Алюминий анодированный – Анодирование — Википедия

Содержание

Что такое анодированный алюминий

На сегодняшний день алюминий остается очень важным и востребованным материалом для изготовления всевозможных деталей, подделок и прочее. Можно перечислить массу его преимуществ, например, небольшой вес, достаточная прочность, не подвергается коррозии, его легко обрабатывать для дальнейшего использования. Но при всем этом, многих не привлекает его внешний вид. Если вы хоть раз пробовали красить алюминий, то ваши попытки могли заканчиваться безуспешно, ведь краска держится на алюминии очень плохо. Если его использовать без краски, то очень скоро он покроется темными пятнами. Чтобы все это не допустить, была разработана технология анодирования алюминия. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками.

Анодирование – что это

Под анодированием подразумевается анодное оксидирование. То есть это процесс, в результате которого на поверхности алюминия образуется или появляется оксидное покрытие. Вследствие этого процесса происходит окисление металла. В результате алюминий становится неуязвимым для негативного воздействия извне. То есть окисленное место становится намного прочнее.

Зачем анодировать

Как уже говорилось выше, при взаимодействии алюминия с кислородом, на его поверхности образуется пленка. Она предотвращает окисление. Но здесь есть важный нюанс, эта пленка из природного оксида очень тонкая. Как следствие она может прорываться. И чтобы исключить это, было решено анодировать алюминий. Как следствие, металл приобретает намного лучшие технические характеристики.

Так, анодированный алюминий не подвергается коррозии. Образующаяся пленка устойчива к износу. Спустя время, это покрытие не будет даже отслаиваться. Здесь важно понимать еще один нюанс, почему это стало возможным. Некоторые металлы покрывают хромом или цинком. В случае алюминия его ничем не покрывают. Эта пленка образуется непосредственно на самом металле сама по себе.

Так, к этой процедуре прибегают с целью, придать металлу более декоративный внешний вид, например, тот или иной оттенок. Примечательно то, что цвет анодирования можно изменять. Для этого следует применять анилиновые красители, которые используются при покраске одежды.

Если говорить за промышленные технологии, то там анодируют алюминий в растворе серной кислоты 20 процентов. Что касается домашних условий, то данная технология небезопасна, поэтому необходимо использовать другую методику.

Применение анодированного алюминия

Существует множество сфер использования для достижения абсолютно разных целей. Сейчас рассмотрим их:

  • Основа для окраски. Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным. Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок.
  • Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды.
  • В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид.
  • Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы. Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются.
  • Отражение в проекторах. Технология сернокислого анодирования используется для защиты отражателей прожекторов. Это отражение будет сохраняться годами. А если необходимо почистить его поверхность, то для этого нет никаких проблем.
  • В тепловых отражателях. Используется анодированный алюминий в нагревательных рефлекторах. Поверхность легка к любому очищения. Может использовать в помещениях с повышенной влажностью. Толщина покрытия составляет 1 микрон.
  • Эффективная борьба с износом и трением. За счет более твердого покрытия значительно снижается износ. В этом случае анодное покрытие может достигать до 60 микрон.
  • Электрический изолятор. В некоторых типах трансформаторов сегодня принято использовать алюминиевую ленту, в обязательном порядке анодированную. Такое покрытие прекрасно сопротивляется воздействию тепловой энергии.
  • Методики анодирования

    Анодировать алюминий можно разными способами, по крайней мере, мы упомянем о двух:

  • Теплое анодирование.
  • Холодное анодирование.
  • Рассмотрим важные особенности каждой технологии.

    Теплое анодирование

    Выполняется эта работа при комнатной температуре от 15 до 20 градусов по Цельсию. Процедура известна как легкоповторяемая. При простых манипуляциях можно получить красивый результат. Однако, данный способ не позволяет достигать прекрасной антикоррозийной защиты. При контакте материала с агрессивной средой, коррозия может проявиться. Также заготовка не будет отличаться хорошей механической защитой. Например, покрытый материал легко поцарапать даже иголкой, а иногда можно стереть и рукой.

    Но с другой стороны, это покрытие служит прекрасным основанием для дальнейшей обработки материала. Процесс анодирования проходит в такой последовательности:

  • Заготовка обезжиривается.
  • Изделие крепится в подвеске.
  • В ванне необходимо анодировать заготовку до молочно-мутного оттенка.
  • После в холодной воде осуществляется процесс промывки.
  • Далее происходит процесс окраски заготовки. Для этого используется горячий раствор анилинового красителя.
  • На протяжении 30 минут происходит заключительный этап – закрепление всех слоев.
  • Холодное анодирование

    Под этим подразумевается то, что процесс анодирования происходит при температуре от -10 до +10 градусов по Цельсию. Благодаря этому можно достичь намного лучшего качества, твердости и прочности анодного покрытия. Холодный процесс прекрасно демонстрирует небольшую скорость растворения внешней пленки. Как следствие, образуется толстый слой. Совсем обратная ситуация при теплом процессе.

    Итак, для достижения таких результатов необходимо создать условия принудительного охлаждения. Без этого создать красивое и износоустойчивое покрытие создать будет невозможно. Если говорить о минусе этой технологии, то она заключается в следующем: поверхность нельзя окрасить органическими красителями.

    Технологический процесс того, как происходит холодное анодирование алюминия выглядит так:

    • Поверхность тщательно обезжиривается.
    • Заготовка крепится в подвеске.
    • В ванне происходит процесс анодирования до образования плотного оттенка.
    • Осуществляется промывка в холодной и горячей воде.
    • Далее происходит процесс варки заготовки в дистиллированной воде. Также изделие выдерживается на пару. Эти действия позволяют закрепить все образовавшиеся слоя.

    Думайте о безопасности

    Итак, выполнить этот процесс в домашних условиях можно, но для этого следует быть крайне предусмотрительным и соблюдать технику безопасности. Лучше всего делать это на открытом воздухе. Ведь кислота является очень опасным веществом. И это даже несмотря на то, что вы будете использовать большой концентрат кислоты.

    Важно! Если она попадет на кожу, то вы испытаете неприятный зуд. Но если случайно попадет в глаза, то это может привести к серьезным последствиям.

    Итак, для работы следует использовать защитную одежду, перчатки и очки. Плюс ко всему, всегда иметь рядом раствор соды или ведро чистой воды.

    Заключение

    Итак, вот мы и узнали с вами, что такое анодированный алюминий. Мы рассмотрели сферы его использования и варианты того, как выполнить подобную работу самостоятельно. В дополнении ко всему, предлагаем просмотр видео, которое закрепит все полученные знания из этой статьи о том, как анодировать алюминий своими руками. Мы уверены в том, что вы справитесь со всеми работами самостоятельно без посторонней помощи.

    Предыдущий пост

    Утепление пола керамзитом

    Следующий пост

    Крыльцо своими руками

    obrawa.ru

    Анодированный алюминий. Специальное покрытие для материала

    Использование профилей из алюминия для отделки некоторых участков дома, а также его применение для изготовления интерьера, идет уже довольно давно. Сам по себе металл отличается высокой пластичностью, неплохим внешним видом и легким весом, но при этом очень быстро окисляется и покрывается серым налетом, если взаимодействует с кислородом.

    Что такое анодированный алюминий?

    Для того чтобы сохранить яркий блеск металлических изделий, пришлось использовать специальное покрытие. Из-за нанесения дополнительного покрытия внешний вид практически не изменился, но при этом о такой неприятности, как коррозия, можно забыть на очень длительный срок.

    Для того чтобы понимать, что такое анодированный алюминий, необходимо выяснить, каким образом металл покрывается защитной пленкой. Обычно металлы защищают от воздействия внешней среды при помощи разных протекторов и прочего. В данном же случае защитная пленка – это обычный, но уже окисленный алюминий, который имеет такую химическую формулу: Al2O3. Однако нужно отметить, что в данном случае он будет представлен не в виде мягкой и тонкой аморфной пленки, а в виде кристаллической структуры, которая очень похожа на шпинель, к примеру.

    Чем характеризуется пленка?

    Получается, что анодированный алюминий покрыт пленкой из уже окисленного материала. Это защитное средство характеризуется следующими свойствами:

    • структура микрокристаллического типа;
    • основание представлено в виде сверхплотной пленки, а внешний слой представляет собой пленки с большим количеством пор;
    • сцепление данного окисленного состава с алюминием очень прочное.

    Последний пункт очень важен. Он означает, что анодированный алюминий сможет сохранять свой защитный слой под любыми нагрузками в течение 40 лет и даже более. Это сильно отличает данный состав от таких, как лакокрасочное или же никелевое покрытие, которое отслаивается от алюминия просто со временем.

    Можно добавить, что от выбранного технического слоя будет зависеть и результат. То есть свойства пленки могут меняться. Она может быть сверхтонкой и составлять всего 10-25 мкм по толщине своей структуры. В таком случае ее даже не получится разглядеть невооруженным глазом. Однако даже такой слой способен защищать металл от любых агрессивных воздействий и при этом пропускать до 95% света.

    Технология анодирования

    Равномерный цвет анодированного алюминия означает, что на материале присутствует тончайший защитный слой. Процесс получения такого защитного слоя основан на том, что происходит анодное окисление алюминия в растворе электролита. В зависимости от того, какой именно анодированный алюминий необходимо получить в конце, используется три типа электролитов:

    • обработка очень слабым током при наличии постоянного напряжения и электролита слабокислотного типа;
    • покрытие такого типа может наноситься под воздействием бихроматно-кислотного электролита;
    • окисление вещества также может проходить и в электролите щелочного типа.

    Для того чтобы изменять свойства конечной пленки, можно менять такие параметры, как кислотность, температура ванны, а также рабочее напряжение на аноде и катоде.

    Посуда из анодированного алюминия

    Сразу стоит сказать, что для производства посуды используются всего три вида технологического процесса: это штамповка, литье и ковка. При наличии алюминия с такой кристаллической структурой можно применять все три типа. Все производители кухонных приборов и посуды утверждают, что использование этого материала позволяет создавать вещи нового поколения. Основная причина, по которой нельзя было применять столь легкий и удобный металл ранее, заключалась в процессе окисления. Момент соприкосновения с продуктами питания ухудшал их качество, и их нельзя было употреблять. Анодирование же решило эту проблему.

    Алюминий листовой

    Помимо посуды и других деталей, выпускается также листовой анодированный алюминий. Кроме того, что такой слой помогает избавиться от коррозии, он также защищает металл от выцветания. Еще одно свойство – это повышение износоустойчивости. Благодаря этому удалось улучшить качество всех дюралевых деталей. Это очень важно при изготовлении, к примеру, приборных панелей. Параметры выпускаемых листов следующие:

    • толщина листа составляет 0,5 – 2 мм;
    • габариты листа – 500 × 600 мм;
    • минимальное количество листов в партии – 1.

    Что касается использования анодированного алюминия, то сразу после его изобретения он широко применялся для производства алюминиевых (дюралевых) деталей для самолетов. Еще одно применение такого типа алюминия – в качестве защитного слоя для других элементов, а также основы для нанесения краски. Стоит также добавить, что такой защитный слой гораздо тверже, чем сам алюминий. Благодаря этому значительно повышается устойчивость к износу у всех элементов. Защитная оболочка помогает сделать из алюминия неплохой электроизоляционный материал, однако возможность локального небольшого пробоя все же присутствует, а потому это несколько ограничивает его использование как изолятора.

    fb.ru

    Технология анодирования алюминиевых профилей — статья про фасадный профиль

    Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. Анодные покрытия на алюминии могут формироваться с применением большого количества электролитов при постоянном токе, переменном токе или их комбинации. Для анодирования алюминиевых прессованных профилей обычно применяется электролиты только на основе серной кислоты, иногда с добавкой щавелевой кислоты [1]. 

    Различие между анодированием и окрашиванием

    Анодное покрытие образуется в результате реакции алюминия с ионами электролита. Получаемое покрытие имеет больший объем, чем исходное алюминиевое основание. Поэтому после анодирования обычно происходит увеличение размеров изделия. При обычном сернокислом анодировании это увеличение размера составляет около одной трети толщины анодного покрытия.    

    Основное «размерное» отличие между анодным покрытием и слоем краски на алюминиевом изделии заключатся в следующем. Анодное покрытие образуется из самого алюминия, тогда как слой краски, например, жидкой, дополнительно наносится

    на поверхность алюминия (рисунок 1).  

    Рисунок 1 – Размерные различия между анодным покрытием и слоем краски

    Процесс анодирования алюминиевых профилей

    Существует много способов анодирования алюминиевых изделий в зависимости от их размеров. Например, алюминиевые заклепки, можно анодировать насыпью с помощью специального вращающегося барабана. Прессованные алюминиевые профили, которые обычно имеют длину от 6 до 8 м, анодируют на специальных навесках. Конструкция навесок обеспечивает надежное закрепление профилей и плотный электрический контакт для всех профилей. На одной навеске может устанавливаться до нескольких десятков профилей в один, два или более рядов (рисунок 2).     

     

    Рисунок 2 – Схема процесса анодирования навески алюминиевых профилей [2]

    В качестве источника тока при анодировании алюминия могут применяться источники постоянного или переменного тока, а также их комбинация. В стандартном сернокислом анодировании обычно применяют выпрямители постоянного тока с напряжением 24 вольта.    

    Структура анодного покрытия

    Известно, что анодное покрытие состоит из двух слоев. Пористый слой оксида алюминия вырастает на относительно тонком сплошном слое, который называют барьерным слоем (рисунок 3). Толщина этого барьерного слоя зависит от состава электролита и технологических параметров анодирования.

    Рисунок 3 – Структура анодной ячейки

    При сернокислом анодировании скорость роста пористого слоя постоянна при постоянной плотности тока. При плотности тока 1,3 А/дм2 она составляет 0,4 мкм/мин. Так как толщина барьерного слоя остается постоянной, то эта скорость роста должна соответствовать скорости растворения оксида алюминия внутри поры.    

    Размеры оксидных ячеек анодного покрытия зависят от технологических параметров анодирования. Типичные размеры анодных ячеек для сернокислого анодного покрытия [2]:

    • Диаметр пор: 14,5-18 нм
    • Плотность размещения пор: 40-80·109 пор/см2
    • Диаметр ячейки: 40-53 нм
    • Пористость: 15 %
    • Толщина барьерного слоя: 14-18 нм
    • Толщина пористого слоя: 5-25 мкм

    Технологические параметры сернокислого анодирования

    Сернокислый электролит

    Для анодирования алюминиевых прессованных профилей во всем мире обычно применяют электролиты на основе серной кислоты.

    Qualanod задает для сернокислого электролита следующие параметры [2]:

    • Концентрация свободной серной кислоты должна быть не выше 200 г/л при колебании внутри интервала 10 г/л от заданной величины;
    • Концентрация алюминия должна быть не выше 20 г/л, предпочтительно в интервале от 5 до 15 г/л.  

    Температура ванны анодирования

    Указания Qualanod по температуре ванны анодирования [2]:

    • для заданной толщины анодного слоя 5 мкм и 10 мкм: не выше 21 ºС
    • для заданной толщины анодного слоя толщины 15 мкм, 20 мкм и 25 мкм: не выше 20 ºС.

    Плотность тока

    Qualanod рекомендует среднюю плотность тока [2]:

    • 1,2 – 2,0 A/дм² для анодного покрытия толщиной 5 мкм и 10 мкм
    • 1,4 – 2,0 A/дм² для анодного покрытия толщиной 15 мкм
    • 1,5 – 2,0 A/дм² для анодного покрытия толщиной 20 мкм
    • 1,5 – 3,0 A/дм² для анодного покрытия толщиной 25 мкм.

    Алюминиевые сплавы для анодированных профилей           

    Для алюминиевых профилей, которые будут подвергаться анодированию, обычно применяют сплавы 6060 и 6063 с некоторыми ограничениями по содержанию магния и кремния, а также примесных элементов, таких как, железо, медь и цинк.

    Обычно, чем чище алюминий и чем меньше в нем легирующих элементов, тем лучше он анодируется. Повышенное содержание примесей в сплаве приводит к образованию в анодном покрытии включений, которые неблагоприятно влияют на однородности его внешнего вида.   

    См. о влиянии химического состава алюминиевых сплавов на качество анодированных профилей здесь.

    Изменение толщины анодного покрытия в ходе анодирования

    Толщина готового анодного покрытия зависит от общей длительности анодирования. Однако скорость роста толщины покрытия зависит от нескольких факторов, таких как, состав электролита, плотность тока и текущая длительность обработки.

    В ходе анодирования происходят два конкурирующих процесса (рисунок 4):

    • непрерывный рост толщины анодного покрытия и  
    • растворение анодного покрытия под воздействием электролита.

     

    Рисунок 4 – Изменение толщины покрытия в ходе анодирования [2]

    Теоретическая величина толщины покрытия при постоянной плотности тока подчиняется известному закону Фарадея. Из этого закона следует, что оксид алюминия растет пропорционально количеству электричества, которое проходит через анод (алюминиевый профиль).

    Влияние температуры электролита

    Увеличение температуры электролита приводит к пропорциональному увеличению  скорости растворения образующегося анодного покрытия. В результате анодное покрытие становится более тонким, более пористым и более мягким.  

    Влияние плотности тока

    Интервал плотности тока, который применяется в стандартном анодировании составляет от 1 до 2 А/дм2 и в некоторых случая — до 3 А/дм2. Плотность тока ниже 1 А/дм2 дает мягкие, пористые и тонкие покрытия. С увеличением плотности тока анодное покрытие формируется быстрее и с относительно меньшим растворением электролитом. Поэтому покрытие получается более твердым и менее пористым. 

    Влияние концентрации серной кислоты

    Влияние повышенной концентрации серной кислоты на формирование анодного покрытия аналогично повышению температуры, хотя влияние температуры является более существенным. Высокая концентрация серной кислоты может ограничивать возможность получения анодного покрытия большой толщины из-за повышенной способности электролита растворять формирующийся пористый оксид алюминия.       

    Цветное анодирование

    Для получения цветного анодного покрытия на алюминиевых профилях применяют два основных метода окрашивания (рисунок 5) :

    • Адсорбционное окрашивание
    • Электролитическое окрашивание

    Адсорбционное окрашивание

    Алюминиевые профили с бесцветным анодным  покрытием без наполнения пор погружают в водный раствор органического или неорганического красителя. Поглощение красителя производится только на 3-4 микрона в глубину пор анодного покрытия (рисунок 5). Затем покрытие подвергают наполнению. Обычно применяют горячие растворы красителей – от 55 до 75 ºС, а длительность окрашивания – от 5 до 15 минут, иногда – 30 минут. Оптимальный диапазон величины рН раствора обычно составляет от 5 до 6.  


    Рисунок 5 – Основные методы окрашивания
    анодированных алюминиевых профилей [2]

    Электролитическое окрашивание

    Электролитическое окрашивание заключается в погружении анодированного изделия в раствор, содержащий соли металлов и приложении к нему переменного и постоянного электрического тока. В таких условиях на дне пор образуется металлический осадок. Цвет анодного покрытия зависит от состава электролита. Такие металлы, как олово, никель и кобальт, дают цвета от бронзового до черного, медь дает красный цвет.     

    Цвет в определенной степени не зависит от толщины анодного покрытия, а зависит в основном от количества осажденного в поры металла. Так, 200 мг олова на квадратный метр поверхности дает светлую бронзу, 2000 мг – черный цвет [2]. 

    Свойства анодного покрытия после электролитического окрашивания в целом аналогичны обычному (бесцветному) анодному покрытию. Стойкость цвета к воздействию солнечного света для большинства электролитов значительно выше, чем для адсорбционного окрашивания.  

    Наполнение анодных покрытий

    Наполнение анодного покрытия – бесцветного и цветного – это последний технологический этап процесса анодирования. Этот этап является очень важным для долговечности анодного покрытия, в том числе, его внешнего вида.

    Гидротермическое наполнение

    Наполнение анодного покрытия в горячей воде обеспечивает полное блокирование анодных пор за счет образования различных видов гидратированного оксида алюминия,  в основном, богемита [2]. 

    Наполнение пор обычно производят путем погружения в воду при температуре 96-100 ºС при величине рН от 5,5 до 6,5. Длительность операции наполнения обычно составляет 2-3 минуты на каждый микрометр номинальной толщины анодного покрытия. Качество воды в ванне наполнения должно быть очень высокое. Такие загрязнители воды, как фосфаты, силикаты и фториды могут замедлять процесс наполнения пор.

    Холодное наполнение

    Известны так называемые «холодные» методы наполнения анодных покрытий, которые выполняются при температуре 25-30 ºС. В этом случае применяются растворы на основе фторидных соединения в присутствии солей никеля или кобальта [1, 2]. Применение этих методов требует высокой культуры производства и жесткого контроля качества наполнения. Кроме того, они требуют эффективной очистки стоков, содержащих тяжелые металлы. 

       

     

    Источники:

    1. Specifications for the QUALANOD Quality Label for Sulfuric Acid-Based Anodizing of Aluminium, Edition 01.01.2017.

    2. TALAT Lecture 5203 – European Aluminium Association, 1994.  

    Смотрите также — навесные вентилируемые фасады Алюком.

    alucom.ru

    АНОДИРОВАНИЕ И ОКСИДИРОВАНИЕ АЛЮМИНИЯ: ООО «НПП Электрохимия»

    Главная → Анодирование и оксидирование алюминия

     

     

    —> Заказать СЕРЕБРИСТОЕ (БЕСЦВЕТНОЕ) АНОДИРОВАНИЕ алюминия

    —> Заказать ЧЕРНОЕ АНОДИРОВАНИЕ алюминия

    —> Заказать АНОДИРОВАНИЕ АЛЮМИНИЯ С ХРОМАТНЫМ НАПОЛНЕНИЕМ

    1. ОБЩИЕ СВЕДЕНИЯ О ПРОЦЕССЕ АНОДИРОВАНИЯ АЛЮМИНИЯ.

    Поверхность алюминия и его сплавов ввиду склонности к пассивации постоянно покрыта естественной окисной пленкой, толщина которой зависит от температуры окружающей среды и составляет обычно 2-5 нм. Коррозионную стойкость и механическую прочность алюминия и его сплавов можно увеличить в десятки и сотни раз, подвергая поверхность металла электрохимическому оксидированию (анодированию).

    Анодное оксидирование алюминия (обозначение: Ан.Окс.[тип оксидной пленки]) — процесс получения на алюминии оксидной пленки химически или электрохимически из растворов кислот и щелочей. В качестве электролита при электрохимическом анодировании применяются: серная, фосфорная, сульфосалициловая кислота, хромовый ангидрид и т.п. Анодирование в основном идет при повышенном напряжении, в зависимости от электролита от 12 до 120 В. При прохождении тока через электролит в зависимости от его состава образующиеся продукты реакции на алюминиевом аноде могут:

    — полностью растворяться,

    — образовывать на поверхности металла прочно сцепленное компактное и электроизоляционное оксидное покрытие толщиной 1,4 нм/,

    — частично растворяться в электролите и образовывать пористое оксидное покрытие толщиной в десятки и сотни мкм.

    Анодное оксидирование придает поверхности алюминия и его сплавов высокие коррозионную стойкость, твердость, износостойкость, термостойкость, каталитическую активность, декоративный вид.

    Анодно-оксидные покрытия разделяют на следующие группы:

    — защитные;

    — защитно-декоративные;

    — твердые;

    — электроизоляционные;

    — тонкослойные;

    — эматаль;

    — цветные или окрашенные.

    Что касается состава анодно-оксидных покрытий, то тонкие беспористые пленки представляют собой в основном безводный оксид алюминия, который в чистом виде располагается у границы с металлом. В тонкие беспоритые анодные покрытия внедряются от 0,6 до 20 % борного ангидрида (для электролитов с борной кислотой), значительное количество других ионов.

    На границе раздела оксид-электролит находят небольшую часть гидратированного оксида Al2O3*H2O. (бемит).

    Пористые анодно-оксидные покрытия состоят в основном из аморфного оксида алюминия и частично включают гамма-Al2O3. Содержание воды в покрытиях, полученных в сульфатных и оксалатных электролитах, достигает 15%. В зависимости от условий формирования вода в оксидном покрытии моет находиться в составе бемита (Al2O3*H2O) или байерита (Al2O3*3H2O). Покрытия содержит значительное количество анионов электролитов, массовая доля которых, %: до 14 сульфата, до 3 оксалата, менее 0,1 хрома. Наибольшее количество анионов находится в наружном слое покрытий. 50-60% анионов удерживаются капиллярными силами в порах, остальные прочно связаны с оксидами и распределены достаточно равномерно по толщине покрытия. Последние называют структурными анионами. Примеси металлов, содержащиеся в сплавах алюминия, в большинстве своем остаются в оксидной пленке (железо, медь, кремний, магний, кальций). Цинк и титан присутствуют в виде следов с содержанием 0,1%. В цветных анодно-оксидных пленках обнаруживаются включения углерода, серы и их оксидные соединения, которые и придают окраску.

    С увеличением количества примесей в металле, повышением температуры электролитов и плотности анодного тока увеличивается нерегулярность микроструктуры оксидных покрытий (нарушается перпендикулярность роста ячеек и пор, их параметры становятся более неравномерными). Наиболее хаотичная структура наблюдается в пленках, сформированных на алюминиевых сплавах в растворах хромовой и ортофосфорной кислот.

    2. ТЕОРИИ ОБРАЗОВАНИЯ АНОДНООКСИДНОЙ ПЛЕНКИ.

    Существуют две теории образования и роста анодно-оксидных покрытий: струткурно-геометрическая и коллоидно-электрохимическая.

    С позиции первой теории при наложении на алюминиевый электрод анодного напряжения (т.е подключение его к (+) ) сначала формируется компактная оксидная пленка, наружная часть которой в электролитах, растворяющих оксид, начинает растворяться в дефектных местах и переходить в пористое покрытие. Дальнейший рост анодно-оксидного покрытия происходит на дне образовавшихся пор за счет превращения все более глубоких слоев металла в оксид. Покрытие состоит из гексагональных ячеек. Прилегающий к металлу барьерный слой толщиной 1-1,1 нм/В состоит из беспористых ячеек. Ячейки пористого слоя имеют в середине одну пору. Диаметр пор и их число зависят от природы электролита и режима анодирования. Под действием электролита оксид, образующий стенки ячеек, гидратируется. При этом происходит адсорбция воды, анионов электролита и продуктов анодной реакции.

    С позиции второй теории образование анодно-оксидных покрытий начинается с возникновения мельчайших частиц оксида, происходящего в результате встречи потока ионов. Адсорбция анионов и воды обуславливает отрицательный заряд частиц. С увеличением числа частиц они превращаются в полиионы — палочкообразные мицеллы, которые образуют скелет ориентированного геля оксида алюминия. В него внедряются анионы электролита. Под действие м отрицательного заряда мицеллы подходят к поверхности и сращиваются с металлом. Наряду с процессами образования мицеллярных слоев с участием анионов протекают сопряженные процессы растворения образующегося оксида. Состав и свойства анодно-оксидных покрытий Тонкие и беспористые анодно-оксидные покрытия представляют собой в основном безводный оксид алюминия, который в чистом виде располагается у границы с металлом. В тонкие беспористые покрытия внедряются от 0,6 до 20% борного ангидрида (электролиты с борной кислотой), значительное количество других ионов. На границе раздела оксид-электролит находят небольшую часть гидратированного оксида алюминия Al2O3*H2O (бемит). Пористые анодно-оксидные покрытия состоят в основном из аморфного оксида алюминия и частично включают гамма-Al2O3 . Содержание воды в покрытиях, полученных в сульфатных и оксалатных электролитах, достигает 15%. В зависимости от условий формирования вода в оксидном покрытии может находиться в составе бемита или байерита (Al2O3*3H2O). Покрытия содержат значительное количество анионов электролитов.

    3. ЦВЕТНЫЕ АНОДНООКСИДНЫЕ ПОКРЫТИЯ.

    Аноднооксидные покрытия могут окрашиваться как напрямую в электролитах, так и путем наполнения в красителях органической и неорганической природы.

    Покрытия, полученные в некоторых нестандартных типах электролитов, имеют обычно желтоватый оттенок. Если в этих электролитах алюминий и его сплавы анодируются вначале переменным, а затем постоянным током, покрытия получаются окрашенными в цвет от светло-соломенного до золотистого и бронзового.

    Окрашивание анодных пленок может происходить также при получении пористого покрытия с наполнением в отдельном растворе. Данный способ можно считать классическим. Прозрачные и полупрозрачные защитно-декоративные покрытия алюминия и его сплавов окрашивают в водных прямых кислотных органических красителей. Содержание красителей в растворах колеблется от 0,1-0,5 г/л для светлых тонов до 5 для интенсивного и 10-15 для черного цвета. Температура растворов 50-70, время окрашивания от 300 до 1800 с. Окраска покрытий, полученных в различных электролитах, различается из-за различия свойств пористости и естественного цвета покрытия. Для получения необходимых цветов используют смеси анилиновых красителей. Некачественная окраска удаляется в растворе перманганата калия и азотной кислоты. Кроме органических красителей применяются и неорганические. Так, ограниченную цветовую гамму, но более светостойкую окраску анодно-оксидных покрытий получают реакцией двойного обмена в растворах неорганических солей.

    4. УПЛОТНЕНИЕ АНОДНЫХ ПЛЕНОК.

    Коррозионная стойкость алюминия и его сплавов (особенно в воде и водных средах), может быть повышена уплотнением в растворе хромовых солей. Обычно используется натриевая соль ввиду экономической целесообразности. Составы для уплотнения анодно-оксидного покрытия в бихроматах регламентируются техническими условиями DEF151 и основаны на работах, первоначально выполненных в СССР и США.

    Различают составы на основе бихромата натрия с карбонатом или гидроксидом натрия и на основе бихромата натрия. Оба раствора работают при температуре 96о С. Обработка в первом растворе для уплотнения анодированного алюминия длится 5-10 минут. Данное время недостаточно для проведения полного уплотнения оксидной анодной пленки гидратацией, но оно обеспечивает поглощение значительного количества хроматов. Анодное покрытие окрашивается после этого в желтый цвет. Интенсивность окрашивания в желтый цвет повышается в зависимости от толщины покрытия. Процесс уплотнения позволяет выявить некачественно анодированное покрытие.

    Второй состав для уплотнения анодированного алюминия в бихромате без других добавок подразумевает обработку на протяжении времени, которое было потрачено на само анодирование. Этот состав обеспечивает удовлетворительную степень гидратации, но не обязательно полное уплотнение.

    Электролит

    Рабочая температура

    Напряжение на ванне

    Число пор на 1 м2 n*1012

    Серная кислота (15%)

    10

    15

    20

    30

    79,1

    53,1

    28,4

    Хромовая кислота (3%)

    29

    20

    40

    60

    22,2

    8,28

    4,29

    Коррозионная стойкость анодированного алюминия возрастает в ряду: 1. анодированный алюминий —> 2. анодированный алюминий с уплотнением —> 3. анодированный алюминий с наполнением в красителях и уплотнением в воде—> 4. анодированный с уплотнением в хроматах.

    5. ОБОЗНАЧЕНИЕ АНОДНЫХ ПОКРЫТИЙ НА АЛЮМИНИИ.

    Обозначение анодных покрытий:

    Ан.Окс. — простое анодирование алюминия;

    Ан.Окс.нв  — анодирование алюминия с наполнением в воде;

    Ан.Окс.тв — твердое;

    Ан.Окс.из — электроизоляционное;

    Ан.Окс.эмт — эматаль;

    Аноцвет — цветное, полученное непосредственно из ванны анодирования;

    Ан.Окс. (цвет красителя) — анодирование с наполнением в красителе;

    Ан.окс.нхр (иногда хр, хотя это не совсем точно) — анодирование с наполнением в растворах хроматах;

    Ан.Окс.эмт. (цвет красителя) — эматаль с наполнением в красителях.

    Данная статья является интеллектуальной собственностью ООО «НПП Электрохимия» Любое копирование без прямой ссылки на сайт www.zctc.ru преследуется по закону. Текст статьи обработан сервисом Яндекс «Оригинальные тексты»

    zctc.ru

    Анодирование алюминия

     

    Сначала о терминологии

    Для краткости будем применять вместо «гостовских» эквивалентных наименований «анодное окисление» и «анодное оксидирование» более короткий, но с тем же смыслом, термин «анодирование», а вместо «гостовского» «анодно-окисное покрытие» — более простое и популярное «анодное покрытие». 

    Что такое анодирование

    Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности. Изделие, которое обрабатывается, является в этом электролитическом процессе анодом. Анодирование повышает стойкость поверхности изделия к  коррозии и износу, а также обеспечивает более высокую адгезию для красок и клеящих веществ, чем просто «голый» алюминий.

    Анодные покрытия могут также применяться как декоративные покрытия или в виде пористого покрытия, которое может впитывать различные красители, или в виде прозрачных покрытий, которые дают интерференционные эффекты при отражении света. Такие интерференционные покрытия применяют, например, на велосипедах или одежде велосипедистов, чтобы их можно было хорошо видеть ночью.

    Как происходит анодирование

    Процесс создания этого защитного оксидного покрытия происходит электролитически. Металлическое изделие, на котором нужно получить анодное покрытие (обычно алюминий) погружают в ванну с электролитическим раствором. В этой же ванне установлены катоды, обычно вдоль бортов ванны. Когда электрический ток проходит через раствор кислоты на катоде выделяется водород, а на аноде – кислород. Это приводит к тому, что на аноде – алюминиевом изделии – начинает расти оксидная пленка.

    В зависимости от назначения анодного покрытия и применяемого процесса анодирования можно получать анодное покрытие с различными характеристиками. Анодное покрытие, которое  может вырастать на алюминиевом изделии,   способно иметь толщину в 100 раз больше, чем оксидное покрытие, которое образуется на алюминии естественным путем.

    Поскольку металлическое изделие является «анодом» в этом электролитическом процессе, то весь этот процесс называют «анодированием».

     Анодирование металлов

    Хотя на различных металлах, включая титан, гафний, цинк и магний, также могут формироваться анодное покрытие, обычно под анодированием подразумевают анодирование алюминия и его сплавов.

    Зачем анодировать алюминий?

    Популярность алюминия во многом связана с его хорошей естественной коррозионной стойкостью. Она достигается из-за высокого химического сродства алюминия к кислороду, то есть их большого взаимного стремления вступать друг с другом в реакцию с образованием оксида алюминия. Эта очень тонкая оксидная пленка мгновенно покрывает любую свежую поверхность алюминия сразу после ее контакта с воздухом. Однако в некоторых случаях необходимо иметь более высокую степень защиты (коррозионной или химической), модифицировать внешний вид поверхности (цвет, текстуру и т.п.) или создать заданные физические свойства поверхности (повышенная твердость, износостойкость или адгезия). В таких случаях прибегают к анодированию алюминия и алюминиевых сплавов.

    Рисунок 1 — Схема процесса анодирования

    Электрохимия анодирования алюминия

    Анодирование алюминия относится к электрохимическим процессам формирования стабильных оксидных покрытий (пленок) на поверхности металлов. Анодирование алюминия и алюминиевых сплавов может происходить с участием разнообразных электролитов с применением источников прямого или переменного тока или их комбинаций. При этом алюминиевое изделие (далее для определенности — профиль) всегда является анодом, то есть его подключают к положительному полюсу источника тока, а другой подходящий металл или сплав – катодом и его подключают к отрицательному полюсу (рисунок 1). Анодные покрытия различают по типам электролитов, которые применяют при их получении. Покрытия бывают  пористыми, например, в фосфорном и сернокислом электролитах, а также так называемыми «барьерными» — совсем без пор. Барьерные анодные покрытия обладают высоким электрическим сопротивлением и их применяют, например, при изготовлении электрических конденсаторов.

    Сернокислое анодирование алюминия

    Обычным, наиболее популярным и широко применяемым для алюминиевых профилей в строительных конструкциях является сернокислое анодирование алюминия. Этот вид анодирования отличается высокой технологичностью и позволяет получать покрытия в широком интервале толщин. Сернокислое анодное покрытие применяют как без дополнительного окрашивания – его называют бесцветным, так и с последующим окрашиванием по одному из нескольких известных способов — его называют цветным анодированием. Заключительной операцией обычно всегда является операция наполнения (или уплотнения) пор.

    Анодирование или окраска алюминия

    Сернокислое анодное покрытие образуется в результате «реакции» алюминия с ионами раствора серной кислоты. Оно занимает больший объем, чем исходный  алюминий и поэтому в результате анодирования происходит увеличение толщины изделия. При сернокислом анодировании это увеличение составляет приблизительно одну треть от общей толщины покрытия. В этом заключается коренное отличие анодного покрытия от, например, порошкового (рисунок 2):

    • анодное покрытие формируется из поверхностного слоя алюминия,
    • порошковое покрытие – на поверхности алюминия.  

    Рисунок 2 — Изменение толщины изделия при анодировании и
    порошковом окрашивании 

    Способы анодирования алюминия

    Конкретный способ анодирования зависит от вида изделия. Например, небольшие изделия или детали, могут анодировать «насыпью» в барабанах или корзинах. Профили длиной до 7 м, иногда до 10 м, анодируют на специальных навесках. Эти навески обычно представляют собой несколько токопроводящих стержней, рамок или каркасов, к которым прочно и достаточно жестко крепятся профили (см. рисунок 1). Прочное крепление профилей необходимо как для того, чтобы они, не свалились с навесок и прошли все циклы «окунания» и «полоскания» в ваннах, в том числе при интенсивном перемешивании растворов и промывочных вод (барботировании)/ Кроме того, что еще важнее, прочное крепление изделий к навескам должно обеспечивать постоянный и надежный электрический контакт профилей с положительным полюсом источника тока непосредственно в процессе анодирования.

    Подготовка поверхности алюминия для анодирования

    Типичная линия анодирования алюминиевых профилей показана на рисунке 3.

    На линию анодирования алюминиевые профили подают или прямо после прессования, или после предварительной механической подготовки поверхности (обработки стальными щетками, обработки дробью, полирования, шлифования и т.п.).

    • Первой операцией процесса анодирования является навешивание профилей на навески. Навеска с алюминиевыми профилями обычно сначала проходит  щелочное обезжиривание, а затем щелочное травление для удаления с поверхности профилей различных загрязнений: масел, твердых частиц и оксидной пленки.
    • После щелочного травления проводят обработку навески в ванне осветления (desmutting), чаще всего — сернокислой (80-100 г/л), для удаления с поверхности темных продуктов щелочного травления.
    • Обработка в ваннах с рабочими растворами сопровождается тщательной промывкой изделий в воде, последняя промывка перед анодированием — в деминерализованной. После этого изделие, в принципе, готово к анодированию.


    Рисунок 3 — Типичная линия ванн для анодирования алюминиевых профилей [1]

    Матовое анодирование алюминия

    При особых требованиях к анодированной поверхности проводят дополнительную обработку поверхности профилей: матовое травление, а также химическое или электрохимическое осветление. Матовое травление обычно проводят в щелочных ваннах специального химического состава. При этом поверхностный слой алюминия заданной толщины удаляется вместе с различными поверхностными дефектами, а поверхность становится матовой (рисунок 4).

     
    Рисунок 4- Матовая и блестящая поверхность анодированного алюминия [3]

    Матовая поверхность максимально рассеивает свет и делает «невидимыми» оставшиеся дефекты поверхности. Если готовая продукция должна иметь блестящую или зеркальную поверхность, то перед анодированием изделия подвергают химическому или электрохимическому осветлению. При этой процедуре с поверхности изделия удаляется алюминий и образуется очень гладкая поверхность с очень большой отражательной способностью.

    Наполнение анодного покрытия

    После анодирования профили или отправляют дальше по линии на окрашивание, или сразу направляют на наполнение пор, если это бесцветное анодирование. Операцию наполнения (или уплотнения) после бесцветного анодирования или цветного анодирования проводят затем, чтобы «закрыть», «закупорить» поры анодного покрытия. Эта операция является очень важной для обеспечения длительного сохранения внешнего вида анодированного изделия. После операции наполнения изделия при необходимости подвергают сушке, снимают с навесок и отправляют на приемку и упаковку.

    Рисунок 5 — Гидротермическое наполнение анодного покрытия [2]

    Контроль толщины анодного покрытия

    Обычно для приемо-сдаточного контроля качества анодированных алюминиевых профилей достаточно контроля внешнего вида, толщины анодного покрытия и качества наполнения. Толщина покрытия является одним из самых важных параметров и есть много методов ее измерения. Обычно толщину покрытия измеряют прибором, работающим на принципе вихревых токов. В спорных случаях применяют металлографические исследования поперечного сечения изделия.

    Контроль наполнения анодного покрытия

    Методы капли

    Для быстрого контроля качества наполнения часто применяют один из вариантов так называемого «метода капли». В качестве контрольного или арбитражного испытания применяют методы потери массы образцов изделий.

    Сущность неразрушающего «метода капли» заключается в оценке степени поглощения красителей анодированной поверхностью после того, как она была обработана соответствующим химическим реагентом. Различные варианты метода капли с предварительной кислотной обработкой поверхности устанавливают  стандарты ISO 2143:2010 (он же — EN ISO 2143:2010 и он же — бывший EN 12373-4) и ГОСТ 9.302-88.

    Метод капли по ISO 2143:2010

    Стандарт Qualonod [1] считает приемлемым степени (рейтинга) интенсивности пятна не ниже 2 (рисунок 6). Если рейтинг составляет 2, то стандарт требует выполнить испытания на потерю массы или выполнить повторное наполнение.


    Рисунок 6 — Критерии качества наполнения по методу капли согласно ISO 2143:2010

    Метод капли по ГОСТ 9.031-74

    Вариант метода капли без предварительной кислотной обработки c двумя вариантами материала капли — красителя или масла — дает ГОСТ 9.031-74.

    Метод потери массы

    Испытание на потерю массы основано на установленном факте, что не наполненное или недостаточно наполненное анодное покрытие быстро растворяется в кислотной среде, тогда как хорошо наполненное покрытие выдерживает длительное погружение без заметного воздействия на него. Варианты метода изложены в стандартах ISO 3210:2010 (он же — EN ISO 3210:2010 и он же – бывший EN 12373-7), а также ГОСТ 9.302-88 и ГОСТ 9.031-74.

    Источники:

    1. Стандарт Qualanod (01.01.2018)
    2. TALAT 5203.
    3. Tom Hauge, Hydro Aluminium, IHAA Symposium, 2014, New York.

    aluminium-guide.ru

    Анодирование алюминия: основные параметры

    Основные параметры сернокислого анодирования

    К основными параметрами сернокислого анодирования алюминия и алюминиевых сплавов относятся:

    • концентрация серной кислоты в анодном электролите;
    • температура анодного раствора — раствора серной кислоты;
    • плотность тока, поступающего через электролит на поверхность алюминиевого профиля.

    Как влияют эти параметры на:

    • рост толщины анодного покрытия,
    • размеры пор,
    • внешний вид анодированной поверхности?

    Как влияет на качество анодирования химический состав алюминия и алюминиевых сплавов?

    Как устроено анодное покрытие

    Барьерный слой

    Любое анодно-окисное покрытие (далее – анодное покрытие) состоит из двух слоев — относительно толстого пористого слоя и тонкого плотного слоя, который называют барьерным (рисунок 1). Толщина этого барьерного слоя зависит от состава электролита и технологических параметров. При анодировании барьерный слой образуется первым, и его толщина прямо зависит от величины напряжения анодирования.

    Рисунок 1

    Пористый слой

    После того как барьерный слой сформирован, на его наружной стороне, если электролит обладает достаточной растворяющей способностью, начинает формироваться пористая кристаллическая структура. Механизм роста пор до сих пор является предметом дискуссий, однако, по мнению большинства ученых ее образование происходит за счет следующей причинно-следственной цепочки: локальное растворение барьерного слоя — повышение величины тока — увеличение температуры — повышение скорости растворения. Это взаимодействие влияний и приводит к образованию пор.

    Окрашивание анодированного алюминия

    Для получения цветного анодного покрытия применяют в основном два метода (рисунок 2):

    • адсорбцию — пропитку пористого слоя красителями;
    • электролитическое окрашивание — электрохимическое осаждение в поры различных металлов (олова, меди, марганца и др.).

    Намного реже применяют так называемое интегральное окрашивание, которое обеспечивается специальным легированием алюминиевых сплавов. Окрашивание  происходит за счет выпадения частиц в объеме пористого слоя, а не в порах.

    Кроме того, в ограниченных объемах применяют так называемое интерференционное окрашивание: вариант электролитического окрашивания, который требует дополнительной ванны для расширения пор вблизи их дна.

    Рисунок 2 — Методы цветного анодирования алюминия

    Почему шестигранник?

    В ходе своего роста анодные ячейки, включающие сами поры и окружающий ее оксид алюминия, образуют шестигранную структуру, которая, по-видимому, обеспечивает выполнение какого-то принципа минимальности энергии. Шестигранная форма анодных ячеек не зависит от типа электролита. Это явно указывает на то, что эта форма имеет чисто энергетическое происхождение.

    Технология сернокислого анодирования алюминия

    Стандартное анодирование

    Сернокислое анодирование алюминия и алюминиевых сплавов является наиболее распространенным. Иногда его называют стандартным.

    • Концентрация серной кислоты в электролите составляет от 10 до 20 % по объему в зависимости от требований к покрытиям.
    • Плотность тока составляет обычно от 1 до 2 А/дм2 при напряжении от 12 до 20 вольт, температуре от 18 до 25 °С и длительности анодировании до 60 минут.

    Скорость роста пор

    На большинстве алюминиевых сплавов этот электролит дает бесцветное прозрачное анодное покрытие. При сернокислом анодировании скорость роста пор является постоянной при постоянной плотности тока. При плотности тока 1,3 А/дм2 эта скорость составляет величину 0,4 мкм/мин. Поскольку толщина барьерного слоя остается постоянной, то это значит, что с такой же скоростью растворяется и дно поры.

    Размеры анодной ячейки

    Размеры анодных ячеек прямо зависят от параметров анодирования (таблица 1). С увеличением напряжения размеры анодной ячейки увеличиваются, а количество пор соответственно уменьшается. Соотношение между размером ячеек и напряжением приблизительно линейное, то есть чем больше напряжение, тем больше размеры ячейки.

    Таблица 1

    Толщина анодного покрытия 

    Рост анодного покрытия

    Толщина анодного покрытия увеличивается с увеличением длительности анодирования. Однако степень роста толщины зависит от нескольких факторов, таких как тип электролита, плотность тока, длительность обработки и т.д. Вначале происходит быстрое и постоянное увеличение фактической толщины, а затем начинается уменьшение скорости роста толщины, пока не наступит стадия, при которой толщина остается приблизительно постоянной, не смотря на продолжающуюся подачу электрического тока. Это связано с тем, что в ходе анодирования происходит как непрерывный рост толщины покрытия, так и его растворение  под воздействием электролита (раствора серной кислоты).

    Закон Фарадея

    Фактическая толщина вычисляется как теоретическая толщина покрытия минус растворенная толщина оксида алюминия (рисунок 3). Теоретическая толщина является пропорциональной времени анодирования при постоянной плотности тока и определяется законом Фарадея, который говорит, что количество образовавшегося оксида пропорционально электрическому заряду, который прошел через анод. 

                                                   Рисунок 3

    Влияние химического состава алюминиевого сплава

    Примеси

    В принципе чистый алюминий анодируется лучше, чем его сплавы. Внешний вид анодного покрытия и его свойства (износостойкость, коррозионная стойкость  и т.п.) зависят как от типа алюминиевого сплава, так и его так сказать металлургической биографии. Размер, форма и распределение интерметаллидных частиц также влияют на качество анодирования алюминиевого сплава. Химический состав алюминиевого сплава является весьма важным в некоторых изделиях, которые требуют блестящего анодирования, для получения которых необходимо, чтобы уровень нерастворимых частиц был как можно ниже.

    Анодное покрытие на алюминии Al 99,99 будет чистым и прозрачным, а при уровне содержания железа 0,08 % оно уже не такое чистое и становится все более «облачным» с увеличением толщины покрытия. При уровне нерастворимых частиц как у алюминия 1050 (алюминий марки АД0) покрытие становиться совершенно «облачным» по сравнению с более чистым металлом. Из всех алюминиевых сплавов на сплавах серий 5ххх и 6ххх получаются самые лучшие декоративные и защитные покрытия. Некоторые сплавы серии 7ххх также дают чистые покрытия с хорошими функциональными свойствами. Цветные покрытия алюминиевых сплавов серии 2ххх обычно получаются низкого качества.

    Интерметаллические частицы

    Поведение интерметаллидных частиц при анодировании зависит от типа частиц и анодного раствора. Некоторые интерметаллидные соединения окисляются или растворяются быстрее, чем алюминий (например, частицы β-Al-Mg), что приводит к образованию пористой структуры. Другие интерметаллидные частицы, такие как частицы кремния, являются практически нерастворимыми при анодировании и поэтому выпадают в виде включений по толщине анодного покрытия. Промежуточными между двумя этими крайними случаями являются соединения (FeAl3, α-Al-Fe-Si и т.д.), которые частично растворяются, а частично остаются в покрытии, что отрицательно влияет на качество покрытия, особенно цветного.

    Влияние температуры анодирования

    Влияние повышения температуры электролита пропорционально увеличению скорости растворения анодного покрытия, что в результате дает более тонкое, более пористое и более мягкое покрытие (рисунок 4).

    Рисунок 4 

    Для получения так называемых твердых анодных покрытий применяют низкую температуру (от 0 до 10 °С) в комбинации с высокой плотностью тока (от 2 до 3,6 А/дм2) и очень активным перемешиванием электролита. В декоративном и защитном анодировании алюминия и алюминиевых сплавов обычно применяется температура электролита от 15 до 25 ºС. Если температура поднимается выше, то максимально возможная толщина анодного слоя снижается до более низких величин из-за более высокой растворяющей способности электролита.

    Влияние плотности тока анодирования

    Интервал плотности тока стандартного сернокислого анодирования алюминия  составляет от 1 до 2 А/дм2, в специальных случаях – 3 А/дм2. При плотности тока ниже этого интервала, получается мягкое, пористое и тонкое покрытие. С увеличением плотности тока покрытие формируется быстрее при относительно меньшем растворении его электролитом и соответственно с более твердым и менее пористым покрытием. При очень высокой плотности тока появляется тенденция к так называемым «прижогам» — возникновению чрезмерно высокого тока в локальных областях с их перегревом (рисунок 5).

     

    Рисунок 5

    Когда от анодного покрытия требуется хорошее и четкое отражение света, то применяют специальные условия анодирования с низкой плотностью тока около 1 А/дм2.

    Влияние концентрации серной кислоты

    Влияние увеличения концентрации серной кислоты на характеристики анодного покрытия на алюминиевых сплавах аналогичны влиянию повышения температуры, хотя влияние температуры является более сильным, чем влияние концентрации. Увеличение концентрации ограничивает максимальную толщину покрытия из-за более высокой растворяющей способности более концентрированного раствора (рисунок 6).

    Рисунок 6

    Источник: TALAT 5203

    См. Применение анодированного алюминия

    aluminium-guide.ru

    Анодирование алюминия: выбор раствора

    Электролит

    Процесс анодирования обычно происходит в растворе — электролите. В качестве электролита для анодирования алюминия применяют весьма большое количество химических растворов. Большинство электролитов являются кислотными, но известны и щелочные электролиты. Наибольший тоннаж анодирования производится в сернокислых растворах, однако другие кислоты также применяют в промышленном масштабе для получения анодных покрытий со специальными свойствами.

    См. Применение анодированного алюминия

    Хромовое анодирование

    Хромовая кислота применялась в первом промышленном процессе анодирования в двадцатых годах прошлого столетия. Раствор содержит от 30 до 50 г хромового ангидрида CrOна литр. Напряжение возрастает до 40-50 В, плотность тока – в интервале от 0,1 до 0,5 А/дм2. Температура – около 40 °С. Анодное покрытие имеет небольшую толщину, от 3 до 4 мкм, и обычно матовый серый или коричневатый цвет. Хромовое анодное покрытие широко применяется, например, для обработки деталей самолетов по следующим причинам:

    •  Хорошая основа для последующего окрашивания.
    • В оксид переходит минимальное количество алюминия, поэтому толщина изделия почти не меняется – можно обрабатывать тонкие листовые детали.
    • Потеря усталостной прочности меньше, чем при сернокислом анодировании.
    • При попадании хромовой кислоты, например, в клепаные соединения или соединения нахлестом, угроза коррозии значительно меньше, чем при сернокислом анодировании.

    Сернокислое анодирование алюминия

    Защитное сернокислое анодирование применяется почти для  всех алюминиевых сплавов, декоративное – только для части сплавов. Так, ГОСТ 9.031-74 предписывает производить декоративное анодное покрытие только на изделиях из алюминия марок АД0 и АД1, сплавов АМц, АМг0,5, АМг2, АМг4, АД31, АД35, 1915 и 1935 по ГОСТ 4784-97.  Анодирование в серной кислоте дает полупрозрачное бесцветное покрытие толщиной до 35 микронов. Внешний вид покрытий сильно зависит от исходного качества поверхности алюминия.

    См. Выбор анодного покрытия в ГОСТ 9.303-84

    QUALANOD предписывает следующие технологические параметры сернокислого анодирования: содержание серной кислоты – до 200 г/л (150-200 г/л), плотность тока для толщин 20 и 25 мкм — от 1,5 до 2,0 А/дм2, для толщины 15 мкм – от 1,4 до 2,0 А/дм2, а для толщин 5 и 10 мкм – от 1,2 до 2,0 А/дм2. Температура ванны анодирования должна быть не выше 21 °С для толщин 5 и 10 мкм, и не выше 20 °С — для толщин 15, 20 и 25 мкм [2].

    Разновидностью сернокислого анодирования является так называемое «твердое анодирование». Его проводят при температуре в интервале от минус 5 °С до плюс 5 °С и действительно получают очень твердое покрытие.

    Анодирование алюминия в растворе щавелевой кислоты

    При анодировании в растворе щавелевой кислоты получают прозрачные твердые, несколько желтоватые покрытия, которые, особенно в Японии, применяют в строительстве зданий. Концентрация щавелевой кислоты в растворе составляет от 3 до 5 % (по массе), плотность тока – от 1 до 2 А/дм2, напряжение – от 40 до 60 В и температура – 18-20 °С. Анодное покрытие, получаемого в растворе щавелевой кислоты, отличается повышенной износостойкостью – в два раза выше, чем у обычного сернокислого. Этот процесс был первым из интегральных цветных покрытий, получившим признание.

    Технические условия QUALANOD включают наряду с чисто сернокислым анодированием анодирование в серной кислоте с добавками щавелевой кислоты: содержание серной кислоты — до 200 г/л и щавелевой – около 7 г/л. Это дает, в частности, возможность держать температуру ванны анодирования при температуре до 24 °С, вместо более жестких 20 °С для покрытий толщиной 20 и 25 мкм для чисто сернокислого анодирования.

    Анодирование алюминия в растворе фосфорной кислоте

    Анодные покрытия, которые получают в растворе фосфорной кислоты, имеют поры большего размера, чем у обычного сернокислого анодного покрытия. Поэтому эти покрытия применяют в качестве основы при получении покрытий методом электрического осаждения металлов на алюминий, а также при подготовке поверхности алюминия к адгезивному соединению деталей при строительстве самолетов. Этот процесс известен также как процесс Боинга. Его основные параметры: концентрация фосфорной кислоты — 10-12 % (по массе), напряжение — 10-15 В, температура 21-24 °С.

    Электролиты для интегрального цветного анодирования

    Эти электролиты включают широкий ряд растворов органических кислот, обычно с небольшими добавками серной кислоты. Получаемые оксидные покрытия имеют удвоенную износстойкость по сравнению с обычными сернокислыми  покрытиями. Спектр цветов — от бледного золотистого к бронзе и далее до черного. Эти процессы активно применяются при производстве строительных изделий, таких как окна, входы в магазины и фасады зданий. Интегральные анодные покрытия очень стойкие к обесцвечиванию, что выгодно отличает их от адсорбционных цветных анодных покрытий.

    См. также  Наполнение анодного покрытия

    Источники:
    1. TALAT 5203
    2. QUALANOD Specifications, edition 01.01.2015

    aluminium-guide.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *