы способны измерять и отображать измеренные значения в единицах удельной проводимости, удельного сопротивления, солености, общей минерализации и концентрации. Однако еще раз отметим, что все эти приборы измеряют только проводимость (сопротивление) и температуру. Все физические величины, которые показывает дисплей, рассчитываются прибором с учетом измеренной температуры, которая используется для автоматической температурной компенсации и приведения измеренных значений к стандартной температуре.

Эксперимент: измерение общей минерализации и проводимости

В заключение мы выполним несколько экспериментов по измерению удельной проводимости с помощью недорогого измерителя общей минерализации (называемого также солемером, салинометром или кондуктомером) TDS-3. Цена «безымянного» прибора TDS-3 на eBay с учетом доставки на момент написания статьи менее US$3.00. Точно такой же прибор, но с названием изготовителя стоит уже в 10 раз дороже. Но это для любителей платить за брэнд, хотя очень высока вероятность того, что оба прибора будут выпущены на одном и том же заводе. TDS-3 осуществляет температурную компенсацию и для этого снабжен датчиком температуры, расположенным рядом с электродами. Поэтому его можно использовать и в качестве термометра. Следует еще раз отметить, что прибор реально измеряет не саму минерализацию, а сопротивление между двумя проволочными электродами и температуру раствора. Все остальное он автоматически рассчитывает с использованием калибровочных коэффициентов.

Измеритель общей минерализации поможет определить содержание твердых веществ, например, при контроле качества питьевой воды или определения солености воды в аквариуме или в пресноводном пруде. Его можно также использовать для контроля качества воды в системах фильтрации и очистки воды, чтобы узнать когда пришло время заменить фильтр или мембрану. Прибор откалиброван на заводе-изготовителе с помощью раствора хлорида натрия NaCl с концентрацией 342 ppm (частей на миллион или мг/л). Диапазон измерения прибора — 0–9990 ppm или мг/л. PPM — миллионная доля, безразмерная единица измерения относительных величин, равная 1 10⁻⁶ от базового показателя. Например, массовая концентрация 5 мг/кг = 5 мг в 1 000 000 мг = 5 частей на миллион или миллионных долей. Точно так же, как процент является одной сотой долей, миллионная доля является одной миллионной долей. Проценты и миллионные доли по смыслу очень похожи. Миллионные доли, в отличие от процентов, удобны для указания концентрации очень слабых растворов.

Прибор измеряет электрическую проводимость между двумя электродами (то есть величину, обратную сопротивлению), затем пересчитывает результат в удельную электрическую проводимость (в англоязычной литературе часто используют сокращение EC) по приведенной выше формуле проводимости с учетом постоянной датчика K, затем выполняет еще один пересчет, умножая полученную удельную проводимость на коэффициент пересчета 500. В результате получается значение общей минерализации в миллионных долях (ppm). Подробнее об этом — ниже.

Данный прибор для измерения общей минерализации нельзя использовать для проверки качества воды с высоким содержанием солей. Примерами веществ с высоким содержанием солей являются некоторые пищевые продукты (обычный суп с нормальным содержанием соли 10 г/л) и морская вода. Максимальная концентрация хлорида натрия, которую может измерить этот прибор — 9990 ppm или около 10 г/л. Это обычная концентрация соли в пищевых продуктах. Данным прибором также нельзя измерить соленость морской воды, так как она обычно равна 35 г/л или 35000 ppm, что намного выше, чем прибор способен измерить. При попытке измерить такую высокую концентрацию прибор выведет сообщение об ошибке Err.

Солемер TDS-3 измеряет удельную проводимость и для калибровки и пересчета в концентрацию использует так называемую «шкалу 500» (или «шкалу NaCl»). Это означает, что для получения концентрации в миллионных долях значение удельной проводимости в мСм/см умножается на 500. То есть, например, 1,0 мСм/см умножается на 500 и получается 500 ppm. В разных отраслях промышленности используют разные шкалы. Например, в гидропонике используют три шкалы: 500, 640 и 700. Разница между ними только в использовании. Шкала 700 основана на измерении концентрации хлорида калия в растворе и пересчет удельной проводимости в концентрацию выполняется так:

1,0 мСм/см x 700 дает 700 ppm

Шкала 640 использует коэффициент преобразования 640 для преобразования мСм в ppm:

1,0 мСм/см x 640 дает 640 ppm

В нашем эксперименте мы вначале измерим общую минерализацию дистиллированной воды. Солемер показывает 0 ppm. Мультиметр показывает сопротивление 1,21 МОм.

Для эксперимента приготовим раствор хлорида натрия NaCl с концентрацией 1000 ppm и измерим концентрацию с помощью TDS-3. Для приготовления 100 мл раствора нам нужно растворить 100 мг хлорида натрия и долить дистиллированной воды до 100 мл. Взвесим 100 мг хлорида натрия и поместим его в мерный цилиндр, добавим немного дистиллированной воды и размешаем до полного растворения соли. Затем дольем воду до метки 100 мл и еще раз как следует размешаем.

Измерение сопротивления между двумя электродами, изготовленными из того же материала и с теми же размерами, что и электроды TDS-3; мультиметр показывает 2,5 КОм

Для экспериментального определения проводимости мы использовали два электрода, изготовленные из того же материала и с теми же размерами, что и электроды TDS-3. Измеренное сопротивление составило 2,5 КОм.

Теперь, когда нам известно сопротивление и концентрация хлорида натрия в миллионных долях, мы можем приблизительно рассчитать постоянную измерительной ячейки солемера TDS-3 по приведенной выше формуле:

K = σ/G = 2 мСм/см x 2,5 кОм = 5 см⁻¹

Это значение 5 см⁻¹ близко к расчетной величине постоянной измерительной ячейки TDS-3 с указанными ниже размерами электродов (см. рисунок).

  • D = 0,5 см — расстояние между электродами;
  • W = 0,14 см — ширина электродов
  • L = 1,1 см — длина электродов

Постоянная датчика TDS-3 равна K = D/A = 0,5/0,14×1,1 = 3,25 cm⁻¹. Это не сильно отличается от полученного выше значения. Напомним, что приведенная выше формула позволяет лишь приблизительно оценить постоянную датчика.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Коэффициент теплопроводности металлов (Таблица)

Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотно­шение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов тепло­проводности.

Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоем­кость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.

Таблица коэффициент теплопроводности металлов

Элементы с металлической электропроводностью (числа, набранные курсивом, относятся к жидкой фазе)

Металл

Коэффициент теплопроводности металлов при температура, °С

— 100

0

100

300

700

Алюминий

2,45

2,38

2,30

2,26

0,9

Бериллий

4,1

2,3

1,7

1,25

0,9

Ванадий

0,31

0,34

Висмут

0,11

0,08

0,07

0,11

0,15

Вольфрам

2,05

1,90

1,65

1,45

1,2

Гафний

 —

0,22

0,21

Железо

0,94

0,76

0,69

0,55

0,34

Золото

3,3

3,1

3,1

Индий

0,25

Иридий

1,51

1,48

1,43

Кадмий

0,96

0,92

0,90

0,95

0,44 (400°)

Калий

0,99

0,42

0,34

Кальций

0,98

Кобальт

0,69

Литий

0,71

0,73

Магний

1,6

1,5

1,5

1,45

 Медь

4,05

3,85

3,82

3,76

3,50

Молибден

1,4

1,43

 —

1,04 (1000°)

Натрий

1,35

1,35

0,85

0,76

0,60

Никель

0,97

0,91

0,83

0,64

0,66

Ниобий

0,49

0,49

0,51

0,56

Олово

0,74

0,64

0,60

0,33

Палладий

0,69

0,67

0,74

Платина

0,68

0,69

0,72

0,76

0,84

Рений

0,71

Родий

1,54

1,52

1,47

Ртуть

0,33

0,09

0.1

0,115

Свинец

0,37

0,35

0,335

0,315

0,19

Серебро

4,22

4,18

4,17

3,62

Сурьма

0,23

0,18

0,17

0,17

0,21

Таллий

 

0,41

0,43

0,49

0,25 (400 0)

Тантал

0,54

0,54

Титан

0,16

0,15

Торий

0,41

0,39

0,40

0,45

Уран

0,24

0,26

0,31

0,40

Хром

0,86

0,85

0,80

0,63

Цинк

1,14

1,13

1,09

1,00

0,56

Цирконий

0,21

0,20

0,19

Таблица коэффициент теплопроводности полупроводники и изоляторы

Вещество

Коэффициент теплопроводности при температура, °С

— 100

0

100

500

700

Германий

1,05

0,63

Графит

0,5—4,0

0,5—3,0

0,4-1,7

0,4-0,9

Йод

0,004

Углерод

0,016

0,017

0,019

0,023

Селен

0,0024

Кремний

0,84

Сера

0,0029

0,0023

Теллур

0,015

Удельное электрическое сопротивление химических элементов

Удельное электрическое сопротивление химических элементов

Удельное электрическое сопротивление и его обратное значение, электропроводность , является фундаментальным свойством материала, которое количественно определяет, насколько сильно он сопротивляется или проводит поток электрического тока. Низкое удельное сопротивление указывает на то, что материал легко пропускает электрический ток. Символ удельного сопротивления обычно представляет собой греческую букву ρ (ро).Единицей удельного электрического сопротивления в системе СИ является ом-метр (Ом⋅м). Обратите внимание, что удельное электрическое сопротивление — это не то же самое, что электрическое сопротивление. Электрическое сопротивление выражается в Омах. В то время как удельное сопротивление является свойством материала, сопротивление является свойством объекта.

Проводники – Полупроводники – Резисторы

Вещества, в которых может течь электричество, называются проводниками . Проводники изготавливаются из материалов с высокой проводимостью, таких как металлы, в частности медь и алюминий.

Изоляторы , с другой стороны, изготавливаются из самых разных материалов в зависимости от таких факторов, как желаемое сопротивление.

Полупроводники представляют собой материалы, неорганические или органические, которые обладают способностью контролировать свою проводимость в зависимости от химической структуры, температуры, освещения и наличия примесей. Название полупроводник происходит от того факта, что эти материалы имеют электрическую проводимость между металлами, такими как медь, золото и т. д.и изолятор, такой как стекло. У них энергетическая щель менее 4 эВ (около 1 эВ). В физике твердого тела эта энергетическая щель или запрещенная зона представляет собой диапазон энергий между валентной зоной и зоной проводимости, где электронные состояния запрещены. В отличие от проводников, электроны в полупроводнике должны получать энергию (например, от ионизирующего излучения), чтобы пересечь запрещенную зону и достичь зоны проводимости.

Чтобы понять разницу между металлами , полупроводниками и электрическими изоляторами , мы должны определить следующие термины из физики твердого тела:

  • Валентная полоса .В физике твердого тела валентная зона и зона проводимости являются зонами, ближайшими к уровню Ферми , и, таким образом, определяют электропроводность твердого тела. В электрических изоляторах и полупроводниках валентная зона представляет собой самый высокий диапазон энергий электронов, в котором электроны обычно присутствуют при температуре абсолютного нуля. Например, атом кремния имеет четырнадцать электронов. В основном состоянии они располагаются в электронной конфигурации [Ne]3s 2 3p 2 .Из них четыре являются валентными электронами , занимающими 3s-орбиталь и две из 3p-орбиталей. Различие между валентной зоной и зоной проводимости в металлах не имеет смысла, потому что проводимость происходит в одной или нескольких частично заполненных зонах, которые приобретают свойства как валентной зоны, так и зоны проводимости.
  • Проводящая лента . В физике твердого тела валентная зона и зона проводимости являются зонами, ближайшими к уровню Ферми, и, таким образом, определяют электропроводность твердого тела.В электрических изоляторах и полупроводниках зона проводимости представляет собой нижний диапазон вакантных электронных состояний . На графике электронной зонной структуры материала валентная зона расположена ниже уровня Ферми, а зона проводимости — выше него. В полупроводниках электроны могут достигать зоны проводимости, когда они возбуждаются , например, ионизирующим излучением (т.е. они должны получить энергию выше E щели ).Например, алмаз представляет собой полупроводник с широкой запрещенной зоной (E ширина запрещенной зоны = 5,47 эВ) с высоким потенциалом использования в качестве материала электронных устройств во многих устройствах. С другой стороны, германий имеет малую ширину запрещенной зоны (E ширина запрещенной зоны = 0,67 эВ), что требует работы детектора при криогенных температурах. Различие между валентной зоной и зоной проводимости в металлах не имеет смысла, потому что проводимость происходит в одной или нескольких частично заполненных зонах, которые приобретают свойства как валентной зоны, так и зоны проводимости.
  • Ширина запрещенной зоны . В физике твердого тела энергетическая щель или запрещенная зона представляет собой диапазон энергий между валентной зоной и зоной проводимости, где электронные состояния запрещены. В отличие от проводников, электроны в полупроводнике должны получать энергию (например, от ионизирующего излучения), чтобы пересечь запрещенную зону и достичь зоны проводимости. Ширина запрещенной зоны , естественно, различна для разных материалов. Например, алмаз является широкозонным полупроводником (Е щель = 5.47 эВ) с высоким потенциалом в качестве материала электронных устройств во многих устройствах. С другой стороны, германий имеет малую ширину запрещенной зоны (E ширина запрещенной зоны = 0,67 эВ), что требует работы детектора при криогенных температурах.
  • Уровень Ферми . Термин «уровень Ферми» происходит из статистики Ферми-Дирака , которая описывает распределение частиц по энергетическим состояниям в системах, состоящих из фермионов (электронов), которые подчиняются принципу запрета Паули. Поскольку они не могут существовать в одинаковых энергетических состояниях, уровень Ферми — это термин, используемый для описания вершины набора электронных энергетических уровней при температуре абсолютного нуля.Уровень Ферми — это поверхность моря Ферми при абсолютном нуле, где ни у одного электрона не будет достаточно энергии, чтобы подняться над поверхностью. В металлах уровень Ферми лежит в гипотетической зоне проводимости, дающей свободные электроны проводимости. В полупроводниках положение уровня Ферми находится внутри запрещенной зоны, примерно в середине запрещенной зоны.
  • Пара электрон-дырка . В полупроводнике свободных носителей заряда представляют собой электронов и электронных дырок (пары электрон-дырка).Электроны и дырки создаются возбуждением электрона из валентной зоны в зону проводимости. Электронная дыра (часто называемая просто дыркой) — это отсутствие электрона в положении, в котором он мог бы существовать в атоме или атомной решетке. Это один из двух типов носителей заряда, ответственных за создание электрического тока в полупроводниковых материалах. Поскольку в нормальном атоме или кристаллической решетке отрицательный заряд электронов уравновешивается положительным зарядом атомных ядер, отсутствие электрона оставляет чистый положительный заряд в месте расположения дырки.Положительно заряженные дырки могут перемещаться от атома к атому в полупроводниковых материалах по мере того, как электроны покидают свои позиции. Когда электрон встречается с дыркой, они рекомбинируют, и эти свободные носители эффективно исчезают. Рекомбинация означает, что электрон, который был возбужден из валентной зоны в зону проводимости, возвращается в пустое состояние в валентной зоне, известное как дырки.

Свойства других элементов

сообщить об этом объявлении

Электрические свойства материалов — Matmatch

Если вы путешествовали по миру, вы бы заметили, что электрические розетки не имеют стандартного универсального номинального напряжения — розетка в США имеет напряжение 110 В, а в Индии — 220 В.

Одной из основных причин такого различия является то, что в США для передачи по линиям связи используется медь, а в Индии — более дешевый алюминий. В свою очередь, это функция свойства материала, называемого «удельное электрическое сопротивление», которое у алюминия выше, чем у меди.

Электрическая розетка в США

В этом разделе мы рассмотрим, как различные материалы реагируют на электрические поля и как измеряются эти свойства.В частности, мы более подробно рассмотрим следующие вопросы.

  1. Что такое электрический ток?
  2. Что такое запрещенная зона?
  3. Почему одни материалы проводят ток, а другие нет?
  4. Что такое электрическое сопротивление и проводимость?
  5. Что такое удельное сопротивление и электропроводность?
  6. Что такое полупроводники?
  7. Что такое напряжение пробоя и диэлектрическая прочность?
  8. Что такое температурный коэффициент сопротивления?
  9. Что такое листовое сопротивление?
  10. Что такое поверхностное сопротивление изоляции?

Внутри медного провода

Снаружи кусок медной проволоки кажется светящимся безмятежным.

Внутри все далеко не мирно. Миллиарды электронов бегают, как дикие собаки, в пространстве между атомами меди. Подобно бесконечной поездке на бампере, эти электроны постоянно сталкиваются друг с другом и с тяжелыми атомами вокруг них. Сцена полна хаоса и беспорядка.

Большинство материалов не имеют электронов в пространстве между атомами. Вместо этого у них есть огромные межатомные пустоты, более пустые, чем космическое пространство.

Электроны в этих материалах прочно связаны со своими атомами, и самые удаленные из них от центра называются v алентными электронами .Эти электроны почти единолично ответственны за всю химию!

Если приложить нужное количество энергии, эти валентные электроны можно заставить прыгнуть со своих атомов в межатомную пустоту. Освободившись от гнетущего электромагнитного притяжения ядра, они радостно бродят по космосу, натыкаясь на атомы и другие электроны.

Большинство материалов не позволяют своим электронам так свободно циркулировать. Наличие такого обильного пула из 90 128 «свободных 90 129» электронов уникально для таких металлов, как медь.

Когда провод подключен к источнику питания, эти электроны перемещаются от отрицательной клеммы к положительной клемме. Этот поток электронов мы обычно называем электрическим током .

Электрический ток — это поток электронов через материал в ответ на электрическое или магнитное поле.

Такие материалы, как керамика, пластик и дерево, ограничивают все свои электроны пределами границ своих атомов.Эти материалы не имеют «свободных» электронов и, следовательно, не проводят электричество.

Ширина запрещенной зоны

Квантовая механика учит нас, что:

Для каждого материала в условиях окружающей среды существует уникальное количество энергии, необходимое для того, чтобы вытолкнуть валентный электрон на свободу межатомного пространства. Это количество энергии называется запрещенной зоной материала.

Ширина запрещенной зоны алмаза, например, составляет 5,5 эВ. Если вы приложите точно такое количество энергии к кристаллу алмаза, один электрон перепрыгнет с одного атома углерода в пространство между атомами.

Такие материалы, как керамика, имеют большую ширину запрещенной зоны. Ширина запрещенной зоны диоксида кремния составляет 9 эВ, а нитрида алюминия — 6 эВ. Поэтому относительно сложно создать пул свободных электронов в этих материалах, и, следовательно, они не проводят электричество.

Такие металлы, как медь, имеют очень малую ширину запрещенной зоны. На самом деле они настолько малы, что при комнатной температуре энергии окружающего тепла достаточно, чтобы все валентные электроны вырвались на свободу и вышли из-под контроля внутри металла.

Для сравнения: в кубическом сантиметре меди содержится более 8,5 x 10 22 свободных электронов, то есть восемь-пять тысяч миллиардов миллиардов электронов!

Таким образом, металлы являются хорошими проводниками электричества, а керамика, резина и дерево — плохими проводниками .

Свободные электроны внутри металла реагируют на электрические поля.

Проводимость и сопротивление

Чтобы действительно понять уровень хаоса внутри металла, нам достаточно взглянуть на цифры.

Один электрон внутри меди при комнатной температуре может теоретически двигаться со скоростью 1570 км/с — быстрее звука в воздухе! Однако вскоре этот электрон натолкнется на другой электрон и будет отброшен в противоположном направлении, так что даже при огромных скоростях он вообще не преодолеет никакого расстояния.

Хаос внутри металла настолько ужасен, что даже при наличии источника питания электрон успевает преодолеть только 23 микрометра в секунду, что примерно равно диаметру человеческого волоса.

Электрон так часто сбивается с пути, что среднее расстояние, которое ему удается преодолеть, ничтожно мало.

Учитывая это, может показаться, что электричество является очень расточительной формой передачи энергии, и действительно можно привести аргумент в пользу этого. Настоящая сила потока электронов заключается в их простом количестве — даже если каждый электрон движется по змеиному извилистому пути в проводе, в миллиардах и миллиардах это приводит к мощной передаче энергии.

Если бы электроны двигались прямолинейно, то эффективное сопротивление было бы равно нулю.

Проще говоря, термин сопротивление  является количественной мерой полного хаоса внутри материала.

Но как количественно измерить хаос внутри металлической проволоки?

Рассмотрим два физически идентичных провода — один из меди, а другой из алюминия. К каждому из этих проводов присоединяем одинаковые батарейки на 12 В.

Мы можем измерить ток в них с помощью электронного измерительного прибора, называемого мультиметром.

Если провода имеют одинаковый диаметр и длину, мы должны обнаружить, что ток в медном проводе больше, чем в алюминиевом.

Почему это должно быть так?

Во-первых, у меди гораздо больше свободных электронов, чем у алюминия.

Алюминий меньше атома, чем медь: его электроны испытывают сильное притяжение ядра, и меньшее их количество ускользает на «свободу». Это, в свою очередь, означает, что для переноса электрического тока доступно меньше электронов по сравнению с медью.

Таким образом, при том же напряжении лучший проводник будет генерировать больший ток.

Формально это выражается в так называемом Законе Ома .Этот закон гласит, что:

T Ток в проводнике между двумя точками прямо пропорционален напряжению в двух точках .

`V=I\cточка R`

Величина R называется сопротивлением проводника. Его единицей измерения является вольт/ампер, обычно обозначаемый как ом ( Ом ).

`R=\rho\frac{V}{I}`

Сопротивление, обратное сопротивлению, называется проводимостью и обозначается буквой G. 

`G=\frac{1}{R}=\frac{I}{V}`

Закон Ома был впервые описан Джорджем Омом в 1827 году.Интересно, что в то время он подвергся резкой критике со стороны большинства ученых и академиков. Однако через несколько десятилетий он получил широкое распространение.

Обратите внимание, что неверно говорить, что сопротивление алюминия выше, чем сопротивление меди. Это связано с тем, что сопротивление зависит от физических размеров проводника, таких как длина и диаметр провода.

Закон Ома представляет собой соотношение между током и напряжением в идеальных резисторах.

Закон Ома представляет собой соотношение между током и напряжением в идеальных резисторах.

Электропроводность и удельное сопротивление

Принимая во внимание теорию электрического тока о дикой собаке и хаосе, о которой мы упоминали ранее, мы можем сделать следующий вывод:

  1. Чем длиннее провод, тем больше шансов, что электрон столкнется с чем-либо еще
  2. Большой диаметр создает больше пространства для потока электронов и может снизить вероятность указанного столкновения

Эти интуитивные представления отображаются математически путем соотнесения сопротивления (R) с его длиной (l) и площадью поперечного сечения (A).

`R =\rho\frac{l}{A}`

Где rho — константа пропорциональности, называемая удельным сопротивлением или удельным сопротивлением данного материала. В отличие от сопротивления, которое является макроскопическим свойством, удельное сопротивление является фундаментальным свойством материала. Единицей удельного сопротивления является ом-метр ( Ом·м ).

`\rho =R\frac{A}{l}`

Довольно часто говорят об обратной величине удельного сопротивления — величине, которую уместно называть электропроводностью или удельной проводимостью, обозначаемой сигмой 𝛔.Единицей электропроводности является Сименс.

`\sigma =\frac{1}{\rho} =\frac{l}{RA}`

Удельное сопротивление меди составляет 1,68 х 10 -8 Ом·м, а алюминия 2,65 х 10 -8 Ом·м.

Как и ожидалось, алюминий имеет большее сопротивление по сравнению с медью, или, что то же самое, медь обладает большей проводимостью, чем алюминий.

В природе электрические свойства, такие как сопротивление и проводимость , варьируются в пределах 23 порядков; я.е. если бы наименьшее значение сопротивления любого материала на земле было равно 1, то наибольшее значение было бы в 10 23 (десять с 23 нулями), умноженное на большее! Ни одно другое физическое или химическое свойство не показывает таких изменений.

Серебро — лучший проводник среди металлов — однако мы не используем его для электрических проводов из-за его запредельной цены. В следующей таблице приведены значения удельного сопротивления некоторых распространенных материалов. Можно видеть, что разница между хорошим проводником, таким как медь, и плохим проводником, таким как стекло, может составлять несколько порядков.

Материал

Удельное сопротивление ( Ом·м)

Серебро

1,59 x 10 -8

Медь

1,68 x 10 -8

Кремний

0,1

Сухая кожа человека

1 x 10 5

Стекло

1 x 10 9

Резина

1 x 10 13


В большинстве стран для передачи тока используется медь, поскольку она значительно дешевле серебра.

Полупроводники

Такие материалы, как кремний и германий, имеют значения удельного сопротивления между металлами и диэлектриками, такими как стекло.

Эти материалы называются полупроводниками .

Эти материалы интересны не тем, что они занимают переходную область от хороших проводников к плохим, а тем, что их проводимостью можно легко управлять .

Добавляя щепотку фосфора или бора, проводимость кремния можно значительно повысить.Кроме того, каждая из этих «примесей» приводит к двум различным типам проводимости, что приводит к образованию кремния n-типа и p-типа .

Электрический ток n- и p-типа вызван свободными электронами и положительно заряженными дырками соответственно. Во всех остальных отношениях они ведут себя одинаково.

По отдельности и в сочетании эти материалы дают начало всем электронным устройствам и чипам, которые мы знаем сегодня.

Электронное устройство на основе полупроводника, которое держит ученый.

Напряжение пробоя и диэлектрическая прочность

Все полупроводники и другие изоляторы имеют максимальное напряжение, которое они могут выдержать. За пределами этого напряжения электрическое поле становится настолько сильным, что электроны вытягиваются из молекул и атомов, вызывая большой ток и, в конечном итоге, отказ.

Это максимальное напряжение, которое может выдержать изолятор, называется напряжением пробоя материала.

Напряжение пробоя также известно как диэлектрическая прочность, если изолятор является диэлектриком (твердые изоляторы называются диэлектриками).Обычно диэлектрики применяются в электронных схемах — в качестве резисторов, конденсаторов, катушек индуктивности и т. д. Небольшие размеры этих компонентов означают, что они могут достигать диэлектрической прочности даже при малых напряжениях. Следовательно, промышленные диэлектрики, используемые в этих приложениях, требуют очень высокой диэлектрической прочности.

Металлы теоретически не имеют пробивного напряжения — однако при более высоких напряжениях протекание больших токов может привести к джоулеву нагреву и последующему плавлению проводника.

Температурный коэффициент сопротивления

Удельное сопротивление и, следовательно, сопротивление являются функцией температуры. Нагрев может привести к увеличению или уменьшению удельного сопротивления — в зависимости от материала.

Величина, называемая температурным коэффициентом сопротивления ) , количественно определяет это соотношение. Формально он определяется как:

Изменение сопротивления, деленное на изменение температуры для данного количества материала, является температурным коэффициентом сопротивления.

`\alpha =\frac{\Delta R}{\Delta T}`

При более высокой температуре электроны в металлах движутся быстрее и сталкиваются друг с другом с более высокой частотой. Следовательно, сопротивление металла увеличивается с температурой (или с уменьшением проводимости). Поэтому температурный коэффициент сопротивления большинства металлов положителен.

Для полупроводников и неметаллов повышение температуры приводит к тому, что больше электронов перескакивает с атомов в свободное пространство вокруг него. Это увеличение количества свободных электронов приводит к увеличению проводимости этих материалов или уменьшению сопротивления.Таким образом, температурный коэффициент сопротивления полупроводников и неметаллов равен отрицательному значению Ом.

Раньше у нас было только два типа проводников — отличные металлы и жалкие изоляторы.

Развитие полупроводников и связанной с ними электроники сделало возможным несколько типов проводников. Сегодня мы так же озабочены проводимостью тонкой пленки оксида на подложке, как и припоем, соединяющим электрическую цепь.

Типичная микроволновая печь, например, потребляет больше электроэнергии для питания своих цифровых часов, чем для разогрева пищи.

Уникальные формы и размеры этих материалов привели к необходимости определения нескольких других типов удельного сопротивления, которые могли бы больше подходить для применения.

Листовое сопротивление

Поверхностное сопротивление в основном определяется для тонкой пленки — это покрытие, толщина которого обычно меньше микрометра.

Эти покрытия широко используются в полупроводниках, металлических покрытиях, стеклянных покрытиях и резистивных пастах.

Листовое сопротивление – это удельное сопротивление материала, деленное на толщину.

`\rho=R_{s}\cdot t`

В тонкопленочной промышленности некоторые методы, такие как четырехточечный датчик , могут напрямую определять сопротивление листа. Если известна толщина, можно рассчитать объемное удельное сопротивление материала.

Сопротивление поверхностной изоляции

Это характеристика изоляционных материалов, используемых в печатных платах, которые действуют как контактные соединители.Фактически это сопротивления на единицу площади материала в предположении, что ток течет только по поверхности.

Многие металлические системы во время работы подвергаются химическим реакциям, которые могут изменить их проводимость и, следовательно, повлиять на общую производительность устройства.

Сопротивление поверхностной изоляции

позволяет нам определить характеристики контакта под нагрузкой и, следовательно, оценить его пригодность для данного применения.

Электронная схема с многочисленными электрическими элементами.

Зависимость удельного электросопротивления от влаги в недоперколяционных композитах на цементной основе с многостенными углеродными нанотрубками

Том 16, январь–февраль 2022 г., страницы 47-58 .151Получить права и содержание

Abstract

Пьезорезистивные композиты на основе цемента привлекли значительное внимание в качестве интеллектуальных строительных материалов для внедрения самочувствительной способности в бетонную инфраструктуру. Хотя был проведен ряд исследований с использованием многостенных углеродных нанотрубок (МУНТ) в качестве функционального наполнителя для самочувствительных композитов на основе цемента, исследований, посвященных влиянию состояния внутренней влажности на электрические свойства, относительно мало.В этом исследовании мы стремимся экспериментально исследовать влияние состояния внутренней влажности на удельное электрическое сопротивление композитов на основе цемента, содержащих МУНТ в качестве электропроводящей среды, чтобы повысить потребность в калибровке данных самочувствия с учетом состояния внутренней влажности. С этой целью в основном оценивалась зависимость удельного электросопротивления от влаги в недостаточно перколяционных композитах на основе цемента, наряду с другими свойствами материала, такими как прочность, усадка и текучесть.Результаты показали, что удельное электрическое сопротивление увеличивалось почти линейно по мере снижения внутренней относительной влажности (IRH), и это увеличение было более выраженным ниже порога просачивания. Кроме того, было обнаружено, что прочность, приобретаемая за счет эффекта микронаполнителя МУНТ, значительно снижается, особенно в недостаточно перколяционных смесях, что приводит к общему снижению прочности. Кроме того, это исследование показало, что чем больше было добавлено МУНТ, тем меньше была достигнута текучесть из-за повышенной вязкости смеси.Ожидается, что результаты этого исследования предоставят ключевую информацию для точной и надежной интерпретации данных самочувствия, полученных композитами на основе цемента, содержащими МУНТ.

Ключевые слова

Ключевые слова

Композиты из углерода

Композиты на основе цемента

Удельное электрическое сопротивление электрическим током

Внутренняя относительная влажность

Percolation ThreeShold

Самочувствие

Рекомендуемые статьи

Опубликованы Elsevier B.V.

5.3 Удельное сопротивление и сопротивление – введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Различие между сопротивлением и удельным сопротивлением
  • Дайте определение термину проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите зависимость между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
  • Укажите зависимость между удельным сопротивлением и температурой

Что управляет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, настенные розетки и т. д., которые необходимы для поддержания тока.Все подобные устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле, и заряды в проводнике испытывают силу из-за электрического поля. Полученная плотность тока зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, в том числе и в металлах, при данной температуре плотность тока примерно пропорциональна напряженности электрического поля.В этих случаях плотность тока может быть смоделирована как

   

, где  – электропроводность . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку электропроводность равна , единицы измерения равны

.

   

Здесь мы определяем единицу измерения с именем ом  с греческой буквой омега в верхнем регистре, .Единица названа в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. используется, чтобы избежать путаницы с числом . Один ом равен одному вольту на ампер: . Поэтому единицами электропроводности являются .

Проводимость – это неотъемлемое свойство материала. Другим неотъемлемым свойством материала является удельное сопротивление или удельное электрическое сопротивление. Удельное сопротивление материала является мерой того, насколько сильно материал сопротивляется прохождению электрического тока.Символом удельного сопротивления является строчная греческая буква ро, а удельное сопротивление является обратной величиной электропроводности:

.

   

Единицей удельного сопротивления в системе СИ является омметр. Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

(5.3.1)  

Чем больше удельное сопротивление, тем большее поле необходимо для создания данной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемая данным электрическим полем.Хорошие проводники имеют высокую проводимость и низкое удельное сопротивление. Хорошие изоляторы имеют низкую проводимость и высокое удельное сопротивление. В таблице 5.3.1 перечислены значения удельного сопротивления и проводимости для различных материалов.

(таблица 5.3.1)  

Таблица 5.3.1  Удельные сопротивления и электропроводность различных материалов по
[1] Значения сильно зависят от количества и типов примесей.

 

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления.Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что мы и рассмотрим в последующих главах.

ПРИМЕР 5.3.1


Плотность тока, сопротивление и электрическое поле для провода с током

Рассчитайте плотность тока, сопротивление и электрическое поле отрезка медного провода диаметром (), по которому течет ток .

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна , и определение плотности тока . Сопротивление можно найти, используя длину провода , площадь и удельное сопротивление меди , где .По удельному сопротивлению и плотности тока можно найти электрическое поле.

Решение

Сначала вычисляем плотность тока:

   

Сопротивление провода

   

Наконец, мы можем найти электрическое поле:

   

Значение

Из этих результатов неудивительно, что медь используется для проводов для передачи тока, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

ПРОВЕРЬТЕ СВОЕ ПОНИМАНИЕ 5.5


Медные провода

обычно используются для удлинителей и домашней проводки по нескольким причинам. Медь имеет самый высокий показатель электропроводности и, следовательно, самый низкий показатель удельного сопротивления из всех недрагоценных металлов. Также важна прочность на растяжение, где прочность на растяжение является мерой силы, необходимой для того, чтобы потянуть объект до точки, где он сломается. Прочность материала на растяжение – это максимальное растягивающее усилие, которое он может выдержать, прежде чем разорвется.Медь имеет высокую прочность на растяжение, . Третьей важной характеристикой является пластичность. Пластичность — это мера способности материала втягиваться в провода и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что для того, чтобы проводник был подходящим кандидатом для изготовления проволоки, необходимо, по крайней мере, три важные характеристики: низкое удельное сопротивление, высокая прочность на растяжение и высокая пластичность. Какие еще материалы используются для электропроводки и в чем их преимущества и недостатки?

Температурная зависимость удельного сопротивления

Оглядываясь назад на Таблицу 5.3.1 вы увидите столбец с надписью «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры. На самом деле у большинства проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает усиление колебаний атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры.Во многих материалах зависимость приблизительно линейна и может быть смоделирована линейным уравнением:

(5.3.2)  

где  удельное сопротивление материала при температуре ,  это температурный коэффициент материала, а  это удельное сопротивление при , обычно принимаемое за .

Обратите также внимание на то, что температурный коэффициент отрицателен для полупроводников, перечисленных в таблице 5.3.1, а это означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшаться с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента. Сопротивление является мерой того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Чтобы рассчитать сопротивление, рассмотрим отрезок проводника с площадью поперечного сечения , длиной и удельным сопротивлением . Через проводник подключена батарея, создающая на нем разность потенциалов (рис. 5.3.1). Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно .

(рис. 5.3.1)  

Рисунок 5.3.1  Потенциал, обеспечиваемый батареей, подается на отрезок проводника с площадью поперечного сечения и длиной .

Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, , а величина плотности тока равна силе тока, деленной на площадь поперечного сечения, . Используя эту информацию и вспомнив, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем увидеть, что напряжение пропорционально току:

   

СОПРОТИВЛЕНИЕ


Отношение напряжения к току определяется как сопротивление :

(5.3.3)  

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

(5.3.4)  

Единицей сопротивления является ом, . Для данного напряжения, чем выше сопротивление, тем меньше ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекающего тока или обеспечения падения напряжения. Рисунок 5.3.2 показаны символы, используемые для обозначения резистора на принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-see») и Международной электротехнической комиссией (IEC). Обе системы широко используются. В этом тексте мы используем стандарт ANSI для его визуального распознавания, но мы отмечаем, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что облегчает его чтение.

(рис. 5.3.2)  

Рисунок 5.3.2  Обозначения резистора, используемые на принципиальных схемах. а) символ ANSI; (b) символ МЭК.
Зависимость сопротивления от материала и формы

Резистор можно смоделировать в виде цилиндра с площадью поперечного сечения  и длиной  , изготовленного из материала с удельным сопротивлением  (рисунок 5.3.3). Сопротивление резистора равно .

(рис. 5.3.3)  

Рисунок 5.3.3  Модель резистора в виде однородного цилиндра с длиной и площадью поперечного сечения.Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения, тем меньше его сопротивление.

Наиболее распространенным материалом для изготовления резисторов является углерод. Углеродная дорожка намотана на керамический сердечник, и к нему присоединены два медных вывода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка изготовлена ​​из оксида металла, обладающего полупроводниковыми свойствами, подобными углероду.Снова в концы резистора вставлены медные выводы. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 5.3.4.

(рис. 5.3.4)  

Рисунок 5.3.4  Многие резисторы похожи на рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет представляет допуск резистора.Показанный резистор имеет сопротивление .

Диапазон сопротивлений превышает много порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление  или более. У сухого человека сопротивление рук и ног может составлять , тогда как сопротивление человеческого сердца составляет около . Кусок медной проволоки большого диаметра длиной в метр может иметь сопротивление , а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Сопротивление объекта также зависит от температуры, так как  прямо пропорционально . Для цилиндра мы знаем , поэтому, если  и не сильно меняются с температурой,  имеет ту же температурную зависимость, что и . (Изучение коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на  и примерно на два порядка меньше, чем на .) Таким образом,

(5.3.5)  

— температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимается равным ), а — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре .

Многие термометры основаны на влиянии температуры на сопротивление (рис. 5.3.5). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры.Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

(рис. 5.3.5)  

Рисунок 5.3.5  Эти известные термометры основаны на автоматизированном измерении сопротивления термистора в зависимости от температуры.

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 5.6


Тензорезистор — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей подложки, поддерживающей узор из проводящей фольги.Сопротивление фольги изменяется по мере растяжения подложки. Как изменится сопротивление тензорезистора? Влияет ли на тензодатчик изменение температуры?

ПРИМЕР 5.3.3


Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные помехи, то есть сигналы от другого оборудования и приборов. Коаксиальные кабели используются во многих приложениях, требующих устранения этого шума. Например, их можно найти дома в соединениях кабельного телевидения или других аудиовизуальных соединениях.Коаксиальные кабели состоят из внутреннего проводника радиусом  , окруженного вторым, внешним концентрическим проводником радиусом  (рисунок 5.3.6). Пространство между ними обычно заполнено изолятором, например, полиэтиленом. Между двумя проводниками возникает небольшой радиальный ток утечки. Определить сопротивление коаксиального кабеля длиной .

(рис. 5.3.6)  

Рисунок 5.3.6  Коаксиальные кабели состоят из двух концентрических проводников, разделенных изоляцией.Они часто используются в кабельном телевидении или других аудиовизуальных соединениях.
Стратегия

Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной и интегрируем.

Решение

Сначала мы находим выражение для  и затем интегрируем от  до ,

   

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов и удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к затуханию (или ослаблению) сигнала, передаваемого по кабелю.

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 5.7


Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиусов двух проводников. Если вы проектируете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Цитаты Кандела

Лицензионный контент CC, указание авторства

  • Загрузите бесплатно на http://cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

Удельное сопротивление и проводимость: определение, причины, формула и единицы измерения (с таблицей)

Удельное сопротивление и проводимость — это две стороны одной медали, но оба являются важными понятиями, которые необходимо усвоить, изучая электронику. По сути, это два разных способа описания одного и того же фундаментального физического свойства: насколько хорошо электрический ток протекает через материал.

Удельное электрическое сопротивление — это свойство материала, которое говорит вам, насколько оно сопротивляется прохождению электрического тока, а проводимость количественно определяет, насколько легко течет ток. Они очень тесно связаны, так как электропроводность является обратной величиной удельного сопротивления, но детальное понимание обоих важно для решения проблем физики электроники.

Удельное электрическое сопротивление

Удельное сопротивление материала является ключевым фактором при определении электрического сопротивления проводника и частью уравнения сопротивления, которое учитывает различные характеристики различных материалов.

Само электрическое сопротивление можно понять с помощью простой аналогии. Представьте, что поток электронов (переносчиков электрического тока) по проводу представлен шариками, стекающими по пандусу: вы получите сопротивление, если поставите препятствия на пути пандуса. Когда шарики натыкались на барьеры, они теряли часть своей энергии из-за препятствий, и общий поток шариков вниз по пандусу замедлялся.

Еще одна аналогия, которая может помочь вам понять, как на ток влияет сопротивление, — это влияние прохождения через гребное колесо на скорость течения воды.Опять же, энергия передается гребному колесу, и в результате вода движется медленнее.

Реальность для протекания тока через проводник ближе к примеру с мрамором, потому что электроны проходят через материал, но решетчатая структура ядер атомов препятствует этому потоку, что замедляет электроны.

Электрическое сопротивление проводника определяется как:

R = \frac{ρL}{A}

Где ​ ρ ​ (rho) – удельное сопротивление материала (зависит от его состава), длина​ L ​ длина проводника и ​ A ​ площадь поперечного сечения материала (в квадратных метрах).Уравнение показывает, что более длинный проводник имеет более высокое электрическое сопротивление, а проводник с большей площадью поперечного сечения имеет более низкое сопротивление.

Единицей сопротивления в системе СИ является ом (Ом), где 1 Ом = 1 кг·м . Различные материалы имеют разное удельное сопротивление, и вы можете найти значения удельного сопротивления материала, который вы используете в расчетах, в таблице (см. Ресурсы).

Электропроводность

Электропроводность просто определяется как величина, обратная удельному сопротивлению, поэтому высокое удельное сопротивление означает низкую проводимость, а низкое удельное сопротивление означает высокую проводимость. Математически проводимость материала представлена ​​следующим образом:

σ = \frac{1}{ρ}

Где σ — проводимость, а ρ — удельное сопротивление, как и раньше. Конечно, вы можете изменить уравнение для сопротивления в предыдущем разделе, чтобы выразить это через сопротивление, R , площадь поперечного сечения A ​ проводника и длину L в зависимости от того, какую проблему вы решаете.

Единицы СИ для проводимости обратны единицам удельного сопротивления, что делает их Ω −1 м −1 ; однако обычно он выражается в сименсах на метр (См/м), где 1 S = 1 Ом -1 .

Расчет удельного сопротивления и проводимости

Имея в виду определения удельного электрического сопротивления и проводимости, просмотр примера расчета поможет закрепить представленные идеи. Для медного провода длиной L = 0.1 м и площадь поперечного сечения ​ A ​ = 5,31 × 10 −6 м 2 и сопротивление ​ R ​ = 3,16 × 10 −4 Ом, чему равно удельное сопротивление ​ ρ из меди? Во-первых, вам нужно изменить уравнение для сопротивления, чтобы получить выражение для удельного сопротивления ρ следующим образом:

R = \frac{ρL}{A}

ρ = \frac{RA}{L }

Теперь вы можете вставить значения, чтобы найти результат:

\begin{aligned} ρ &= \frac{3.7 \text{ с/м} \end{aligned}

Очень низкое удельное сопротивление и высокая проводимость объясняют, почему именно такой медный провод, вероятно, используется в вашем доме для подачи электричества.

Зависимость от температуры

Значения удельного сопротивления различных материалов, которые вы найдете в таблице, будут значениями при определенной температуре (обычно выбранной комнатной), поскольку для большинства материалов удельное сопротивление увеличивается с повышением температуры.

Хотя для некоторых материалов (таких как полупроводники, такие как кремний) удельное сопротивление уменьшается с повышением температуры, общим правилом является увеличение с температурой. Это легко понять, если вернуться к аналогии с мрамором: барьеры, вибрирующие вокруг (в результате повышенной температуры и, следовательно, внутренней энергии), с большей вероятностью блокируют шарики, чем если бы они были полностью неподвижны. .

Удельное сопротивление при температуре ​ T ​ определяется соотношением:

ρ (T) = ρ_0(1 + α(T – T_0))

удельного сопротивления, ​ T ​ – это температура, при которой вы рассчитываете сопротивление, ​ T 0 – эталонная температура (обычно принимается равной 293 K, примерно комнатная температура) и ​ ρ 0 — удельное сопротивление при эталонной температуре.Все температуры в этом уравнении выражены в кельвинах (К), а единицей СИ для температурного коэффициента является 1/К. Температурный коэффициент сопротивления обычно имеет то же значение, что и температурный коэффициент сопротивления, и имеет тенденцию быть порядка 10 -3 или ниже.

Если вам нужно рассчитать температурную зависимость для различных материалов, вам просто нужно найти значение соответствующего температурного коэффициента и выполнить уравнение с эталонной температурой T 0 = 293 K (при условии поскольку она соответствует температуре, используемой в качестве эталонного значения удельного сопротивления).{−1} \\ \hline \text{Silver} & 1.{-23} & \\ \hdashline \end{array}

Обратите внимание, что изоляторы в списке не имеют установленных значений своих температурных коэффициентов, но они включены, чтобы показать полный диапазон значений удельного сопротивления и проводимости.

Расчет удельного сопротивления при различных температурах

Хотя теория о том, что удельное сопротивление увеличивается при повышении температуры, имеет смысл, стоит взглянуть на расчет, чтобы подчеркнуть влияние, которое повышение температуры может оказать на проводимость и удельное сопротивление материала.Для примера расчета рассмотрим, что происходит с удельным сопротивлением и проводимостью никеля при нагревании от 293 К до 343 К. Снова взглянем на уравнение:

ρ (T) = ρ_0(1 + α(T – T_0))

Вы можете видеть, что значения, необходимые для расчета нового удельного сопротивления, находятся в таблице выше, где удельное сопротивление ρ 0 = 6,99 × 10 −8 Ом·м, а температурный коэффициент α = 0,006. Вставка этих значений в приведенное выше уравнение позволяет легко рассчитать новое удельное сопротивление:

\begin{aligned} ρ (T) &= 6.{−8}\text{ Ом·м} \end{aligned}

Расчет показывает, что довольно существенное повышение температуры на 50 К приводит только к 30-процентному увеличению значения удельного сопротивления и, таким образом, к 30-процентному увеличению в сопротивлении данного количества материала. Конечно, вы можете продолжить и рассчитать новое значение электропроводности на основе этого результата.

Влияние повышения температуры на удельное сопротивление и проводимость определяется величиной температурного коэффициента, причем более высокие значения означают большее изменение температуры, а более низкие значения означают меньшее изменение.

Сверхпроводники

Голландский физик Хайке Камерлинг-Оннес исследовал свойства различных материалов при очень низких температурах в 1911 году и обнаружил, что ниже 4,2 К (т.е. -268,95 °C) ртуть полностью ​ теряет свое сопротивление к потоку электрического тока, поэтому его удельное сопротивление становится равным нулю.

В результате этого (и связи между удельным сопротивлением и проводимостью) их проводимость становится бесконечной, и они могут проводить ток бесконечно без потери энергии.Позже ученые обнаружили, что многие другие элементы демонстрируют такое поведение при охлаждении ниже определенной «критической температуры» и называются «сверхпроводниками».

Долгое время физика не предлагала реального объяснения сверхпроводников, но в 1957 году Джон Бардин, Леон Купер и Джон Шриффер разработали теорию сверхпроводимости «БКШ». Это утверждает, что электроны в материале группируются в «куперовские пары» в результате взаимодействия с положительными ионами, составляющими решетчатую структуру материала, и эти пары могут беспрепятственно перемещаться через материал.

Когда электрон движется через охлаждаемый материал, положительные ионы, образующие решетку, притягиваются к нему и немного меняют свое положение. Однако это движение создает в материале положительно заряженную область, которая притягивает другой электрон, и процесс начинается снова.

Сверхпроводники обязаны многим потенциальным и уже реализованным применениям своей способности проводить токи без сопротивления. Одним из наиболее распространенных применений, с которым вы, скорее всего, уже знакомы, является магнитно-резонансная томография (МРТ) в медицинских учреждениях.

Однако сверхпроводимость также используется для таких вещей, как поезда на маглеве, которые работают за счет магнитной левитации и призваны устранить трение между поездом и рельсом, и ускорители частиц, такие как Большой адронный коллайдер в ЦЕРНе, где сверхпроводящие магниты используются для разгонять частицы до скоростей, приближающихся к скорости света. В будущем сверхпроводники могут быть использованы для повышения эффективности производства электроэнергии и увеличения скорости компьютеров.

Удельное электрическое сопротивление и проводимость — Справочник по электронике

В следующей таблице показаны удельное электрическое сопротивление, проводимость и температурный коэффициент для перечисленных материалов.

См. урок об электрических свойствах материалов для получения более подробной информации об удельном сопротивлении и проводимости.

Удельное сопротивление отсортировано от наименьшего удельного сопротивления до высшего удельного сопротивления:

0 0.0040420 4.11 * 10 0 4.11 * 10 7 7 0 3.77 * 10 7 90 0.00410 9 0 1.43 × 10 7 0 0,0065550 6.99 × 10 6 00 × 10 -7 0 4,55 × 10 6 5 6 90350 2,07 × 10 6 0 2,04 × 10 6 0 0,00000800 1,02 × 10 6 0 10 -3 до 10 8 0 10 -8 до 10 3 0 -0.0480 5 × 10 -4 до 5 × 10 — 2 5 4 до 10 -4 до 10 -3 0 5.5 × 10 -6 0 ~ 10 -15 до 10 -19 0 ~ 10 -13 0 10 -16 до 10 — 14 50 10 -25 до 10 -25 2 -23
Материал Удельное сопротивление (при 20 ° C) Проводимость (при 20 ° C) Коэффициент температуры
Серебро 1,59 * 10 -8 6.30 * 10 7 9 0.00380
1 60355 1.68 * 10 -8 5.96 * 10 7
отжигают меди 1.72 * 10 -8 5.80 * 10 7 0.00393
Gold 294 * 10 -8 0,00340
Алюминий / алюминий 2.65 * 10 -8 -8 -8 0.00390
3.36 * 10-8 2.98 × 10 7
Tungsten 5,60 × 10 -8 -8 1.79 × 10 7 0.00450
Zink 5.90 × 10 -8 0 1,69 × 10 7 0,003702
Cobalt 6.24 × 10 -8 -8 5 0 1.60 × 10 7
Nickel 6.99 × 10 -8 0,006
Ruthenium 7.10 × 10 -8 -8 -8 5 1.41 × 10 7
9.28 × 10 -8 1.08 × 10 7
Iron 9,70×10 −8 10 7 0.005
Platinum 1,06 × 10 -7 0 9.43 × 10 6 0,00392 0,00392
TIN 1.09 × 10 -7 9.17 × 10 6 0.00450
Niobium 1.40 × 10 -7 700 × 10 6
Gallium 1.40 × 10 -7 7.10 × 10 6 0.004
Углеродистая сталь 1.43 × 10 -7
0.0039
Titanium 4,20 × 10 -7 2.38 × 10 6
Зерно-ориентированные электрические стали 4,60 × 10 -7 2,17 × 10 6
Манганин 4.82 × 10 -7 -7 -7 0,000002 0,000002
4,90 × 10 -7 0,000008
Нержавеющая сталь 6.90 × 10 -7 5 1.45 × 10 6 0,00094
Mercury 9.80 × 10 -7 0,00090
Nichrome 1.10 × 10 -6 -6 5 6,70 × 10 5 0,0004
1,44 × 10 -6 6,94 × 10 5
графит — Parallel для базального 2,5 × 10 -6 до 5.0 × 10 -6 -6 5 0 2 × 10 5 до 3 × 10 5
углерода (аморфный) 5 × 10 -4  до 8×10 −4 1.25 × 10 3 до 2,00 × 10 3 -0.0005
GaAs (Gallium Arsenide)
Графит- Перпендикулярно базальному самолету 3 × 10 -3 3.3 × 10 2
морская вода 2,0 × 10 -1 4,8
Германий 4.6 × 10 -1 -1 5 2.17 -0.048
питьевой воды 2 × 10 1 до 2 × 10 3
дерева (влажный) 10 3 до 10 4
Silicon 2,3 × 10 3 4,35×10 −4 −0,075
Вода деионизированная 1.8 × 10 5
Air 10 9 до 10 15
стекло 10 11 до 10 15 до 10 15 5 0 10 -15 -15
Diamond 10 12
Ebonite (жесткий резина) 10 13 5 0 10 -14 5 2
дерева (сухой) 10 14 до 10 16
Sulfur 10 15 5 0 10 -16 9 -16
Снятый кремнезем / Слитый кварц 75 × 10 17 1.3 × 10 -18 -18 -18
Galinstan 2,89 × 10 -7 3,46 × 10 6
Pet 10 21 10 -21 -21
Teflon 10 23 до 10 25 2

электропроводность металлов | Примеры и формулы электропроводности — видео и стенограмма урока

Молния возникает, когда электричество проходит от облаков к земле

Электроны могут перемещаться от одного атома к другому гораздо легче, чем протоны и нейтроны, но в некоторых материалах этот процесс происходит с небольшим сопротивлением, а в других материалах заставить двигаться электроны очень трудно.Материалы, в которых электроны могут легко перемещаться от одного атома к другому, известны как электрические проводники . Большинство металлов являются хорошими электрическими проводниками, поэтому большинство бытовых проводов и линий электропередачи изготовлены из таких металлов, как медь и алюминий. Электропроводность ({eq}\sigma {/eq}) материала является мерой его способности проводить электричество. Большинство металлов имеют высокую электропроводность, в то время как другие материалы, такие как пластик и стекло, имеют низкую электропроводность.

Другой величиной, которая описывает, насколько хорошо материал проводит электричество, является его удельное сопротивление ({eq}\rho {/eq}). Удельное сопротивление является обратной величиной проводимости, поэтому материалы с высокой проводимостью будут иметь низкое удельное сопротивление, а материалы с низкой проводимостью будут иметь высокое удельное сопротивление.

$$\rho =\frac{1}{\sigma } $$

Удельное сопротивление измеряется в единицах {экв}\Омега \cdot м {/экв}, а электропроводность измеряется в единицах {экв}\ frac{S}{m} {/eq}, где S  — символ Сименса.{-1} {/экв}.

Электрические проводники и изоляторы

В то время как некоторые материалы, такие как металлы, являются хорошими проводниками электричества и обладают высокой электропроводностью, другие материалы, такие как пластик, стекло и воздух, имеют высокое удельное сопротивление и поэтому являются плохими проводниками. электричества. Эти материалы называются изоляторами . В изоляторе электроны не могут легко перемещаться от одного атома к другому, что очень затрудняет прохождение тока через изолятор.

Из-за очень низкой проводимости изоляторы могут использоваться для предотвращения прохождения электричества. Например, металлические электрические провода обычно покрывают пластиковым изоляционным материалом, чтобы предотвратить выход электрического тока из провода и поражение электрическим током находящегося рядом человека. Изоляторы также используются на линиях электропередач, чтобы предотвратить попадание электричества в конструкции, поддерживающие линии.

Изоляторы, как и диск, поддерживающий линию электропередач, имеют низкую электропроводность, что означает, что они плохо пропускают электричество.

Электропроводность некоторых обычных проводников и изоляторов указана в таблице ниже. Обратите внимание, что проводимости проводников намного выше, чем у изоляторов.

Материал Изолятор или проводник? Проводимость Удельное сопротивление
Медь Проводник 5.96×107 1,68×10-8
Алюминий Проводник 3,50×107 2,82×10-8
Серебро Проводник 6.30×107 1,59×10-8
Золото Проводник 4.10×107 2.44×10-8
Резина Изолятор ~10-14 ~1013
Стекло Изолятор ~10-13 ~1012
Воздух Изолятор ~10-15 ~1014

Применение и использование электрических проводников

Электрические проводники могут использоваться для передачи электричества.Например, линии электропередач большой протяженности построены из металлов, которые являются прекрасными проводниками электричества. Высокая проводимость этих материалов позволяет передавать электричество на большие расстояния без больших потерь энергии. Проводящие металлические провода также используются для передачи электрического тока внутри зданий и даже внутри таких устройств, как компьютеры и телефоны.

Эти металлические линии электропередач обладают высокой электропроводностью, поэтому они могут передавать электричество на большие расстояния с небольшими потерями энергии.

Формулы электропроводности

Сопротивление провода можно рассчитать, используя удельное сопротивление или проводимость материала. Площадь поперечного сечения ( А ) и длина ( l ) провода также влияют на его общее сопротивление. Сопротивление можно рассчитать, используя следующую формулу сопротивления и электропроводности:

$$R=\frac{l}{\sigma A}=\frac{\rho L}{A} $$

В качестве примера того, как чтобы использовать эту формулу, давайте рассчитаем сопротивление 0.{-5}\; \Omega $$

Краткий обзор урока

Электрический ток существует, когда электроны перемещаются в материале от атома к атому. В некоторых материалах электроны могут относительно легко перемещаться от одного атома к другому, в то время как в других материалах заставить электроны двигаться очень трудно. Материалы, в которых электроны могут легко перемещаться от одного атома к другому, известны как электрические проводники , а материалы, в которых электроны не могут легко перемещаться, называются электрическими изоляторами .

Добавить комментарий

Ваш адрес email не будет опубликован.